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Abstract

In this work, Amplitude modulation mode-locked fiber laser is
studied,by using Ytterbium Doped Fiber Laser, single mode fiber,
operating with 1055 nm wavelength with 976 nm optical pump and AM
Mode-Locked by optical modulators. A grating pair is used to compensate
the normal dispersion. The effect of both normal and anomalous dispersion
regimes on output pulses are investigated. Master equation of the Mode-
locking fiber laser is introduced .Pulse shapes for both dispersion regimes
are assumed after modifying (Ginzburg-Landu equation) GLE which is
essentially Generalized Nonlinear Schrodinger equation GNLSE and by
applying the moment method ,a set of five rate equations for pulse energy
,pulse width ,frequency shift ,temporally shift and chirp ,which solutions
described the pulse from round trip to the next and how they approach to
steady state values. To solve these equations numerically fourth order,
Runge-Kutta method is performed through Mat-Lab 7.0 computer program.
Result shows that, the output pulse width from the AM mode-Locked
equals to t=0.8ps in anomaous and t=1ps in norma regimes. The study
shows the stability of working in anomalous disperson regime is better
than normal regime.

Keywords: Fiber Laser, Ytterbium Doped Fiber, AM Mode L ocking, Moment
Method, Pulse Chirp, Pulse Energy, Pulse Width.
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Introduction

Ultra-short pulses are very
important research field. Today short
pulsed laser systems find numerous
applications in areas of fundamenta
research as well as for medicd and
industrial applications, depending on
the wavelength and pulse width. As
early as 1970, an analytic theory was
developed for determining pulse
parameters and shape in actively
mode-locked solid-state lasers [1]. It
is possible to include the effect of
dispersion on the pulse shape and the
nonlinear effects within the cavity
become important, analytic
investigations begin more accurate.
This is frequently the case in fiber
lasers where both fiber dispersion
and nonlinearity are important.

In this work, we used tool
for investigating mode-locked lasers
by essentidly tregting the mode
locked pulses as particles with a
fixed analytic shape. This approach
allows us to simplify the governing
nonlinear partial differentia
equation, often caled the master
equation of mode-locking, into a set
of coupled ordinary differentia
equations. The resulting equations
are similar to the rate equations
commonly used to  describe
continuously operating lasers. They
can be solved quickly using standard
techniques and have the added
benefit tha under steady-dtate
conditions they reduce to algebraic
equations describing pulse energy,
width, and chirp. These algebraic
equations indicate the trade-offs
associated with the different laser
parameters and overcome any issues
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associated with computation time.
Our  approach  represents  an
application of the moment method
[2], a technique used extensively
within the fied of
telecommunications [3, 4], to the
case of amode-locked laser.

Pulse shape is invariably close to
Gaussian  or hyperbolic  secant,
depending on the type of mode
locking employed, the cavity
dispersion (norma or. anomalous),
and the strength of nonlinearities.
This observation is at the root of our
approach since the moment method
requires a knowledge of the pulse
shape.

2. The master equation of mode-
locking

If the dispersive and
nonlinear effects are rdativey weak
over a single round trip, the temporal
shape and width of the pulse change
little during this period (assuming
the mode-locker’s effect on the field
is wesk and discrete losses are
minimal). Although an approximate
treatment, it is fair to model such a
system by the master equation of
mode-locking [5] obtained by
averaging over the round-trip cavity
length Lr. This equation takes the
form [5, 6]

4 atA

Bh dpm o B A
Togy 5 (Bt 2T )la o5 - Las = Thald

oz
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A+ (8- T)Lgh+M(A D)

where T = z/Vg, Vg is the group
velocity, and A(T, t) is the slowly
varying envelope of the eectric
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field. Asin Refs. [5, 7,8,9], we have
assumed second-order  dispersion
dominates; therefore higher-order
dispersive effects have been ignored
in Eq. (1). It is important to note
there are two time scades in this
equation; the time t measured in the
frame of the moving pulse and the
propagation time T. Since we
averaged over a single round trip, T
is measured by the round-trip time
Tr =Lr/Vg. It is assumed that the
time scale associated with the pulse
is sufficiently smaller than Tr so the
two times are essentially decoupled.
This treatment is valid for most
lasers for which T exceeds 1 ns and
pulse widths are typically less than
100 ps.

where T = z/Vg, Vg is the group
velocity, and A(T, t) is the slowly
varying envelope of the eectric
fiedd. As in Refs. [7, 9], we have
assumed second-order  dispersion
dominates; therefore higher-order
dispersive effects have been ignored
in Eq. (1). It is important to note
there are two time scades in this
equation; the time t measured in the
frame of the moving pulse and the
propagation time T. Since we
averaged over a single round trip, T
is measured in terms of the round-
trip time Tr =Lr/VQ. It is assumed
that the time scale associated with
the pulse is sufficently smaller than
TR so the two times are essentially
decoupled. This treatment is valid
for most lasers for which TR exceeds
1 ns and pulse widths are typicaly
less than 100 ps.

In rare-earth-doped fibers,
the gain medium responds on a time
scale much slower than the round-
trip time, and the saturated gain may
be approximated by[7]
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= EDK(]'-"FQ‘:EIFEQI:) Where,

represents the saturation

power of the gain medium, Z, the
average small-signal gain, and,
P...the average power over one
pulse dlot of duration T, which
could be caculated by this

equation:[7]

L TTmy
Pave = 1, [ 1A 2P
m i3
(2

In Eq. (2) The tem  A(t, Z),
represents  the dlowly  varying
envelope of the dectric fiedd . The

pulse dot is cdculated by this
equation: T,,,= UF .= Te/N Where
F

F,,, is the modulation frequency. N
is a harmonic a which the laser will
mode locked ( Nz 1). Tr , isthe
time of one roundtrip. The overbar in

Eqg. (1) means the averaged value of
the parameter over a round trip.

More specificaly, [3- represents the
averaged second-order dispersion of
the cavity elements, while y takes
into account the averaged nonlinear
parameter and © represents the

averaged losses. The finite gain
bandwidth is assumed to have a
parabolic filtering effect with a
spectral full width at half maximum
(FWHM) given by Aw = 2/T.

In the absence of the mode-
locker, Eqg. (1) reduces to the well-
known Ginzberg-Landau equation,
which supports a shape-preserving
solution in the anomalous-di spersion
regime known as the autosoliton [6]

is the mode-locked frequency,

r
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A(T, t) = a[sech(t/ t)]1+iq exp[if
(M] - (3)

Where the pulse parameters
a t, q, and f(T) are determined by
the parameters appearing in Eqg. (1).
In the absence of a modelocker, a
stable pulse will neither form nor
survive multiple round trips in the
cavity. However, the active fiber will
try to impose the autosoliton shape
on any pulse circulating in such a
laser.The pulse shortening in AM
mode-locked lasers by using of
dispersive and nonlinear eements
[5]. In this work we assume that the
laser is modelocked with the
autosoliton shape; we then seek to
indude the effects of the mode
locker on the pulse energy, width,
and chirp. To extend our analysis to
the normal-dispersion regime, we
also consider a chirped Gaussian
pulse

AT, t) = a[exp(—t72tH)1+iq expli
f(M]

The moment method

In an effort to study the
pulse evolution process under the
influence of Eg. (1), without
resorting to full numericad
simulations, we have employed the
moment  method [2-4]. This
approach alows us to develop
ordinary differential equations that
govern the evolution of the pulse
parameters. These equations can be
solved  quickly, vyieding the
information of experimental interest.
All of this, however, is based on a
knowledge of the exact pulse shape.
For this reason, one should also
solve Eg. (1) to ensure that the actua
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pulse shape does not deviate much
from the assumed pulse shape.

It is used to convert this

third order partiad differentia
equation to a set of rate equations
that describe the pulse parameters
during each roundtrip [2-4].These
pulse parameters evolution equations
are obtained by using the so-caled
moment method [4].
As seen in Egs. (3) and (4), a mode-
locked pulse is characterized by four
parameters, amplitude a, width t,
chirp g, and phase f(T). The
amplitude can essily be related to
energy and so we focus on pulse
energy E, width t,ztemporaly
shift, Wfrequency  shift and chirp
g.These parameters can be defined as
moments of A(T, t) [4]:

EM=/_ AT 2dt  ..(5

i 1 a— ) .
f:,r;:E{ AT | 2t

vt

P 04 04
q!T) - ;J—z-c \L —\f:l[.'-ls -1_ -4

t it

FM="2 01408 2 .(9)

Mode-locking by amplitude
modulation (AM) is one of the oldest
techniques;, we focus on it to
illustrate our approach by using M(A,
t) = —Aam [1-cos (ont)]A in EqQ. (1),
where Apy is the modulation depth
experienced by a pulse during a
single round trip, ®m= 2 /T, is the
modulation frequency (assumed to
be identical to the repetition rate of
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the mode-locked pulse train), and the
average loss of modulator has been

incorporated into ¢ Assuming that

the mode-locked pulses are much
shorter than Tm, we approximate the
effect of the AM modelocker as
M(A, t)=—Aan 0n t%/2A. Using Egs.
(3) and (4) for the pulse shape we
obtain the following equations:

TRdiE_f gz 2
L dT (9- @)E- - 2[G,(L+ )+ 2\t °]E

2Dn|u|
Y, cosw, HIE
L c m(X )]

gry CNV+ S[GA+a) +2M )

& _p
dT

5 |5

Dt

L, Y, sinf,(x - )]

Tedw_ 2 27 D
Ea—_ [C@+a?) + 20t 2] L

T; dq
L,dT t

E bwe k3
G =+ 8 (1+cf)+vv%2
e t? g E

- Dby okoosty - )} M8y & - L]}

...... (13)
Te ot _ C, b2 —2q+C3—=2qW+
L dT t
2
9T2 T, - - DALMt Y , cosf(x -
R
...... (14)

Where the constants Cn (n = 0 to 4)
are introduced such that they al
equal 1 for a Gaussian pulse. In the
case of an autosoliton, CO = 2/3, C1
= 1/63, C2 = V2 /3, C3 = 6/ n2, C4

8]
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2.TheY , = exp( - w2t */4),

Y, =w,tY,andY,=wt %Y,.

To illustrate pulse dynamics ,we
solve the five pulse parameters
elevation equations numericaly for
AM type of mode locked
,equations(10-14 ), MATLAB 7.0

program has been written by using
fourth-fifth order Runge-kutta

method  which uses the function
ODE-45.This method is used to
solve ordinary differentiona

equations numerically.

MATLAB 7.0 program uses the
constants  in table 1,with the
following initial values for pulse
parameters [4] .

E(0)=1fJ, ¢(0)=0, Q(0)=0, q(0)=0,
7(0)=0.5 ps

To illustrate pulse dynamics, we
solve Egs. (10)—(14) for a fiber laser
using redlistic parameter values.
More specificaly, we use p,= =+

0.014 ps2/m, ¥ = 0.012 W-1/m, go

=2 [G 1) + 20 7 - 92 2 qGa) vy £ 0.5 m-1, T= 0.17 m*, T, = 47

forad, P& = 125 mW, Fg = 10
GHz, L = 4 m, Tr= 40 ns, and Aau
=0.3.
Results and Discussion

Fig (1) shows the approach to
steady state in both the norma and
anomalous-dispersion  regimes  for
change in chrip ,tempril shift and
frequncy shfit over multiple round
trips. It reveds that the pulse
converges quickly in the anomalous
dispersion regime but takes > 1000
round trips before converging in the
normal dispersion regime. Although
the rate of convergence depends on
the initial conditions used (E =1 fJ,
g=0, and t= 0.5 ps), this type of
behavior is expected since the
nonlinear effects are wesker in the
normal dispersion regime. In the
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normal -dispersion regime the
nonlinear effects add to the effect of
dispersion and broaden the pulse to
t= 3 ps, thus reducing its peak
power and the role played by
nonlinearity shown in fig (2). In the
anomalous-dispersion  regime the
interplay between dispersion and

nonlinearity prolongs the
convergence. Energy reaches its
maximum value E_ ... 22793 pJ

in about (75) roundtrips as shown in
Fig (2) (while in normal regime in
about 100 roundtrips). Then damping
oscillation is going over thousands of
roundtrips We also note the initial
energy used is more than 2700 times
smaler than the steady state value
obtained as shown in Fig(2). In fact
it is obvious that number of
roundtrip are needed for anomalous
regime to achieve steady-state is
RT«=2000 , while for normal
regime RT«=2500 . From plots of
pulse width evolution asin Fig.(2) ,
a broadening in pulse width is
introduced with maximum width <
max =1.8ps in first (50) roundtrips in
anomalous ( where in normal T ma
=3ps in first (100) roundtrips ), then
exhibits damped  oscillation over
thousands of roundtrips decreasing
to steady-state value t «=0.8ps , (in
normal regimets =1ps) where in
anomalous less number of roundtrips
than in norma regime is needed
RT.>2500 .While in anomalous
regime ,shown the convergence of
the pulse width to its steady state
value.

The behavior is a consequence of the
interplay between disperson and
nonlinearity. In the anomalous
regime, the two effects produce
chirps with opposite signs, which
partiadly cancd one  ancther,
whereas, the chirps add in the
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normal -dispersion regime

[6,8,9].Table (1) shoes the max and

min values for pulse parameter.

Conclusions

By applying the moment
method to the master equation of
mode-locking, we have derived a set
of five ordinay differentid
equations for pulse energy, width,
temporal shift, frequency shift and
chirp. These equations play the role
of rate equations for mode-locked
lasers. Their solution shows that,
although a steady state is eventudly
reeched after sufficiently large
number of round trips the approach
to steady state can be quite different
depending on whether the average
cavity disperson is normd or
anomal ous.

The rate equations reduce to
five algebraic equations in the steady
state, which were used to study the
dependence of pulse width and chirp
on cavity dispersion and
nonlinearity. We also verified that in
the absence of dispersive and
nonlinear effects, our analytic result
reduces to that obtained in Ref. [1].
Although we have focused on the
case of AM mode locking, our
approach is quite generd and can be
applied to all actively and passively
mode-locked lasers.
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Table(1) PulseParameters Database for both Dispersion Regimes (Fr=10GHz)AM mode locked

Normal Regime Anomalous Regime
m 3 RT RT RT RT RT
m 5| Max Min @ " A | ss Max Min | | A | SS |RTs
o= max min SS max min
2.794 2.778 0.016 | 2.79 2.793 2.752 0.041 | 2.785
E 0J 100 0J 200 0J 0 2500 0l 50 PJ 75 P 0J 2000
¢ | ™2 | 50| -2ts | 300| ofs | 0 |>2500| 2% | 100 | ,-. | 200| 0.7fs | 0.25 | 2000
fs fs 1.5fs
Q 9 +2.0 7 49 2 7 6.5
GHz 300 GHz 500 GHz 5 | >2500 GHz 125 GHz 200 GHz | GHz 2000
q +2 | 175 -2 25 0 0 | >2500| +09 | 25 | -0.7 | 100 | 0.2 0 | 2000
T 3ps | 100 | 0.25ps | 175 | 2.75ps | 1ps | >2500 | 1.8ps| 50 | O.5ps| 80 | 1.3ps | 0.8ps | 2000
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