Characterizing Internal and External Sets

Dr. Tahir H. Ismail^{*} Hind Y. Saleh^{**} Barah M. Sulaiman^{***}

"تمييز المجموعات الداخلية والخارجية"

الملخص

الهدف من هذا البحث هو إعطاء تمييز بين المجموعات الخارجية والمجموعات الداخلية وبعض العلاقات بين الكالكسيات والهالات ، ومن أهم النتائج التي حصلنا عليها :

- د تكون المجموعة G كالكسي إذا وفقط إذا وجدت متتابعة متزايدة بدقة من المجموعات G الداخلية $(T_n)_{n \in \mathbb{N}}$ بحيث أن $(T_n)_{n \in \mathbb{N}}$
- كذلك تكون المجموعة H هالة إذا وفقط إذا وجدت متتابعة متناقصة بدقة من $H = \bigcap_{n \in \mathbb{N}} S_n$ بحيث أن $S_n \in H = \bigcap_{n \in \mathbb{N}} S_n$
- اذا كانت H هالة و G كالكسي بحيث $H \supset G$ ، فانه توجد مجموعة داخلية I بحيث $G \supset H$ أن $H \supset I \supset H$.
 - باذا كانت H هالة و G كالكسي فان $H \neq G$. (أي أن الهالة لا تكون كالكسي).
- الداخلية G^H هالة و G كالكسي فإن المجموعة G^H لكل الدوال الداخلية f(H) = G بحيث أن f(H) = G هالة.

ABSTRACT

The aim of this paper is to give a characterization between the external and internal sets, and some relation between the galaxies and monads, according to this paper we obtain the following results :

♦ A set G is galaxy iff there exists a strictly increasing sequence of internal sets $\{T_n\}_{n \in \mathbb{N}}$ such that $G = \bigcup_{n \in \mathbb{N}} T_n$.

Received:1/10/2011 ______Accepted: 21/12/2011

^{*} Assist.Prof.\ College of Computers Sciences and Math.\ University of Mosul

^{**}Assist. Lecturer\ College of Computers Sciences and Math.\ University of Mosul

^{***} Assist. Lecturer\ College of Computers Sciences and Math.\ University of Mosul

Also A set *H* is monad iff there exists a strictly decreasing sequence of internal sets $\{S_n\}_{n \in \mathbb{N}}$ such that $H = \bigcap_{n \in \mathbb{N}} S_n$.

- ♦ If G is a galaxy and H is a monad such that $G \subset H$, then there exists an internal set I such that $G \subset I \subset H$.
- ✤ A monad is not galaxy.
- ★ If **H** is a monad and **G** is a galaxy, the set of all internal functions $f: G \to H$ such that f(H) = G is a monad)

Keywords: Galaxy, Monad , Internal, External.

1. Introduction

The following definitions and notations are needed throughout this paper :

Every concept concerning sets or elements defined in the classical mathematics is called <u>standard</u>

Any set or formula which does not involve new predicates "standard, infinitesimals, limited, unlimited...etc" is called **<u>internal</u>**, otherwise it is called **<u>external</u>** [3,5].

A real number x is called <u>unlimited</u> if and only if |x| > r for all positive standard real numbers r; otherwise it is called <u>limited</u>.

The notations R, \overline{R} and \underline{R} denote respectively the set of real numbers, the set of all <u>unlimited</u> real numbers and the set of all <u>limited</u> real numbers.

A real number x is called <u>infinitesimal</u> if |x| < r for all positive standard real numbers r

A real number x is called <u>appreciable</u>, if x is limited but not infinitesimal.

Two real numbers x and y are said to be <u>infinitely close</u> if and only if x - y is infinitesimal and denoted by $x \simeq y$. [2,4,6,7]

The external set of infinitesimal real numbers is called the <u>monad</u> <u>of_0</u> (denoted by m(0)). In general, the set of all real numbers, which are infinitely close to a standard real number a, is called the <u>monad of a</u>, (denoted by m(a)) The set of all limited real numbers is called **principal galaxy**, (denoted by **G**).

For any real number a, the set of all real numbers x such that x - a limited is called the <u>galaxy of a</u> (denoted by G(a)).

Let α , $(\alpha \neq 0)$ and $x \in \mathbb{R}$, we define the $\alpha - galaxy(x)$ as follows:

 $\alpha - galaxy(x) = \{y \in \mathbb{R} : \frac{y-x}{\alpha} \text{ is limited}\}, \text{ and denoted by } \alpha - G(x)$ [1,4].

Definition 1.1[3, 6] : A set **G** is called galaxy if

(i) G is an external set.

(ii) there is an internal sequence $\{A_n\}_{n \in \mathbb{N}}$ of internal sets such that $G = \bigcup_{n \in \mathbb{N}} A_n$.

A set *H* is called monad if

(i) *H* is an external set.

(ii) there is an internal sequence $\{B_n\}_{n\in\mathbb{N}}$ of internal sets such that $H = \bigcap_{n\in\mathbb{N}} B_n$.

<u>Theorem_1.2</u>: (Cauchy Principle) [7]

If p is any internal property and if p(n) holds for all standard $n \in \mathbb{N}$, then there exists an unlimited $\omega \in \mathbb{N}$ such that p(n) hold for all $n \leq \omega$.

proposition 1.3 :

(i) If $\{G_n\}_{n \in \mathbb{N}}$ is a sequence of galaxies then $\bigcup_{n \in \mathbb{N}} G_n$ is a galaxy.

(ii) If $\{H_n\}_{n \in \mathbb{N}}$ is a sequence of monads then $\bigcap_{n \in \mathbb{N}} H_n$ is a monad.

Proofs : follows directly from their definitions.

proposition 1.4 :

(i) The image and inverse image of a galaxy under internal mapping are galaxies.

(ii) The image and inverse image of a monad under internal mapping are monads.

Proofs : follows directly from their definitions of inverse functions.

Thus we consider the following theorem:

<u>Theorem 1.5</u> :

(i) A set G is galaxy iff there exists a strictly increasing sequence of internal sets $\{T_n\}_{n \in \mathbb{N}}$ such that $G = \bigcup_{n \in \mathbb{N}} T_n$.

(ii) A set *H* is monad iff there exists a strictly decreasing sequence of internal sets $\{S_n\}_{n \in \mathbb{N}}$ such that $H = \bigcap_{n \in \mathbb{N}} S_n$.

<u>Proof</u> : We prove only (i)

Let G be a galaxy and let $\{T_k\}_{k \in \mathbb{N}}$ be an internal sequence of internal sets such that $G = \bigcup_{k \in \mathbb{N}} T_k$. We define a strictly increasing subsequence $\{I_n\}_{n \in \mathbb{N}}$ of the sequence $\{T_k\}_{k \in \mathbb{N}}$. We remark first $T_k \subseteq G$; for all standard k, for G is external. So there exists for all standard k a standard natural number p > k such that $T_k \subseteq T_p$. Hence there exists by induction a strictly increasing sequence of standard natural numbers $\{K_n\}_{n \in \mathbb{N}}$ such that $T_{k_n} \subseteq T_{k_{n+1}}$, $n \in \mathbb{N}$. Putting $I_k \subseteq T_{k_n}$, we obtain a strictly increasing sequence of internal sets $\{I_n\}_{n \in \mathbb{N}}$ such that $G = \bigcup_{n \in \mathbb{N}} I_n$.

Conversely let $\{I_n\}_{n\in\underline{N}}$ be a strictly increasing sequence of internal sets. That is we may Putting $G = \bigcup_{n\in\underline{N}} I_n$. By the principle of extension, there exists an internal extension $\{I_n\}_{n\in N}$ of this sequence, that is we may assume it an increasing. Suppose G is internal set, since $I_n \subseteq G$, for all $n \in \underline{N}$, so there exists by Cauchy principle $\omega \in \overline{\mathbb{N}}$ such that $I_{\omega} \subseteq G$. Therefore that we may assume it $\bigcup_{n\in\underline{N}} I_n \subseteq G$ $\bigcup_{n\in\underline{N}} T_n \subseteq G$ which is a contradiction. Hence G is an external set, thus G is a galaxy \blacksquare .

<u>**Remark 1.6**</u>: Let X and Y be two internal sets and $f: X \to Y$ an internal mapping, and $G_1 \subset X$ and $G_2 \subset Y$ are two galaxies, then

1- If $f = \int_{G_1}^{f} f(G_1)$ is one to one, then $f(G_1)$ is a galaxy. 2- If $f: X \to G_2$ is onto, then $f^{-1}(G_2)$ is a galaxy.

<u>Theorem 1.7</u> :

(i) A subset G of an internal set X is a galaxy iff G is the inverse image of \mathbb{N} under an internal mapping from X in to \mathbb{N} .

(ii) A subset H of an internal set X is a monad iff H is the inverse image of \mathbb{N} under an internal mapping from X in to \mathbb{N} .

Proof :

(i) Let $G \subset X$ be a galaxy and let $\{T_n\}_{n \in \mathbb{N}}$ be an internal increasing sequence of internal sets such that $G = \bigcup_{n \in \mathbb{N}} T_n$. We may assume that $\bigcup_{n \in \mathbb{N}} T_n = X$, we define the internal mapping $p: X \to \mathbb{N}$ by $p(x) = \min(n \in \mathbb{N}: x \in t_n)$. Clearly we have $G = p^{-1}(\mathbb{N})$.

Conversely if $p^{-1}(\mathbb{N})$ is a galaxy for every internal mapping $p: X \to \mathbb{N}$ by the **proposition** (1.4) **.** $P(x) = \min\{\dots, x \in T_{m_n}\}$

(ii) Let $H \subset X$ be a monad, putting G = X - H, let $p: X \to \mathbb{N}$ be an internal mapping such that $G = p^{-1}(\mathbb{N})$, then we have $H = p^{-1}(\mathbb{N})$.

Conversely if $p^{-1}(\mathbb{N})$ is a monad for every internal mapping $p: X \to \mathbb{N}$ again by the proposition (1.4) we get $H = p^{-1}(\mathbb{N}) \blacksquare$.

The converse follow directly from proposition (1, 4)

Proposition 1.8 : If *G* is a galaxy and *H* is a monad such that $G \subset H$, then there exists an internal set *I* such that $G \subset I \subset H$.

<u>**Proof**</u>: Let $\{T_n\}_{n \in \mathbb{N}}$ be an internal increasing sequence of internal sets such that $G = \bigcup_{n \in \mathbb{N}} T_n$ and let $\{K_n\}_{n \in \mathbb{N}}$ be an internal decreasing sequence of internal sets such that $H = \bigcap_{n \in \mathbb{N}} K_n$.

Since $T_n \subset K_n$ for all $n \in \mathbb{N}$, there exists by Cauchy principle unlimited real number ω , such that $T_n \subset K_n$ for all natural number $n \leq \omega$ therefore

$$G = \bigcup_{n \in \underline{N}} T_n \subset \bigcup_{n \leq \omega} T_n = T_{\omega} \subset K_{\omega} = \bigcap_{n \leq \omega} K_n \subset \bigcap_{n \leq \underline{N}} K_n = H$$

Putting for example $I = T_{\omega}$, we obtain $G \subset I \subset H$.

<u>Theorem 1.9</u> : (Fehrel Theorem) [2]

A monad is not galaxy.

<u>**Proof</u>**: Let *G* be a galaxy and *H* be a monad assume that $G \subset H$ by Proposition (1.8) we may let *I* be an internal set such that $G \subset I$, $I \subset H$ by Cauchy principle an external set is not internal $G \subsetneq I$, $I \subsetneq H$. Hence $G \neq H \blacksquare$.</u>

2. Some Application of Fehrel Theorem

Robinson's Lemma 2.1[5]: If $\{a_n\}_{n \in \mathbb{N}}$ is an internal sequence of real numbers such that $a_n \simeq 0$, for all $n \in \mathbb{N}$, then there exists an unlimited natural number $\omega \in \mathbb{N}$ such that $a_n \simeq 0$, for all $n \leq \omega$.

<u>Proof</u>: Let b_k be the maximum $n \leq k |a_n|$ then also $b_k \simeq 0$, for all $n \in \mathbb{N}$

Now by fehrel theorem the galaxy $\underline{\mathbb{N}}$ is a strictly included in the monad k such that $b_k \simeq 0$, the set of all k such that $b_k \simeq 0$. So there exists an unlimited $\omega \in \mathbb{N}$ such that $b_{\omega} \simeq 0$, hence $a_n \simeq 0$, for all $n \leq \omega \blacksquare$.

<u>3. Functions From a Monad to Galaxy</u>

Now we are able to prove the statement of the following form: The set of internal functions from a monad to galaxy is a galaxy.

Let G be a galaxy and H be a monad. Let $\{A\}_n \ n \in N$ be an internal increasing sequence such that $G = \bigcup_{n \in \underline{N}} A_n$ and $\{B\}_n \ n \in N$ be an internal decreasing sequence such that $H = \bigcap_{n \in \underline{N}} B_n$ then the set H^G of all internal mapping $f: G \to H$ such that $f(G) \subset H$ is a monad. For

$$f(G) \subset H \Leftrightarrow (\forall n \in \underline{N}) (\forall m \in \underline{N}) (f(A_n) \subset B_m)$$

As may be expected G^{H} is a galaxy we prove this with the help of Fehrele's principle

Proposition 3.1: If H is a monad and G is a galaxy then G^H is a galaxy.

<u>**Proof**</u>: Let $\{T_k\}_{k \in \mathbb{N}}$ be an internal increasing sequence of internal set such that $G = \bigcup_{n \in \mathbb{N}} T_n$ and let $\{I_n\}_{n \in \mathbb{N}}$ be an internal decreasing sequence of internal set such that $H = \bigcap_{n \in \mathbb{N}} I_n$. We are going to prove that $G^{H} = \bigcup_{m \in \underline{N}} \bigcup_{n \in \underline{N}} T_{n}^{I_{n_{m}}}$. Clearly if $f(I_{m}) = T_{n}$ for some internal function and $n, m \in \underline{N}$, then $f(H) \subset G$. Also let f be an internal function such that $f(H) \subset G$, put $m_{n} = min \{m: f(I_{m}) \subset T_{n}\}$, for every $n \in \mathbb{N}$, so $\{m_{n}\}_{n \in \underline{N}}$ is internal sequence of natural numbers. Now suppose that $m_{n} \in \mathbb{N}$, for all $n \in \underline{N}$. Then there exists by fehrel theorem $\omega \in \overline{\mathbb{N}}$ such that $m_{\omega} \in \overline{N}$ and $f(x) \notin G$, contradiction. So there exists $n \in \underline{\mathbb{N}}$ such that $m_{n} \in \underline{N}$. This implies that $f(I_{m_{n}}) \subset T_{n}$. Hence $G^{H} = \bigcup_{n \in \underline{N}} \bigcup_{n \in \underline{N}} T_{n}^{I_{n_{m}}}$. So by proposition 1.3 G^{H} is a galaxy \blacksquare .

Reference

- Diener M. & Van Den Berg I., "Halos and Galaxies une extention du lemme de Robinson", compte rendus de l'acadimie de science de paris. t.293 serie 1.(1983) p.385-388.
- [2] Goldblatt, R., (1998), "Lectures on the Hyperreals : An Introduction to Nonstandard Analysis", Springer-Verlag New York, Inc
- [3] Lutz, R., & Goze, M., "Nonstandard Analysis, Practical Guide with Applications : *Lecture Notes in Mathematics*-881", Springer-Verlage, Berlin, Heidelberg. (1981).
- [4] Nelson E. :"Internal set theory : A new approach to non standard analysis", Bull. of Amer. Math.Soc.Vol.83.No. 6 (November 1977) pp.1165-1198.
- [5] Robinson, A. "Non standard analysis" 2nd.ed. American Elsevier New-York (1970).
- [6] Stroyan, K. D., & Luxemburg, W. A., (1976), "Introduction to The Theory of Infinitesimal", New-York, Academic press.
- [7] Vladimir, K., & Reeken, M., (2004), "Nonstandard Analysis Axiomatically", Springer-Verlag Berlin Heidelberg.