Effect of Leaves Defoliation and Plant Density on Growth, Yield and Quality of Some Sunflower Genotypes (Helianthus annuus L., Compositae)

Dr. Saad A. M. AI-Doori
Department of Science
College of Basic Education / University of Mosul

Received: 19/5/2011 ; Accepted: 20/10/2011

Abstract

: For maximization the productivity, quality of sunflower crop, two field experiments were conducted during two successive spring growing seasons of 2007, 2008-2008, 2009 to determine growth, yield and quality of sunflower genotypes (Helianthus annuus L.) to plant density and leaves defoliation. Each experiment comprised of three sunflower genotypes (Morden, Flame and Manon), four levels of plant density (22222, 29629, 44444 and 88888 plants.hector ${ }^{-1}$) and three levels of upper leaves defoliation (0,4 and 8 leaves). It was conducted according to Randomized Completely Block Design with split- split plot with three replications. The results could be summarized as:

Increasing plant density to 88888 plant.hector ${ }^{-1}$ led to significant increases in plant high, hollow percentage and oil percentage. The plant density at 22222 plant.hector ${ }^{-1}$ cause a significant increase in stem diameter, leaf area, head diameter, number of seed per head and weight of thousand seed, while increasing plant density from 22222 to 44444 plant.hector ${ }^{-1}$ cause a significant increase in total yield, oil, protein yield in the two growing seasons of 2007, 2008-2008, 2009, respectively.

Non defoliation treatment recorded a significant increases in characters plant high, stem diameter, leaf area, head diameter, number of seed per head and weight of thousand seed, total yield and oil percentage, while increasing defoliation treatment to 8 leaves cause a significant increase in protein percentage of the seeds in both seasons 2007, 20082008, 2009, respectively.

The Flame genotype gave a high mean for characters stem diameter, leaf area, head diameter, number of seed per head and weight of thousand seed, total yield and oil yield (ton.hector ${ }^{-1}$) and oil percentage, while Manon genotype gave a high percentage of protein in the seeds in both seasons 2007,2008-2008,2009, respectively.

The interaction between plant density with defoliation treatment was significant in some of growth, yield and quality characteristics, the plant

density 22222 plant.hector ${ }^{-1}$ with the non defoliation treatment gave a high means of the head diameter, number of seed per head and weight of thousand seed, while the plant density at 44444 plant.hector ${ }^{-1}$ with non defoliation treatment gave a high rate of the total seed yield (ton.hector ${ }^{-1}$) in both seasons 2007, 2008-2008, 2009, respectively. The plant density 44444 plant.hector ${ }^{-1}$ with the Flame genotype gave a high rate of total seed yield (ton.hector ${ }^{-1}$) and oil yield for the tow seasons 2007, 20082008, 2009, respectively.

The effect of the interaction between leaves defoliation treatments and genotype was significant on some growth characters, yield and quality. Non defoliation treatment with Flame genotype gave the highest means for head diameter, weight of thousand seed and total seed yield in the two growing seasons. The interaction between plant density 44444 plant.hector ${ }^{-1}$ with non defoliation treatment with Flame genotype gave a high rate for head diameter, weight of thousand seed and total seed yield in the two growing seasons.

تأثير خف الأوراق والكثافة النباتية في نمو وحاصل ونوعية بصض التراكيب الوراثية من زهرة الشمس (Helianthus annuus L., Compositae)

دـ ـؤويلد يونس حسن الدليمي
 د.سعل احمد محمد الدوري

قسمر/العلوم
كلية التربيية الأساسية/جامعة الموصل
ملخص البحث:
لزيادة إنتاجية محصول زهرة الشمس ونو عيته، نفذت تجربتين حقليتين خـــلال موســــا
النمو الربيعي من العامين المتعاقبين 2007, 2008, 2008-200 لتحديـــد نمــو وحاصـــل ونو عية نر اكيب ور اثثة من زهرة الثمس (.Helianthus annuus L.) للكثافة النباتية وخــف الأور اق. تألفت كل تجربة من ثلاثة تر اكيب ور اثية من زهـــرة الــشمس (مــوردن، فلامــــي
 نبات/هكتار) وثلاث مستويات لخف الأور اق العلوية (8،4،0 أور اق). نفذت التجربــة وفــق نظام القطع المنشقة - المنشقة بتصميم القطاعات العشو ائية الكاملـــة بثلاثـــة مكــررات. وتـــم
النتوصل إلى النتائج الآتية :

أدت زيادة الكثافة النباتية إلى 88888 نبات/هكتار إلى زيادة معنوية في صفات ارتفاع النبات/سم، نسبة البذور الفار غة ونسبة الزيت في البذور • ســببت الكثّافـــة النباتيــة 22222 نبات/هكتار زيادة معنوية في قطر الساق، المساحة الورقية، قطر القرص، عدد البذور/قرص

ووزن الألف بذرة/غم، في حين سببت زيادة الكثافـــة النباتيــة مــن 22222 إلــى 44444 نبات/هكتار زيادة معنوية في حاصل البذور الكلي وحاصل الزيت والبروثين فــي موســـي النمو 2007و 2008-2008و 2009 على النو اللي.
سجلت معاملة عدم خف الأور اق زيادة معنوية في صفات ارتفاع النبـــات/ســـ، قطــر الساق، المساحة الورقية، قطر القرص، عدد البذور/قرص ووزن الألف بذرة/غــم، حاصــلـ البذور الكلي ونسبة الزيت. في حين سببت معاملة خف 8 أور اق زيادة معنويــة فــي نــــــة البروتين في البذور في كلا الموسمين 2007و 2008-2008و 2009 على اللو الي. أعطى التركيب الور اثي فلامي أعلى معدل لصفات قطر الساق، المساحة الورقية، قطر القرص، عدد البذور /قرص ووزن الألف بذرة/غم، حاصل البذور الكلي (طن /هكتار) ونسبة وحاصل الزيت (طن /هكتار)، في حين أعطى التركيب الور اثي مانون أعلى نسبة بروتين في البذور في كلا موسمي النمو 2007و 2008-2008و 2009 على الثو الي. كان تأثير التــداخل بين الكثافة النباتية ومعاملات خف الأور اق معنوياً في البعض من صفات النمــو و الحاصــل و النو عية، أعطت الكثثافة النباتية 22222 نبات/هكتار مع معاملة عدم الخـــ أعلــى معــــل لصفات قطر القرص، عدد البذور/قرص ووزن الألف بذرة/غم،بينما أعطت الكثثافـــة النباتيــة 44444 نبات/هكتار مع معاملة عدم الخف أعلى معدل لحاصل البذور الكلي (طن /هكتار) في كلا موسمي النمو 2007و 2008-2008و 2009 على التو اللي. أعطت الكثافة النباتية 44444 نبات/هكتار و التركيب الور اثي فلامي أعلى معدل لحاصل البذور الكلي والزيت (طن /هكتار) في كلا موسمي النمو 2007و 2008-2008و 2009 على النتو الي. كان تأثثير التــداخل بــين معاملات خف الأور اق والتر اكيب الور اثية معنوياً في بعض صفات النمو والحاصل و النوعية، أعطت معاملة عدم الخف والتركيب الور اثي فلامي أعلى متوسط لصفات قطر القرص، وزن الألف بذرة/غم وحاصل البذور الكلي (طن /هكتار) في كلا موسمي النمو . أعطى التداخل بين الكثافة النباتية 44444 نبات/هكتار مع معاملة عدم الخف والتركيب الور اثي فلامـــــي أعلــى معدل لقطر القرص، وزن الألف بذرة/غم وحاصل البذور الكلي (طــن /هكتـــار) فــي كـــا موسمي النمو •

Introduction:

Sunflower (Helianthus annuus L., Compositae) currently cultivated for its seed and oil, is the worlds forth largest oilseed crop. Sunflower oil is primarily comprised of palmitic, stearic, oleic and linoleic acid. It contains more unsaturated fatty acids than other oil seeds such as soybean, peanut and cotton seed(Seiler, 1997).

Results of studies on the effect of plant density on seed composition are contradictory. Power and Zimmerman (1977), McWilliam and English (1978), Miller and Fick (1978), Steer, et al. (1986) and Rodriguez and Al-Asmi (1996) all found no effect of plant density on the seed oil and protein content. Thompson and Fenton (1979) and Mathers and Stewart (1982) found a small response of seed composition to plant density (ranging from 25.000 to 150.000 plants.hector ${ }^{-1}$). Stoyanova (1974), Jones (1978), Gubbels and Dedio (1986), Majid and Schneiter (1987) and Zaffaroni and Schneiter (1991) on the other hand, all found that oil content increased with increased plant density. Robinson, et al. (1980) found that the mean oil content of both low and high oil content genotypes produced at six localities increased from 37.5 to 42.2% when plant density was increased from 17.000 to 62.000 plants.hector ${ }^{-1}$. Jones (1984) also found a small increase in seed oil content by increasing the density from 25.000 to 45.000 plants.hector ${ }^{-1}$. Seed oil contents of 40.3 and 42.1% were measured by Ortegon and Diaz (1997) for densities of 31.000 and 63.000 plants.hector ${ }^{-1}$. This difference in oil content was mainly due to different hull contents. Villalobos, et al. (1992) also found that oil content increased while the single seed weight decreased with increased plant density. The absolute amount of oil per seed showed a relatively small decrease compared to the decrease of the single seed weight. A decrease in oil content due to an increase in plant density has also been observed. Esendal and Kandemir (1996) increased the plant population by decreasing the row width to change the plant density from 35.000 to 66.000 plants.hector ${ }^{-1}$ and found that the seed oil content decreased from 41.8 to 37.6%. The protein content also decreased from 17.4 to 15.3% whilst the kernel content decreased from 73.1 to 72.1%. After analyzing various trials on the response of seed composition to plant density, Connor and Hall (1997) stated that one interpretation of the results is that there is a ceiling to the absolute amount of oil that can be stored in a seed. The changes of physiological in plants, which occur in response to leaves defoliation decrease photosynthesis and respiration (Rodrgues, 1978 and Steer, et al.1988) and as a result overall production of the crop is decreased. The general finding of researchers is that higher seed oil content is associated with smaller seed (Denis and Vear, 1996). One of the aims of sunflower breeding programmers is to increase the seed oil content of genotypes. If the negative relationship between oil content and seed stays valid in future and the oil content increases above the current level, seed will decline, resulting in declining oil quality. Baldini and Vannozzi (1996), however, found that this negative relationship is not universal since the cultivar Euroflor, in contrast with other genotypes, has high oil content and a big seed.

According to Merrien, et al. (1992) genotype is the main source of the variation in seed. In their investigation on the seed of different
genotypes, Baldini and Vannozzi (1996) found that some genotypic traits, such as the length of the period from emergence to flowering and from flowering to physiological maturity, correlate negatively with seed size.

The objective of the present study was to investigate the effect of plant density and leaves defoliation on growth, seed yield, yield components, the chemical seed characteristics and the potentially recoverable oil of some genotypes of sunflower (Helianthus annuиs L.).

Materials and Methods:

Tow filed experiments were carried out during 2007,2008-2008,2009 seasons at AL-Rashidia location which is far about (20 km) to investigate the effect of four levels of plant density (22222, 29629, 44444 and 88888 plants.hector ${ }^{-1}$) with three levels of upper leaves defoliation (0,4 and 8 defoliation during the start of flowering stage) on the growth, yield and quality of three sunflower genotypes (Morden, Flame and Manon). The mean number of leaves for three genotype was 20 to attain a defoliation percentage (0,20 and 40% leaves per plant, respectively). AL-Rashidia is located in the west north region of Mosul city at Nineveh province. Climatically, the region placed in the semiarid temperature zone cold winter and hot summer. Average rainfall is about 375 mm that most rainfall concentrated between winter and spring. Each experiment included (108) treatments comprising the combinations of four levels of plant density, three leaves defoliation treatments and three sunflower genotypes with three replications.

The experimental design was split-split plot in a Randomized Completely Block Design with arrangement keeping with plant density as main plots, the sub plots were assigned to leaves defoliation, while genotypes as sub-sub plots with three replications according to Steel and Torrie, 1980. Then Duncan's multiple range test (Duncan, 1955) was used to compare among means (SAS, 2001). A representative soil sample (0 to 30 cm depth) was taken before planting (table1) with the mean properties as $\mathrm{pH}(9.30,9.68)$, organic matter ($1.38,1.36 \mathrm{gm} . \mathrm{kg}^{-1}$), available N $(45.23,38.68), \mathrm{CaCO}_{3}\left(2.93,2.84 \mathrm{ml}_{\mathrm{kg}}{ }^{-1}\right)$, available $\mathrm{P}(18.23,22.14)$ and available K (182.00, 189.00) using the methods description by Black, 1965, Jackson, 1973, Page, et al. 1982 and Tandon, 1999.

The seeds were sown by putting three seeds to hills by hand in April $1^{\text {st }}, 5^{\text {th }}$ and harvested in August $8^{\text {th }}, 5^{\text {th }}$ for 2007,2008-2008, 2009seasons, respectively. Super phosphate $150 \mathrm{~kg} /$ hector $\left(45 \% \mathrm{P}_{2} \mathrm{O}_{5}\right)$ and potassium $\left(48 \% \mathrm{~K}_{2} \mathrm{O}\right)$ were applied ($60 \mathrm{~kg} /$ hector) to the soil during the sowing period. Nitrogen were applied to the soil surface in two equal doses, half with sowing and the remaining half at immediately after one of month after sowing at a rate of $100 \mathrm{~kg} /$ hector as form of urea $(46 \% \mathrm{~N})$.

Table -1-:The physical and chemical characters of soil filed experiments in both seasons.

Seasons		
physical characters		2008,2009
Sand (\%)	61.00	57.00
Silt (\%)	22.00	34.00
Clay (\%)	17.00	9.00
Texture		Sandy loom
chemical characters		
O.M. (gm.kg ${ }^{-1}$)	1.38	1.36
Ovailable $\mathrm{N}(\mathrm{ppm})$	45.23	38.68
Available $\mathrm{P}(\mathrm{ppm})$	18.23	22.14
Available K (ppm)	182.00	189.00
Total CaCo ${ }^{3}\left(\mathrm{ml} . \mathrm{kg}^{-1}\right)$	2.93	2.84
pH	9.30	9.68
E.C. mmhos/ cm	2.43	2.92

Each plot $22.5 \mathrm{M}^{2}$ included six ridges 75 cm apart and five meters long and the distance between hills were $60,45,30$ and 15 cm apart to attain a plant density of $22222,29629,44444$ and 88888 plants.hector ${ }^{-1}$ respectively. Plants were thinned to one plant per hill 25 days after sowing. The external two ridges were left as porder. Two of the remaining ridges were devoted for estimating plant growth and some characteristics. The first irrigation was applied immediately after sowing and after wards irrigation was scheduled at about four day's intervals. Normal cultural practices, control of insects and weeds of growing sunflower were conducted in the usual manner followed by the farmers of the district. At heading period, the heads of the two inner ridges were bagged early seed development to avoid bird's damage until maturity.

The studied characters were:

1- Growth characters: Sample of ten guarded plants each was taken from each treatment at 98 days after sowing. The following data were record: Plant height (cm), stem diameter (cm), leaf area $\left(\mathrm{cm}^{2}\right.$.plant), and head diameter (cm).
2- Yield, yield components and quality: At harvest, ten guarded plants were taken randomly from the two inner ridges of each experimental plot and left for two weeks until fully air dried, then the following data were measured, number of seeds/head, weight of thousand seed (g.), hollow (\%), yield and oil, protein yield (ton.hector ${ }^{-1}$). oil seed content was determined using Soxhlet method (A.O.A.C.,1984), Nitrogen estimated after digesting seeds samples using Microkjeldahl method, then, Protein percentage was calculated by multiplying the nitrogen percentage by the converting factor 6.25 (Agrawal, et al. 1980).

Results and Discussion:

 1- Effect of plant density:
A- Growth characters and yield components:

Effect of plant density on growth characters were contradictory (table2). All investigated characteristics were significantly affected by plant density (table18). These results are true in the two growing seasons, although the low density (22222 plant.hector ${ }^{-1}$) produced the highest stem diameter ($3.02,3.14 \mathrm{~cm}$), leaf area ($4477.84,4369.51 \mathrm{~cm}^{2}$.plant), the high density (88888 plant.hector ${ }^{-1}$) gave the highest plant height (177.04, 172.00 cm). head diameter, no. of seeds/head and weight of thousand seed are an important yield components in sunflower. The crop planted at the lowest density (22222 plant.hector ${ }^{-1}$) had the largest head diameter ($22.96,22.36 \mathrm{~cm}$) and stem diameter $(3.02,3.14 \mathrm{~cm})$, but the highest density (88888 plant.hector ${ }^{-1}$) produced the smallest head diameter $(21.39,20.41 \mathrm{~cm})$ and stem diameter $(2.35,2.65 \mathrm{~cm})$. Density at 44444 and 88888, 29629 and 44444 plant. hector ${ }^{-1}$ did not show statistically difference for stem diameter and head diameter in the two growing season's, respectively. Taller plants at high density may be duo to inter plant competition for light and aerial resources. With increasing plant density, the number of total seeds head $^{-1}$ reductions in confection sunflower at high density can be explained by lower head diameter. This reduction in number of total seeds with increasing plant density has been verified in early field studies (Gunel, 1971). Robinson, et al. (1980) working with sunflower, also founded that high plant density produced taller plants and smaller heads. Although head diameter, number of total seeds head ${ }^{-1}$ and 1000 seeds weight reduced with increasing plant density, the plant increased. Narwal and Malik (1985) reported that as plant density was increased head diameter, number of seeds head ${ }^{-1}$ and 1000 seeds weight decreased, while seed yield (ton. ha^{-1}) increased. Similar observations were made by Killi and Ozdemir (2001) and Sedghi, et al. (2008) who reported that increased plant density resulted in a significant increase in head diameter.

Table -2-: Effect of plant density on some growth characters and yield components of sunflower in both seasons.

seasons	plant density. hector ${ }^{-1}$	Plant height (cm)		$\begin{gathered} \hline \text { leaf area } \\ \left(\mathrm{cm}^{2} \text {.plant }\right) \end{gathered}$	head diameter (cm)	no. of seeds/head	weight of thousand seed (g.)
2007,2008	22222	163.19d	3.02a	4477.84a	22.96a	1186.20a	78.05a
	29629	168.47c	2.67b	3538.79b	21.76b	1029.78c	74.86b
	44444	170.53 b	2.42 c	3097.88c	21.83b	1093.03b	70.53 c
	88888	177.04 a	2.35 c	2961.95d	21.39 c	994.78 d	63.31 d
2008,2009	22222	154.25 d	3.14a	4369.51a	22.36a	1146.71a	76.30a
	29629	157.48c	2.82b	3357.82b	21.38b	993.82c	71.86b
	44444	162.88 b	2.65 c	3006.81c	21.34b	1050.33b	69.11c
	88888	172.00a	2.65c	2968.78d	20.41c	964.98 d	61.74d

* The means values within column followed by the different letter are significant at 5% level.

B-Yield and quality: Data pertaining to plant density are presented in table (3). All investigated characteristics were significantly affected by plant density in the two growing seasons except protein (\%) in only 2008 season, with increasing plant density to 88888 plant.hector ${ }^{-1}$, hallow percentage and oil percentage generally tended to increase, while increasing plant density from 22222 to 44444 plant.hector ${ }^{-1}$ cause a significant increase in total yield (3.72,3.63 ton.hector ${ }^{-1}$), oil, protein yield ($1.668,1.641$ and $0.537,0.501$ ton.hector ${ }^{-1}$) in the two growing seasons, respectively. The increase in seed yield may be due to the increase in the dry matter accumulated in plants with wide spacing which is may be increase the yield represented in head and weight of 1000 seeds and also because of sufficient of environmental elements as light, Co_{2}, nutrients, water, which increase plant ability to build metabolites. This reduction in total seed yield head by decreasing plant density has been verified in some studies (Killi and Ozdemir, 2001). Numerous research studies for different climates have shown that plant density or row spacing influences the growth, seed yield and quality of sunflower (Narwal and Malik,1985). The present results were in a good agreement with the finding of Sedghi, et al. 2008, who reported that increased plant density or row spacing resulted in a significant increase in seed oil content and oil yield. If availability of organic mater in the soil during seed filling exceeds the capacity for oil deposition, carbon is allocated to other seed components and the seed oil concentration is diluted. At typical commercial densities, the various effects of density on seed oil content may be hard to establish (Steer, et al. 1986).

Table -3-: Effect of plant density on yield and quality of sunflower in both seasons.

seasons	plant density.hector	hollow $(\%)$	yield $($ ton/ha. $)$	oil $(\%)$	oil yield (ton/ha.)	protein $(\%)$	protein yield (ton/ha.)
2007,2008	22222	31.67 d	2.76 d	42.71 d	1.178 d	17.05 a	0.470 c
	29629	34.97 c	3.10 c	43.70 c	1.354 c	15.68 b	0.486 b
	44444	35.98 b	3.72 a	44.85 b	1.668 a	14.45 c	0.537 a
	88888	38.69 a	3.33 b	45.07 a	1.500 b	13.80 d	0.459 d
	22222	32.96 c	2.70 d	43.02 d	1.161 d	16.12 a	0.435 d
	29629	35.89 b	3.03 c	43.96 c	1.331 c	14.91 b	0.451 b
	44444	35.65 b	3.63 a	45.22 b	1.641 a	13.82 c	0.501 a

* The means values within column followed by the different letter are significant at 5% level.

2- Effect of Leaves Defoliation:

A- Growth characters and yield components: All investigated growth characteristics were significantly affected by defoliation treatments (table 4). When leaves defoliation was increased from 0 to 8 , plant height were decreased approximately 2.28 and 1.81%, these results are true in the two growing seasons, respectively. Schneiter and Johnson, 1994 and Julio, et al. 2001 reported that the non defoliation treatment was increased leaf area, while hollow percentage decreased. Similar observations were made by Cardinali, et al. 1978; Patil and Coswaml, 1979; Beer 1984; Silva, et al. 1985; Potdar and Pawar 1989; Agropol, 1998; Muro, et al. 2001and Erbap and Baydar, 2007, who reported that leaves defoliation resulted in a significant decreased plant height, stem diameter, leaf area and head diameter.
Table -4- : Effect of leaves defoliation on some growth characters and yield components of sunflower in both seasons.

seasons	leaves defoliation	plant height (cm)	stem diameter (cm)	leaf area $\left(\mathrm{cm}^{2}\right.$. .plant $)$	head diameter (cm)	no. of seeds/head	weight of thousand seed (g).
2007,2008	0	171.32 a	2.64	3561.95 a	22.54 a	1117.38 a	76.96 a
	4	170.70 a	2.60	3516.80 b	21.94 b	1081.07 b	72.13 b
	8	167.40 b	2.61	3478.59 c	21.48 c	1029.40 c	65.96 c
	0	162.58 a	2.84 a	3475.76 a	21.90 a	1082.67 a	75.11 a
	4	162.75 a	2.83 a	3440.57 b	21.42 b	1044.60 b	69.49 b

* The means values within column followed by the different letter are significant at 5% level.

B- Yield and quality: Data pertaining to leaves defoliation are presented in table (5). In two growing seasons, the attributes of sunflower exhibited significant differences for the different defoliation treatments. With defoliation at 8 leaves, hollow percentage generally tended to increase. The total seed yield reductions in confection sunflower at high defoliation
can be explained by lower head diameter, number of total seeds head ${ }^{-1}$ (table 4). When leaves defoliation was increased from 0 to 8 , total seed yield were decreased approximately 6.62 and 7.09%, these results are true in the two growing seasons, respectively. Although the 4 defoliation treatment produced the lowest hollow ($34.49,35.37 \%$), the treatment of 8 leaves defoliation gave the highest protein ($15.90,15.12 \%$), this reduction in seed yield with leaves defoliation has been verified in some studies (Urie, et al. 1968; Cardinali, et al. 1978; Rajan, 1982; Beer 1984; Silva, et al. 1985; Steer, et al. 1988; Potdar and Pawar 1989; Schneiter and Johnson, 1994; Agropol, 1998; Muro, et al., 2001; and Erbap and Baydar, 2007) working with sunflower, also founded that leaves defoliation produced small seeds and oil yield. The increase in weight of thousand seed may be due to the increase in the dry matter accumulated in plants with non leaves defoliation which is may be increase the yield represented in head and weight of thousand seed, therefore non leaves defoliation may help the sunflower crop to compete better with other plants and give a more uniform stand which matures earlier, which increase plant ability to build metabolites. The yield reductions in sunflower at leaves defoliation can be explained by lower number of total seeds head ${ }^{-1}$ and weight of thousand seed (table 2). This reduction in seed yield by leaves defoliation has been verified in some studies (Beer, 1984; Silva, et al. 1985; Schneiter and Johnson, 1994; Agropol, 1998; Julio, et al. 2001 and Erbap and Baydar, 2007). Numerous research studies for different climates have shown that leaves defoliation influences the growth, seed yield and quality of sunflower (Rodrgues, 1978; Patil and Coswaml, 1979; Beer 1984; Silva, et al. 1985; Steer, et al. 1988 and Erbap and Baydar, 2007). The present results were in a good agreement with the finding of Julio, et al. 2001, who reported that leaves defoliation resulted in a significant decrease in seed oil content and oil yield.

Table -5- : Effect of leaves defoliation on yield and quality of sunflower in both seasons.

seasons	leaves defoliation	hollow $(\%)$	yield $($ ton/ha. $)$	oil $(\%)$	oil yield $($ ton/ha. $)$	protein $(\%)$	protein yield $($ ton/ha.)
2007,2008	0	35.14 b	3.32 a	45.03 a	1.491 a	14.50 c	0.481 c
	4	34.49 c	3.27 b	43.99 b	1.438 b	15.34 b	0.501 a
	8	36.36 a	3.10 c	43.23 c	1.340 b	15.90 a	0.492 b
	0	36.15 b	3.24 a	45.41 a	1.471 a	13.80 c	0.447 c
	4	35.37 c	3.19 b	44.39 b	1.416 b	14.64 b	0.467 a

* The means values within column followed by the different letter are significant at 5% level.

3- Effect of genotypes:

A- Growth characters and yield components: Flame genotype surpassed significantly Morden, Manon genotypes in a descending compared to the other three tested genotypes in the two seasons (table 6). Flame genotype gave a high mean for characters stem diameter $(2.92,3.19 \mathrm{~cm})$, leaf area $\left(3819.20,3664.93 \mathrm{~cm}^{2}\right.$.plant), head diameter ($22.96,22.51 \mathrm{~cm}$), number of seed per head ($1125.04,1086.31$) and weight of thousand seed $(76.80,75.38 \mathrm{~g})$ in both seasons 2008-2009, respectively. Moreover, the differences among the three genotypes in the leaf area $\left(\mathrm{cm}^{2}\right.$. plant) may be attributed to the general varietals differences in the number of leaves per plant. In this concern, Killi, 1997; Ortegon and Diaz, 1997 showed that taller genotypes had more number of leaves per plant and leaf primordial that the others sunflower genotypes. The superiority of Flame genotype in the seed yield production may be attributed to having more number of leaves per plant, and as well the highest area of photosynthetic number of leaves per plant and this in turn increased the capacity of dry matter accumulation in the different plant parts. In this report, Mould and Chapman, 1979; Blamey and Chapman, 1982; Gimenez and Fereres, 1987; Vannozzi, et al. 1988; Attene and Porru, 1990; Faizani, et al. 1990; Prasad, 1991; Kene, et al. 1992; Sarmah, et al. 1992; Villalobos, et al. 1992; Killi, 1997; Ortegon and Diaz 1997; Herdem, 1999; Nel, 2001; Ozer, 2003 reported that Vidoc genotype had highest seed yield and dry weight per plant than the Miak and Euroflor genotypes.

Table -6- : Effect of genotypes on some growth characters and yield components of sunflower in both seasons.

seasons	genotypes	plant height (cm)	stem diameter (cm)	leaf area $\left(\mathrm{cm}^{2}\right.$. .plant $)$	head diameter (cm)	no. of seeds/head	weight of thousand seed (g).
	Morden	157.72 c	2.63 b	3434.61 b	22.08 b	1078.12 b	70.35 b
	Flame	168.54 b	2.92 a	3819.20 a	22.96 a	1125.04 a	76.80 a
	Manon	183.15 a	2.30 c	3303.53 c	20.92 c	1024.68 c	67.91 c
2008,2009	Morden	152.90 c	2.69 b	3365.84 b	21.61 b	1044.93 b	68.52 b
	Flame	158.46 b	3.19 a	3664.93 a	22.51 a	1086.31 a	75.38 a
	Manon	173.60 a	2.56 c	3246.42 c	20.00 c	985.64 c	65.36 c

* The means values within column followed by the different letter are significant at 5% level.

B- Yield and quality: Mean values of seed yield and some related traits for the three tested genotypes are presented in table (7). The data revealed that Flame genotype surpassed Morden, Manon genotypes in the yield components (weight of thousand seed (g.), 1000 seeds weight), Moreover, Morden surpassed Manon in those traits in both seasons. This
means that Flame plants were more efficient to accumulate dry mater in their head. Regarding to the seed characters studied i.e., weight of thousand seed and oil percentage, data show that there were significant variations among the three tested sunflower genotypes in both seasons. Flame genotype surpassed significantly Morden, Manon genotypes in weight of thousand seed, yield ($3.56,3.49$ ton.hector ${ }^{-1}$) and oil yield ($1.62,1.61$ ton.hector ${ }^{-1}$) in both seasons, respectively. However, the differences in oil percent of seeds may be attributed to genetic factors and their interaction with the prevailing environmental conditions. This increase in oil yield (ton.hector ${ }^{-1}$) from Flame genotype may be due to their high seed yield per hector (table 7) rather than differences in seed oil content. Similar conclusion were reported by Mould and Chapman, 1979; Blamey and Chapman,1982; Gimenez and Fereres, 1987; Vannozzi, et al. 1988; Attene and Porru, 1990; Faizani, et al. 1990; Prasad, 1991 ; Kene, et al. 1992; Sarmah, et al. 1992; Villalobos, et al. 1992; Killi, 1997; Ortegon and Diaz, 1997; Herdem, 1999; Nel, 2001; Ozer, 2003. The superiority of Flame genotype in the most seed characters may be due to that Flame genotype had better vegetative growth and hence photosynthetic area which led to more carbohydrates which was translocated from the source (leaves and stem) to the sink (seeds) (Mengel and Kirkby, 1982). The results showed that weight of thousand seed, oil percentage ($45.75,46.25 \%$), oil yield (ton.hector ${ }^{-1}$) were always significantly higher for Flame than that for Morden, Manon genotypes. This indicates that Morden genotype was more efficient to translocation enough photoassinilates to developing seeds.

Table -7-: Effect of genotypes on yield and quality of sunflower in both seasons.

seasons	genotypes	hollow $(\%)$	yield $($ ton/ha.)	oil $(\%)$	oil yield $($ ton/ha. $)$	protein $(\%)$	protein yield (ton/ha.)
	Morden	34.97 b	3.11 b	43.43 b	1.350 b	15.34 b	0.477 c
	Flame	40.81 a	3.56 a	45.75 a	1.628 a	14.43 c	0.513 a
	Manon	30.20 c	3.02 c	43.07 c	1.300 c	15.97 a	0.482 b
	Morden	35.96 b	3.02 b	43.78 b	1.322 b	14.65 b	0.442 c
	Flame	42.28 a	3.49 a	46.25 a	1.614 a	13.75 c	0.479 a
	Manon	30.55 c	2.93 c	43.30 c	1.268 c	15.16 a	0.444 b

* The means values within column followed by the different letter are significant at 5% level.

4-Effect of interaction between plant density and leaves defoliation on growth characters, yield, yield components and quality:

The interaction between plant density and defoliation treatment was significant in head diameter, no. of seeds/head, weight of thousand seed,
hollow (\%), total seed yield (ton.hector ${ }^{-1}$), oil, protein (\%) in both seasons, plant height in only 2009 season (tables 8,9). The plant density 22222 plant.hector ${ }^{-1}$ with the non defoliation treatment gave a high means of the head diameter ($23.62,22.81 \mathrm{~cm}$), number of seed per head ($1219.72,1183.48$) and weight of thousand seed $(81.16,79.63 \mathrm{~g})$, while the plant density at 44444 plant.hector ${ }^{-1}$ with non defoliation treatment gave a high rate of the total seed yield ($3.96,3.89$ ton.hector ${ }^{-1}$) in both seasons 2008-2009, respectively. The increase in seed yield may be due to the increase in the dry matter accumulated in heads with wide spacing and non defoliation which is may be increase the total seed yield.

Table -8-: Effect of interaction between plant density.hector ${ }^{-1}$ and defoliation on some growth characters and yield components of sunflower in both seasons.

plant density.hector ${ }^{-1}$	leaves defoliation	plant height (cm)		$\begin{gathered} \hline \text { leaf area } \\ \left(\mathrm{cm}^{2} \text {.plant }\right) \end{gathered}$	head diameter (cm)	no. of seeds/head	weight of thousand seed (g.)
2007,2008 season							
22222	0	164.69	3.05	4516.84	23.62a	1219.72a	81.16a
	4	164.24	3.04	4491.63	22.51b	1170.96b	78.94bc
	8	160.64	2.98	4425.05	22.73b	1167.92b	74.05e
29629	0	170.35	2.65	3579.9	22.13c	1060.56d	79.94b
	4	169.98	2.63	3541.33	21.73 de	1032.61e	75.60 d
	8	165.07	2.72	3495.15	21.42e	996.16 g	69.05 g
44444	0	171.84	2.49	3149.77	22.53b	1163.78b	78.05 c
	4	170.53	2.32	3098.81	22.05 cd	1113.92c	70.38 f
	8	169.22	2.46	3045.07	20.91f	1001.38 g	63.16h
88888	0	178.38	2.36	3001.31	21.87cd	1025.45ef	68.71 g
	4	178.04	2.39	2935.44	21.47e	1006.78 fg	63.60h
	8	174.69	2.3	2949.11	20.85f	952.12h	57.60 i
2008,2009 season							
22222	0	154.51 g	3.16	4419.53	22.81a	1183.48a	79.63a
	4	156.87 fg	3.16	4374.47	22.23 b	1136.71 b	76.52 b
	8	151.36h	3.10	4314.52	22.05b	1119.93bc	72.74 c
29629	0	158.27ef	2.84	3408.86	21.76c	1024.72e	76.30b
	4	159.54 de	2.82	3372.30	21.47c	992.75 f	71.74 c
	8	154.62 g	2.79	3292.30	20.92d	964.00 g	67.52d
44444	0	164.56b	2.69	3052.47	22.12b	1113.31c	76.63b
	4	163.18bc	2.67	3037.58	21.65c	1079.97d	68.74d
	8	160.91cd	2.60	2930.38	20.25 ef	957.71 g	61.97 e
88888	0	172.98a	2.69	3022.20	20.90d	1009.17ef	67.86d
	4	171.40a	2.67	2977.92	20.34e	968.97 g	60.97 e
	8	171.62a	2.58	2906.22	20.01f	916.80h	56.41f

* The means values within column followed by the different letter are significant at
5% level.

Table -9- : Effect of interaction between plant density.hector ${ }^{-1}$ and defoliation on yield and quality of sunflower in both seasons.

plant density.hector ${ }^{-1}$	leaves defoliation	hollow (\%)	$\begin{gathered} \text { yield } \\ \text { (ton/ha.) } \end{gathered}$	$\begin{gathered} \hline \text { oil } \\ (\%) \end{gathered}$	oil yield (ton/ha.)	protein (\%)	$\begin{gathered} \text { protein } \\ \text { yield } \\ \text { (ton/ha.) } \end{gathered}$
2007,2008 season							
22222	0	31.66d	2.78 i	43.53 e	1.210	16.42c	0.456
	4	31.12d	2.76ij	42.53 g	1.173	17.13b	0.472
	8	32.24d	2.74j	42.07h	1.152	17.60a	0.482
29629	0	34.86c	3.14 f	44.42c	1.394	15.13f	0.475
	4	34.52c	3.11 g	43.64 e	1.357	15.71e	0.488
	8	35.52c	3.06h	43.02 f	1.316	16.20d	0.495
44444	0	35.39c	3.96a	45.98a	1.820	13.60i	0.538
	4	34.28c	3.87b	44.82b	1.734	14.55 g	0.563
	8	38.26 ab	3.34 d	43.76 de	1.461	15.20f	0.507
88888	0	38.64ab	3.40c	46.18a	1.570	12.84j	0.436
	4	38.01b	3.35d	44.98b	1.506	13.95h	0.467
	8	39.41a	3.25 e	44.07 d	1.432	14.62 g	0.475
2008,2009 season							
22222	0	32.92h	2.72h	43.80 d	1.191	15.68c	0.426
	4	32.16 i	2.70hi	42.91 e	1.158	16.12b	0.435
	8	33.79 g	2.67 i	42.36 f	1.131	16.55a	0.441
29629	0	35.90 e	3.06 f	44.62c	1.365	14.59f	0.446
	4	35.21f	3.04 fg	43.98 d	1.336	14.90e	0.452
	8	36.56d	3.00 g	43.27 e	1.298	15.24d	0.457
44444	0	35.45f	3.89a	46.54a	1.810	12.86 i	0.500
	4	34.16 g	3.78b	45.18b	1.707	14.01g	0.529
	8	37.34c	3.22d	43.94d	1.414	14.59f	0.469
88888	0	40.32b	3.29c	46.69a	1.536	12.08j	0.397
	4	39.94b	3.26 cd	45.49b	1.482	13.50h	0.440
	8	41.41a	3.13 e	44.51c	1.393	14.10 g	0.441

* The means values within column followed by the different letter are significant at 5% level.

5-Effect of interaction between plant density and genotypes on Growth characters, yield, yield components and quality:

Data reported in tables $(10,11)$ indicate the significant effect of interaction between plant density and genotypes on sunflower attributes i.e. plant height, stem diameter, leaf area, head diameter, 1000 seeds weight, yield (ton/hector) and oil percent in two seasons, oil yield in only 2008 season, no. of seeds/head in only 2009 season. The plant density 44444 plant.hector ${ }^{-1}$ with the Flame genotype gave a high rate of total seed yield (4.09,4.00 ton.hector ${ }^{-1}$) and oil percentage($46.98,47.60 \%$).

Maximum protein percentage $(18.22,17.26 \%)$ was observed at 22222 plant.hector ${ }^{-1}$ and Manon genotypes for the tow seasons 2008-2009, respectively. Similar conclusion were reported by Gimenez and Fereres, 1987; Faizani, et al. 1990; Prasad; Nel, 2001 and Ozer, 2003.

Table -10- : Effect of interaction between plant density.hector ${ }^{-1}$ and genotypes on some growth characters and yield components of sunflower in both seasons.

$\begin{gathered} \text { plant } \\ \text { density.hector } \end{gathered}$	genotypes	Plant height (cm)		$\begin{aligned} & \text { leaf area } \\ & \left(\mathrm{cm}^{2} \text {.plant }\right) \end{aligned}$	head diameter (cm)	no. of seeds/head	weight of thousand seed (g.)
2007,2008 season							
22222	Morden	152.69h	3.05 ab	4315.50b	23.22b	1197.10	77.71c
	Flame	162.69 f	3.20a	4971.66a	23.91a	1239.63	83.05a
	Manon	174.20d	2.82 cd	4146.36c	21.73 e	1121.87	73.38 e
29629	Morden	155.95 g	2.83 cd	3520.13e	21.60e	1032.10	73.05 e
	Flame	166.73 e	2.95 bc	3726.53d	22.69c	1073.70	79.71b
	Manon	182.71c	2.22 f	3369.72f	21.00f	983.54	71.82 f
44444	Morden	157.78 g	2.41 e	3012.60h	22.09 d	1096.05	68.38 g
	Flame	168.71e	2.73 d	3329.66 f	23.07b	1145.58	76.38d
	Manon	185.11b	2.13 fg	2951.39i	20.33 g	1037.45	66.82h
88888	Morden	164.47 f	2.23 f	2890.22j	21.42e	987.23	62.27 i
	Flame	176.04d	2.80 cd	3248.97 g	22.16 d	1041.25	68.05 g
	Manon	190.60a	2.02 g	2746.66k	20.60 g	955.87	59.60j
2008,2009 season							
22222	Morden	147.27h	3.19b	4191.19b	22.87b	1154.88b	76.19bc
	Flame	152.47 f	3.32a	4800.30a	23.32a	1198.64a	81.52a
	Manon	163.00d	2.90d	4117.02c	20.90f	1086.60d	71.19d
29629	Morden	149.74 g	2.64 e	3340.44e	21.30 e	995.48 g	70.41d
	Flame	154.69 f	3.19b	3524.55d	22.32c	1043.37f	77.19b
	Manon	168.00c	2.62 e	3208.46 f	20.54 g	942.61 i	67.97 e
44444	Morden	153.71f	2.48 f	2982.49 g	21.87d	1063.11e	66.52 f
	Flame	160.09 e	3.05c	3159.21f	22.58c	1105.20c	75.74 c
	Manon	174.85b	2.43 f	2878.73h	19.56h	982.68gh	65.08 g
88888	Morden	160.87 de	2.44 f	2949.25 g	20.41 g	966.26h	60.97h
	Flame	166.60c	3.21 b	3175.65f	21.83d	998.02 g	67.08 ef
	Manon	188.54a	2.30 g	2781.45 i	19.01i	930.66 i	57.19i

* The means values within column followed by the different letter are significant at 5% level.

Table -11- : Effect of interaction between plant density.hector ${ }^{-1}$ and genotypes on yield and quality of sunflower in both seasons.

$\begin{gathered} \text { plant } \\ \text { density.hector } \end{gathered}$	genotypes	hollow (\%)	$\begin{gathered} \hline \text { yield } \\ \text { (ton/ha.) } \end{gathered}$	$\begin{gathered} \hline \text { oil } \\ (\%) \end{gathered}$	oil yield (ton/ha.)	protein (\%)	$\begin{gathered} \hline \text { protein } \\ \text { yield } \\ \text { (ton/ha.) } \end{gathered}$
2007,2008 season							
22222	Morden	31.55	2.74 k	42.09f	1.153 j	17.13b	0.469
	Flame	37.37	2.87j	44.16c	1.267 i	15.80d	0.453
	Manon	26.10	2.681	41.89f	1.122 k	18.22a	0.488
29629	Morden	34.70	3.03 g	43.13 e	1.306 g	15.84d	0.479
	Flame	40.48	3.31 e	44.78b	1.482 e	14.75f	0.488
	Manon	29.72	2.97h	43.18 e	1.282 gh	16.44c	0.488
44444	Morden	35.39	3.58c	44.18c	1.581 c	14.55 g	0.520
	Flame	41.68	4.09a	46.98a	1.921a	13.78 i	0.563
	Manon	30.86	3.50d	43.40 e	1.519 d	15.02 e	0.525
88888	Morden	38.24	3.11 f	44.31c	1.378 f	13.84 i	0.430
	Flame	43.70	3.96b	47.09a	1.864 b	13.38 j	0.529
	Manon	34.12	2.92i	43.82 d	1.279h	14.20h	0.414
2008,2009 season							
22222	Morden	32.72 g	2.64j	42.40f	1.119	16.08b	0.424
	Flame	39.01d	2.85hi	44.36 cd	1.264	15.01e	0.427
	Manon	27.14i	2.59 k	42.31f	1.095	17.26a	0.447
29629	Morden	35.79e	2.95 g	43.42 e	1.280	15.26 d	0.450
	Flame	41.90b	3.26 e	45.22b	1.474	13.90 g	0.453
	Manon	29.99h	2.90h	43.22 e	1.253	15.57 c	0.451
44444	Morden	35.32f	3.48c	44.47 cd	1.547	13.99 fg	0.486
	Flame	41.81b	4.00a	47.60a	1.904	$13.28 i$	0.531
	Manon	29.83h	3.41 d	43.58 e	1.486	14.19f	0.483
88888	Morden	40.01c	3.02 f	44.82bc	1.353	13.26i	0.400
	Flame	46.41a	3.85b	47.80a	1.840	12.79 j	0.492
	Manon	35.25f	2.82 i	44.07 d	1.242	13.64h	0.384

* The means values within column followed by the different letter are significant at 5% level.

6-Effect of interaction between leaves defoliation and genotypes on growth characters, yield, yield components and quality:

The interaction effect between leaves defoliation and genotypes reached the 5% level of significant for plant height (cm), yield (ton. hector $^{-1}$) and oil percentage, protein yield in only 2008 season, head diameter, weight of thousand seed (g.) in both seasons (tables 12,13). Non defoliation treatment with Flame genotype gave the highest means for head diameter $(23.55,22.98 \mathrm{~cm})$, weight of thousand seed and total seed yield (3.67, 3.60 ton.hector ${ }^{-1}$) in the two growing seasons. Such
increase may be due to increasing the dry weight per plant when non leaves defoliation, and increase in the photosynthetic and transporting efficiency of the plant (Cardinali, et al. 1978; Patil and Coswaml, 1979; Rajan, 1982; Beer, 1984; Silva, et al. 1985). This result clearly indicated the importance of non leaves defoliation to hormonal chinches in plant tissues. Similar conclusion was reported by Muro, et al. 2001; Julio, et al. 2001 and Erbap and Baydar, 2007 found that thicker genotypes had more number of leaf primordial that the others sunflower genotypes. The insignificant effect between leaves defoliation and genotypes on other characteristic showed that each of these two factors acted independently on these traits.

Table -12-: Effect of interaction between defoliation and genotypes on some growth characters and yield components of sunflower in both seasons.

leaves defoliation	genotypes	Plant height (cm)	stem diameter (cm)	$\begin{gathered} \hline \text { leaf area } \\ \left(\mathrm{cm}^{2} \text {.plant }\right) \end{gathered}$	head diameter (cm)	no. of seeds/head	weight of thousand seed (g.)
2007,2008 season							
0	Morden	159.20d	2.64	3479.97	22.65bc	1117.35	75.19c
	Flame	170.38b	2.98	3872.72	23.55a	1166.55	83.69a
	Manon	184.37a	2.29	3333.18	21.43 e	1068.25	72.02 d
4	Morden	159.42d	2.62	3443.42	22.21 d	1088.93	71.27 d
	Flame	169.92b	2.87	3802.54	22.86 b	1125.81	76.77b
	Manon	182.77a	2.30	3304.45	20.75 f	1028.46	68.35 f
8	Morden	154.55 e	2.63	3380.45	21.40e	1028.08	64.60 g
	Flame	165.33c	2.90	3782.35	22.46 cd	1082.76	69.94 e
	Manon	182.33a	2.31	3272.97	20.58 f	977.35	63.35h
2008,2009 season							
0	Morden	153.94	2.71	3420.09	22.16 c	1088.86	73.19c
	Flame	159.34	3.23	3706.42	22.98a	1125.13	82.36a
	Manon	174.47	2.59	3300.79	20.55 f	1034.02	69.77 d
4	Morden	154.55	2.69	3396.54	21.80 d	1053.16	68.61 d
	Flame	159.27	3.22	3653.06	22.50b	1087.40	75.19 b
	Manon	174.42	2.58	3272.10	19.98 g	993.25	64.69e
8	Morden	150.20	2.66	3280.90	20.88e	992.78	63.77f
	Flame	156.79	3.14	3635.30	22.06c	1046.40	68.61 d
	Manon	171.90	2.51	3166.36	19.48h	929.65	61.61 g

* The means values within column followed by the different letter are significant at 5% level.

Table -13-: Effect of interaction between defoliation and genotypes on yield and quality of sunflower in both seasons.

leaves defoliation	genotypes	hollow (\%)	$\begin{gathered} \text { yield } \\ \text { (ton/ha.) } \end{gathered}$	$\begin{gathered} \hline \text { oil } \\ (\%) \end{gathered}$	oil yield (ton/ha.)	protein (\%)	protein yield (ton/ha.)
2007,2008 season							
0	Morden	34.75	3.20d	44.16d	1.413	14.59	0.465
	Flame	40.79	3.67a	46.81a	1.717	13.73	0.503
	Manon	29.87	3.09 f	44.12 d	1.363	15.18	0.469
4	Morden	34.32	2.97 e	43.21 e	1.283	15.36	0.456
	Flame	40.02	3.61b	45.84b	1.654	14.51	0.523
	Manon	29.12	3.05 g	42.94 e	1.309	16.14	0.492
8	Morden	35.84	2.99h	42.92 e	1.283	16.08	0.480
	Flame	41.62	3.39c	44.61c	1.512	15.04	0.509
	Manon	31.62	2.91 i	42.16f	1.226	16.64	0.484
2008,2009 season							
0	Morden	35.79	3.12	44.65	1.393	13.87	0.432
	Flame	42.14	3.60	47.27	1.701	13.02	0.468
	Manon	30.51	3.01	44.32	1.334	14.52	0.437
4	Morden	35.06	3.07	43.65	1.340	14.79	0.454
	Flame	41.36	3.55	46.39	1.646	13.85	0.491
	Manon	29.69	2.97	43.14	1.281	15.27	0.453
8	Morden	37.03	2.89	43.04	1.243	15.29	0.441
	Flame	43.34	3.33	45.09	1.501	14.37	0.478
	Manon	31.46	2.81	42.44	1.192	15.70	0.441

* The means values within column followed by the different letter are significant at 5% level.

7-Effect of interaction among plant density, leaves defoliation and genotypes on growth characters, yield, yield components and quality:

The interaction among the three studying factors (plant density, leaves defoliation and genotypes) showed significant effects on head diameter, no. of seeds/head, weight of thousand seed (g.) yield (ton.hector ${ }^{-1}$), oil, protein percentage, in only 2008 season as illustrated in tables (14-17). The interaction between the plant density, leaves defoliation and genotypes for the other investigated traits were not statistically significant in both seasons, therefore the data were excluded. Flame genotypes with non defoliation at plant density 44444 gave highest means for total seed yield (4.36, 4.26 ton.hector ${ }^{-1}$) in both growing seasons. On the other hand, non defoliation reflected the greatest response to plant density levels up to 44444 plant.ha ${ }^{-1}$ and Flame genotypes. For these traits, with this regard, Chavan, et al. 1990; Getmanets, et al. 1991 Sarmah, et al. 1992; Villalobos, et al. 1992; Ortegon and Diaz 1997; Herdem, 1999; Nel, 2001; Ozer, 2003 also found that total seed yield and oil content in sunflower genotypes increased, while the single seed weight decreased with increased plant density.

Table -14- : Effect of interaction between plant density.hector ${ }^{-1}$, leaves defoliation and genotypes on some growth characters and yield components of sunflower in 2007,2008 season.

plant density	leaves defoliation	genotypes	plant height (cm)	stem diameter (cm)	$\begin{gathered} \hline \text { leaf area } \\ \left(\mathrm{cm}^{2} \text {.plant }\right) \end{gathered}$	head diameter (cm)	no. of seeds/head	weight of thousand seed (g.)
22222	0	Morden	153.53	3.08	4362.51	23.78b	1224.57b	80.94k
		Flame	163.73	3.24	5017.90	24.58a	1268.77a	86.94c
		Manon	176.80	2.83	4170.10	22.51eh	1165.83ce	75.60a
	4	Morden	155.47	3.06	4329.49	23.05cf	1167.30cd	79.60 eg
		Flame	164.60	3.22	4990.23	23.65bc	1216.83b	83.27 c
		Manon	172.67	2.85	4155.18	20.85 nq	1128.77 eg	73.94b
	8	Morden	149.07	3.02	4256.50	22.85 df	1199.43bc	72.60
		Flame	159.73	3.13	4906.84	23.51bc	1233.30b	78.94ik
		Manon	173.13	2.78	4113.81	21.85ik	1071.03hi	70.60cd
29629	0	Morden	157.13	2.84	3567.32	21.85ik	1069.70hi	77.27 lm
		Flame	169.67	2.96	3770.50	23.11ce	1101.70gh	86.27de
		Manon	184.27	2.15	3401.88	21.45 kn	1010.30 kn	76.27a
	4	Morden	158.47	2.86	3527.84	21.65 jm	1041.23il	74.27ef
		Flame	168.27	2.93	3717.54	22.45 fi	1072.83ih	79.94fj
		Manon	183.20	2.12	3378.60	21.111p	983.77 no	72.60c
	8	Morden	152.27	2.80	3465.23	21.31 ko	985.37 mo	67.60 gi
		Flame	162.27	2.96	3691.56	22.51eh	1046.57ik	72.941m
		Manon	180.67	2.39	3328.67	20.45qs	956.57pq	66.60hj
44444	0	Morden	159.87	2.42	3061.50	23.05cf	1151.90df	74.94p
		Flame	169.00	2.86	3378.63	23.85b	1229.50b	86.94fh
		Manon	186.67	2.19	3009.17	20.71or	1109.97 fg	72.27jk
	4	Morden	158.00	2.36	3020.47	22.45 fi	1141.83 df	68.271
		Flame	169.67	2.50	3327.83	23.25bd	1163.77ce	76.27 ef
		Manon	183.93	2.10	2948.15	20.45qs	1036.17il	66.60 lm
	8	Morden	155.47	2.44	2955.83	20.78or	994.43 mo	61.94k
		Flame	167.47	2.83	3282.51	22.11 gj	1043.50il	65.94np
		Manon	184.73	2.10	2896.86	19.85 s	966.23op	61.60 m
88888	0	Morden	166.27	2.23	2928.54	21.91hk	1023.23 jm	67.601m
		Flame	179.13	2.87	3323.84	22.65 dg	1066.23hi	74.60fh
		Manon	189.73	1.98	2751.55	21.05 mq	986.90 mo	63.94n
	4	Morden	165.73	2.20	2895.87	21.71 jl	1005.37ln	62.94no
		Flame	177.13	2.85	3174.57	22.11 gj	1049.83ij	67.60 lm
		Manon	191.27	2.12	2735.88	20.58 pr	965.17 op	60.27p
	8	Morden	161.40	2.26	2846.26	20.65pr	933.10pq	56.27q
		Flame	171.87	2.68	3248.51	21.71 jl	1007.70ln	61.94np
		Manon	191.00	1.97	2752.56	20.18rs	915.57 q	54.60q

* The means values within column followed by the different letter are significant at
5% level.

AI-Doori and Hasan

Table -15- : Effect of interaction between plant density.hector ${ }^{-1}$, leaves defoliation and genotypes on some growth characters and yield components of sunflower in 2008,2009 season.

plant density	leaves defoliation	genotypes	plant height (cm)		$\begin{gathered} \hline \text { leaf area } \\ \left(\mathrm{cm}^{2} \text {.plant }\right) \end{gathered}$	head diameter (cm)	no. of seeds/head	weight of thousand seed (g.)
22222	0	Morden	147.34	3.21	4198.97	23.36	1175.87	79.52
		Flame	152.74	3.34	4870.28	23.63	1238.40	85.52
		Manon	163.47	2.93	4189.33	21.43	1136.20	73.86
	4	Morden	150.07	3.20	4232.64	22.76	1160.27	77.52
		Flame	155.07	3.34	4769.99	23.30	1181.40	80.86
		Manon	165.47	2.94	4120.78	20.63	1068.47	71.19
	8	Morden	144.40	3.17	4141.96	22.50	1128.53	71.52
		Flame	149.60	3.29	4760.64	23.03	1176.13	78.19
		Manon	160.07	2.84	4040.95	20.63	1055.13	68.52
29629	0	Morden	150.34	2.66	3389.75	21.70	1036.67	74.52
		Flame	155.07	3.24	3557.43	22.56	1062.40	82.52
		Manon	169.40	2.63	3279.40	21.03	975.10	71.86
	4	Morden	151.87	2.64	3362.93	21.50	985.33	70.19
		Flame	156.27	3.22	3521.64	22.30	1041.33	77.52
		Manon	170.47	2.62	3232.32	20.63	951.60	67.52
	8	Morden	147.00	2.64	3268.65	20.70	964.47	66.52
		Flame	152.74	3.12	3494.59	22.10	1026.40	71.52
		Manon	164.14	2.62	3113.67	19.96	901.13	64.52
44444	0	Morden	156.14	2.51	3039.66	22.83	1134.47	72.19
		Flame	161.94	3.10	3170.65	23.30	1156.53	86.19
		Manon	175.60	2.46	2947.10	20.23	1048.93	71.52
	4	Morden	154.20	2.47	3025.82	22.43	1099.87	66.19
		Flame	160.07	3.11	3161.29	22.76	1135.13	76.52
		Manon	175.27	2.44	2925.63	19.76	1004.93	63.52
	8	Morden	150.80	2.45	2882.00	20.36	955.00	61.19
		Flame	158.27	2.96	3145.68	21.70	1023.93	64.52
		Manon	173.67	2.40	2763.45	18.70	894.20	60.19
88888	0	Morden	161.94	2.48	3051.98	20.76	1008.47	66.52
		Flame	167.60	3.24	3227.30	22.43	1043.20	75.19
		Manon	189.40	2.36	2787.31	19.50	975.87	61.86
	4	Morden	162.07	2.47	2964.78	20.50	967.20	60.52
		Flame	165.67	3.22	3159.33	21.63	964.73	65.86
		Manon	186.47	2.33	2809.66	18.90	948.00	56.52
	8	Morden	158.60	2.37	2830.99	19.96	923.13	55.86
		Flame	166.54	3.18	3140.30	21.43	959.13	60.19
		Manon	189.74	2.20	2747.38	18.63	868.13	53.19

* The means values within column followed by the different letter are significant at
5% level.

Table -16- : Effect of interaction between plant density.hector ${ }^{-1}$, Leaves defoliation and genotypes on yield and quality of sunflower in 2007,2008 season.

plant density	leaves defoliation	genotypes	hollow (\%)	$\begin{gathered} \text { yield } \\ \text { (ton/ha.) } \end{gathered}$	$\begin{gathered} \hline \text { oil } \\ (\%) \end{gathered}$	oil yield (ton/ha.)	protein (\%)	$\begin{gathered} \text { protein } \\ \text { yield } \\ \text { (ton/ha.) } \end{gathered}$
22222	0	Morden	31.50	2.77 u	42.761	1.184	16.44ef	0.455
		Flame	37.37	2.89 qr	45.16ef	1.305	15.24 ij	0.440
		Manon	26.10	2.69 wx	42.691	1.148	17.58c	0.472
	4	Morden	31.17	2.74uv	41.76 mn	1.144	17.11d	0.468
		Flame	36.64	2.87st	44.16 gh	1.267	15.91 g	0.456
		Manon	25.57	2.68x	41.69 mn	1.117	18.38b	0.492
	8	Morden	31.97	2.72 vw	41.76 mn	1.135	17.84 c	0.485
		Flame	38.10	2.84 t	43.16j1	1.225	16.24 f	0.461
		Manon	26.64	2.67 x	41.29n	1.102	18.71a	0.499
29629	0	Morden	34.50	3.05 mn	43.56hk	1.328	15.44 nj	0.470
		Flame	40.44	3.37 i	45.82d	1.544	14.38 mo	0.484
		Manon	29.64	3.00op	43.89 ij	1.316	15.58 gi	0.467
	4	Morden	34.10	3.03no	43.16j1	1.307	15.78gh	0.478
		Flame	40.04	3.34 i	44.76 fg	1.494	14.71 lm	0.491
		Manon	29.44	2.97 pq	43.02 kl	1.277	16.64e	0.494
	8	Morden	35.50	3.01 o	42.691	1.284	16.31ef	0.490
		Flame	40.97	3.21 j	43.76hj	1.404	15.18j	0.487
		Manon	30.10	2.95 q	42.621	1.257	17.11d	0.504
44444	0	Morden	34.84	3.83 e	45.22 df	1.731	13.71qr	0.525
		Flame	41.70	4.36a	47.76b	2.08	12.91s	0.562
		Manon	29.64	3.71 g	44.96f	1.668	14.18op	0.526
	4	Morden	34.37	3.74 g	43.76hj	1.636	14.58ln	0.545
		Flame	40.64	4.20b	47.42bc	1.991	13.98 pq	0.587
		Manon	27.84	3.66h	43.29hl	1.584	15.11 jk	0.553
	8	Morden	36.97	3.17 k	43.56hk	1.380	15.38ij	0.487
		Flame	42.70	3.71 g	45.76de	1.697	14.44lo	0.535
		Manon	35.10	3.13 kl	41.96 m	1.313	15.78 gh	0.493
88888	0	Morden	38.17	3.16k	45.09f	1.424	12.78 s	0.403
		Flame	43.64	4.08c	48.49a	1.978	12.38 t	0.505
		Manon	34.10	2.97 pq	44.96f	1.335	13.38 r	0.397
	4	Morden	37.64	3.111	44.16 gh	1.373	13.98 pq	0.434
		Flame	42.77	4.02 d	47.02c	1.890	13.44r	0.540
		Manon	33.64	2.92r	43.76hj	1.277	14.44lo	0.421
	8	Morden	38.90	3.07 m	43.69hk	1.341	14.78kl	0.453
		Flame	44.70	3.78 f	45.76de	1.729	14.31 np	0.540
		Manon	34.64	2.89 rs	42.761	1.235	14.78kl	0.427

* The means values within column followed by the different letter are significant at 5% level.

Table -17- : Effect of interaction between plant density.hector ${ }^{-1}$, leaves defoliation and genotypes on yield and quality of sunflower in 2008,2009 season.

plant density	leaves defoliation	genotypes	hollow (\%)	$\begin{gathered} \hline \text { yield } \\ \text { (ton/ha.) } \end{gathered}$	oil (\%)	oil yield (ton/ha.)	protein (\%)	$\begin{gathered} \hline \text { protein } \\ \text { yield } \\ \text { (ton/ha.) } \end{gathered}$
22222	0	Morden	32.68	2.67	43.00	1.148	15.64	0.417
		Flame	39.01	2.86	45.07	1.289	14.50	0.414
		Manon	27.08	2.62	43.34	1.135	16.90	0.442
	4	Morden	32.01	2.66	42.40	1.127	16.04	0.426
		Flame	37.81	2.85	44.27	1.261	15.10	0.430
		Manon	26.68	2.60	42.07	1.093	17.24	0.448
	8	Morden	33.48	2.60	41.80	1.086	16.57	0.430
		Flame	40.21	2.84	43.74	1.242	15.44	0.438
		Manon	27.68	2.56	41.54	1.063	17.64	0.451
29629	0	Morden	35.81	2.97	43.94	1.305	14.84	0.440
		Flame	41.81	3.29	45.87	1.509	13.64	0.448
		Manon	30.08	2.92	44.07	1.286	15.30	0.446
	4	Morden	35.08	2.95	43.54	1.284	15.30	0.451
		Flame	41.08	3.27	45.47	1.486	13.84	0.452
		Manon	29.48	2.89	42.94	1.240	15.57	0.449
	8	Morden	36.48	2.92	42.80	1.249	15.64	0.456
		Flame	42.81	3.22	44.34	1.427	14.24	0.458
		Manon	30.41	2.88	42.67	1.228	15.84	0.456
44444	0	Morden	34.88	3.76	45.80	1.722	13.04	0.490
		Flame	41.68	4.26	48.94	2.084	12.30	0.523
		Manon	29.81	3.64	44.87	1.633	13.24	0.481
	4	Morden	33.94	3.64	43.94	1.599	14.17	0.515
		Flame	40.61	4.13	47.94	1.979	13.44	0.555
		Manon	27.94	3.57	43.67	1.559	14.44	0.515
	8	Morden	37.14	3.05	43.67	1.331	14.77	0.450
		Flame	43.14	3.62	45.94	1.663	14.10	0.510
		Manon	31.74	3.00	42.20	1.266	14.90	0.447
88888	0	Morden	39.81	3.06	45.87	1.403	11.97	0.366
		Flame	46.08	3.97	49.20	1.953	11.64	0.462
		Manon	35.08	2.85	45.00	1.282	12.64	0.360
	4	Morden	39.21	3.03	44.74	1.355	13.64	0.413
		Flame	45.94	3.94	47.87	1.886	13.04	0.513
		Manon	34.68	2.81	43.87	1.232	13.84	0.388
	8	Morden	41.01	2.98	43.87	1.307	14.17	0.422
		Flame	47.21	3.63	47.34	1.718	13.70	0.497
		Manon	36.01	2.80	43.34	1.213	14.44	0.404

* The means values within column followed by the different letter are significant at 5% level.

818801	9 COLS	LSLCS601	$10+10$	$55^{0} 000$								$L 01$		
${ }_{\text {w } 15 S 15 L}$	${ }^{1} 685855$	n91 $¢ 01$	¢¢0\％	26000	Scler 0	9650000	659900	060000	09021＋1］	690000	¢z0\％	81	9q8 Joul	
${ }_{7566096}$	${ }_{\text {n } 915}$ ¢ 26	996ti			\％ 61580	mL50000	n 10100	${ }_{13} 580000$	${ }^{2} 1180$	${ }^{2} 27000$	${ }_{\text {nutul }}$	21	$2 \times 9 \times 8$	
n9¢Lて81	＊06616	\％ 6601	11280	nice	\％ 1212	＊ 282000	ntSco	＊SCOS00	nLltz	ェ10120	r．88CLL	t	3×9	
4996981	＊上8688	＊165¢1		L5s00	＊6zulzo	＊ 2880000	497200	＊ 2110000	＊15690	．911000	． 1190	9	3×8	
556＋82	$98 \% \% 9$	\＄6651	1¢1］	＊＊6\％990	400	＊ 165000	～L20\％91	20858t20	＊905tiz	$\ldots 90650$	＊ะでてそて	τ	3	
n60tcioz	\ldots L1 89t	n¢8¢¢	49ctoo	995000		$99+000$	Hetro	959500	¢99EL＇	2¢9\％10	01901	91	qe 1043	
＊s¢2812	att66ES	＊ 1880000 ¢	＊29sz 1 b	so8sz7t	＊t60sco	＊ 580000	＊S0200	$\cdots 2+10000$		n¢Cl000	＊LLL＇0	9	$q^{\prime} \times \mathrm{B}$	
1290 11	tsz6t	LEL8t8	0 CHO 0	LS5000	＊902	＊	nttil｜ 85	＊02t｜z1	． $211+188$	＊ 2655 to	＊0LLSI2	τ	9	
＊iz19\％z	＊6688 Lt	． 251288	＊ 99510	＊ 28000			9ctoo	110000	66 C15690）	¢z1000	1190	9	8． $\mathrm{lOH3}_{3}$	
¢¢8901	85195	8\％ut\％	\＄15¢ 16	F995se	06	＊0E1000	~ 29000	＊180000	， 27860	＊6¢ 5000	－LIIて1	\＆	8	
												τ	suoupuyday	
												$J 0$	10＇s	
2781	\｛ $¢ 6$ ¢\％	9910	58\％L\％	66000	9001で							L01	1801	
${ }^{2} 0260$ S	＊ 1156 Ll	\％1600	＊＊6990¢	＊¢ ¢1000	r． 6000 t	atllle	．08¢ 611	$\frac{296210}{20+1000}$	06905§	2700	St9\％	8t	sqe joun	
n 56020	${ }_{\text {n } 409629}$	\％ 899%	＊．91966¢	＊¢5000	\％ 1671	．88120z	．02511	＊LOtLO0	n85 785	v66100	n6669\％	21	$3 \times 9 \times 8$	
${ }_{38} 81187$	＊0868	＊6510	＊ 50 29ts	＊ 55000	\％ 1168	－ 50150	13\％） 9565	＊0559	n91 zz！	${ }_{1491000}$	net95＇s	t	3×9	
＊ 485056	w $46976 L$	＊ $96 \% 1$	4.8272581	． 202500	＊ 48 Lifl	＊9tLOZII		．0¢2	＊061515	＊98000	．5761	9	9x8	
¢18¢	$5 ¢ 159$	（t990）	TOOSLE	62800	028t tf	909EE	5t865		＊01 2899	＊ 566500	\cdots LTL 891	2	9	
m¢0L¢¢	＊ 78966	w 6710	．uLTE98t	＊16000	＊085E6¢	＊stzlvo		159550	¢90scht	E85400	L59	91	q8． 10 HI	
＊ 4665986	＊ 8 \＄$\dagger 99 \% L 1$	4． 580%	＊605E611	＊＊L496t	＊691＇ 66 \％	＊tS161II	＊＊	＊6¢9	＊ 2 ［ 602\％	s81100	n． 80 ＇	9	9×8	
1818	950868	6510	to 29 ts	\＄5000	111168	¢0LE0	$8+956 t$		ntcos	n1LSCO	＊668098	7	9	
． 1288	＊＊888L1	＊ 88000	＊＊でSL	＊¢¢1200	－9E151\％	＊$¢ 9627$			0 Ocist	198000	LE0LEE	9	8.1043	
1919201	โ60t56	8L¢9	zeostl	908L＇	9rotse	¢90．8tL	¢9	＊＊6911		s 8 8tbco 0	．000 81	ε	B	
（＇8¢／407）								L0289	120585997	£6681 ¢	8＋16685	τ	Suoupendry	
p｜æ！κ 	（\％） məond		$\begin{aligned} & (\%) \\ & 110 \end{aligned}$	$\begin{gathered} \text { (Ey/u01) } \\ \text { p\|rix́ } \end{gathered}$	$\begin{gathered} (\%) \\ \text { мо\\|०प } \end{gathered}$	puesnoy 	peay／spaas j0＇0u	（แ๗） ләวuย！ррәц	（ uueld $_{t}$ wi） 	（แ๐） ๖рวแย！ แวิร	（ U ） 14วิเทุ วuerd	50	N0＇S	
Loseas 800\％L00Z J0j SW														

REFRANCES:

Agrawal, S.C.; M.S., Jolly; A.M., Sinha 1980. Foliar constituents of secondary food plants of tasar silk Antheraea mylitta. Indian Forester, 106 (12): $847-851$.
Agropol, 1998. Advantage for growing sunflower in egypt . cairo.
A.O.A.C., 1984. Official methods of analysis. $14^{\text {th }}$ edition Association of official analytical chemists Washington, D.C, USA.
Attene, G. and A. Porru, 1990. Evaluation of sunflower cultivars in different environments and at different moisture availabilities. Subset B:Cultivars of different precocity compared in different environments under dry land cultivation and with limited irrigation. Informatory Agrario, 46(1): 49-50.
Baldini, M. and G.P.,Vannozzi 1996. Crop Management Practices and Environmental Effects on Hullability in Sunflower Hybrids (Helianthus annuus L.)19 (1): 47-62.
Beer, J. P.1984. Hail damage simulation by leaf area removal a different growth stage on Sunflower. Field crop abstract 32(1):8241-8249.
Black, C.A. 1965. Methods of soil analysis. Part 2. Chemical and microbiological properties. Amer. Society of Agronomy. Inc. publisher Madison. USA.
Blamey, F.P.C. and J.O., Chapman. 1982. Differential response of two Sunflower genotypes to Boron fertilization. p. 92-94. In Proceedings of the 10th International Sunflower Conference, Surfers Paradise, Australia. 14-18 March 1982. International Sunflower Association. Paris, France.
Cardinali, F.J. ; G.A., Orioli and V.R., pereyra 1978. Effect of defoliation during seed filling of Sunflower . 12-24. In Proc. $10^{\text {th }}$ Sunflower conf. surfers paradise, Australia. 14 - 18 Mar. Int. Sunflower As Society Toowoomba, Queensland, Australia.
Chavan, A.S., J.M. Brajdar and D.A. Chavan, 1990. Studies on sowing dates and plant population in late Kharif sunflower. J. Maharashtra Agriculture Univ., 15(1): 377-379.
Connor, D.J. and A.J., Hall 1997. Sunflower physiology . p. 113 - 182. In A.A. Schneiter (ed.) . Sunflower technology and production. ASA. CSSA and SSSA , Madison, Wis.
Denis, L. and G.P. Vear, 1996. Inheritance of Hullability In Sunflower (Helianthus annuus L.). Plant Breeding 113(1): 27-35.
Duncan, B.O. 1955. Multiple range and multiple F test. Biometrics 11 (3): $31-42$.

Erbap, S.O. and H.Y. Baydar 2007. Differential Effect on Sunflower seed yield and quality. Turkish J. of biology.31(1)115-118.
Esendal, E. and N., Kandemir 1996. Effects of Row Spacing on Sunflower (Helianthus annuus L.) Yields and Other

Characteristics. P. 369-374. In Proceedings of the $14^{\text {th }}$ International Sunflower Conference, Beijing/Shenyang, China. 12-20 June 1996. International Sunflower Association. Paris, France.
Faizani, K.G.M., V. Satyanarayana, A. Latchanna, M. Shaik and N.V. Ramaiah, 1990. Response of sunflower genotypes (Helianthus annuus L.) to nitrogen levels. J. Res. APAU, 18(1): 57-59.
Getmanets, A.Y.A., S.M. Kramarev and N.I. Kharchenko, 1991. Fertilizer, plant density and productivity of sunflower. Khimizatsiya Sel'skogoKhozyaistva, 9: 93-97.
Gimenez, C. and E. Fereres, 1987. Drought resistance in sunflower cultivars under field conditions. Investigacion Agraria, Production grain filling in sunflower: the effect of water stress. Plant and Soil, 121(1): 57-66.
Gubbels, G.H. And W., Dedio 1986. Effect of Plant Density and Soil Fertility on Oilseed Sunflower genotypes (Helianthus annuus L.). Can. J. Plant Sci. 66, 521-527.
Gunel, E., 1971. A research on the effect of fertilization and plant populations on yield and agricultural characteristics of sunflower. Field crop abstract 21(1): 240-245.
Herdem, E., 1999. Effect of nitrogen levels on yield and yield components of some sunflower genotypes. M.Sc. Thesis.Field Crops Dept., Agriculture Faculty, Trakya Univ., Tekirdag, Turkey.
Jackson, M.L. 1973. Soil chemical Analysis . Prentice Hall of India, New Delhi.
Jones, O.R., 1978. Management Practices for Dryland Sunflower in the U.S. Southern Great Plains. P. 89-98. in Proceedings of the $8^{\text {th }}$ International Sunflower Conference,
Jones, O.R., 1984. Yield, Water-Use Efficiency, and oil Concentration and Quality of Dry Land Sunflower (Helianthus annuus L.) Grown in the Southern High Plains. Agron. J. 76, 229-235.
Julio, M.I.; I.A., Militino and C.U., Lamsfus. 2001. Defoliation on Sunflower yield reduction. Agronomy J. 93(2):634-637.
Kene, H.K., V.R. Thosar and R.B. Ulemale, 1992. Optimum sowing time of sunflower varieties in summer season. J. Maharashtra Agri. Univ.,17: 411-415.
Killi, F., 1997. A research on yield and yield components of some hybrid oil sunflower varieties (Helianthus annuus L.) under ecological conditions of Kahramanmaras. Trop. J. Agri. Fore., 21(1):149-155.
Killi, F. and G. Ozdemir, 2001. Response of hybrid oilseed sunflower genotypes to plant density. In: Proc. Third Field Crops Congress, Vol. II (Industrial Crops), pp: 29-32. Tekirdag, Turkey.
Majid, H.R. and A.A., Schneiter 1987. Yield and Quality of Semidarf and Standard-Height Sunflower Hybrids Grown at Five Plant Populations. Agron. J. 79, 681-684.

Mathers, A.C. and Stewart, B.A., 1982. Sunflower Nutrient Uptake, Growth, and Yield as Affected By Nitrogen or Manure, and Plant Population. Agron. J. 74, 911-915.
McWilliam, J.R. And S.D., English 1978. The Effect of Inflorescence Size on Seed Characteristics and Oil Content of Sunflower (Helianthus annuus L.). P. 212-223. in Proceedings of the $8^{\text {th }}$.
Mengel, K. and E.A. , Kirkby 1982. Principles of plant nutrition. $3^{\text {rd }}$ Ed. Int. Institute Bern, Switzerland.
Merrien, A., Dominguez, J., Vannozzi, G.P., Baldini, M.,L. Champolivier, and P.,Carre. 1992. Factors Affecting the Dehulling Ability In Sunflower. P. 260-267. In Proceedings of the 13th International Sunflower Conference, Pisa, Italy. 7-11 September 1992. International Sunflower Association. Paris, France.

Miller, J.F. And G.N., Fick 1978. Influence of Plant Population on Performance of Sunflower Hybrids (Helianthus annuus L.). Can. J. Plant Sci. 58, 597-600.
Mould, C.M. and J.I., Chapman 1979. Leaf area profile of two Sunflower genotypes under different rates and timing of boron application. Pesgnisa Agropecuaria, Brasilia 29 (6) : 847-851.
Muro, J.; I., Irigoyen; A.F, Milition and C., Lamsfus 2001. Defoliation Effect on Sunflower yield reduction .Agronomy J. 93(3):732-739.
Narwal, S.S. and D.S. Malik, 1985. Response of sunflower genotypes (Helianthus annuus L.) to plant density and nitrogen. J. Agriculture Sci., 104(1): 95-97.
Nel, A.A. 2001. Determinations of Sunflower seed quality for processing. Ph.D. Thesis, Faculty of Natural and Agriculture Science Univ. of Pretoria, Pretoria .
Ortegon, M.A.S. And F.A., Diaz 1997. Productivity of Sunflower Cultivars in Relation to Plant Density and Growing Season in Northern Tamaulipas, Mexico. Helia 20, 113-120.
Ozer, H., 2003. Sowing date and nitrogen rate effects on growth, yield and yield components of two sunflower genotypes (Helianthus annuus L.). Europ. J. Agron., 19: 453-463.
Page, A.L. ; R.H. , Miller and D.R., Kenney 1982. Methods of soil analysis . Part (2) Agronomy No. 9 Madison . USA .
Patil,V.A. and R.D., Coswaml 1979.Influence of defoliation on the oil content of Sunflower yield. Indian J. Agriculture Science 49(2):713.

Potdar, M.V.and K.R., Pawar 1989. Influence of leaf stripping on the grain yield of Sunflower (Helianthus annuus L.). Field crop abstract 32(2):1148-1155.
Power, J.A. and I.G., Zimmerman 1977. Influence of Plant Population on Yield and Yield Components of Irrigated Sunflower (Helianthus
annuus L.) in Southern New South Wales. Aust. J. Exp. Agriculture Anim. Husb. 19, 570-574.
Prasad, 1991. Development of drought tolerant sunflower for semiarid tracts of India: duration of genotypes influence their performance under imposed moisture stress. Helia, 14(1): 77-85.
Rajan, S.S. 1982 . Effect of defoliation of Sunflower in Iraq. $10^{\text {th }}$ Int. Sunflower Conf., Australia , : 52-54.
Robinson, R.G., J.H. Ford, W.W. Lueschen, D.L. Rabas, L.J. Simith, D.D. Warnes and J.V. Wiersma, 1980. Response of sunflower to plant population. Agron. Journal, 72: 869-71
Rodrgues, P.A.1978. Effect of leaf removal on the yield components of Sunflower (Helianthus annuus L.). Neth. J. Agriculture Science 26 (1): 133-144.

Rodriguez, V. and H., EL-Asmi 1996. Function of Micronutrients in Plants. P. 297-328. In J. Mortvedt (Ed.) Micronutrients in Agriculture. Number 4 In the Soil Science Society of America Book Series. Sssa, Madison, Wisconsin, Us. Saadopbrengs Van Sonneblomkultivars. S a.-Afr. Tydskr. Plant Grond 3, 161-164.
Sarmah, P.C., S.K. Katyal and O.P.S. Verma, 1992. Growth and yield of sunflower varieties in relation to hollow level and plant population. Indian J. Agron., 37: 285-289.
SAS, 2001 .Statistical Analysis Systems. SAS Institute Inc., Cary, NC, USA.
Schneiter, A.A. and B.L., Johnson 1994. Respone of Sunflower plants to physical injury Can. J. plant Science 47(1):763-766.
Sedghi, M., Remussi, C., H.Saumell, and G.A., Vidal 2008. Vegetative Growth, Yield and Industrial Quality of Three Sunflower Cultivars (Helianthus annuus L.) As Influenced by Different Plant Population. P. 137-144. In 5o Conference Internationale Sur Le Tournesol, Clermont-Ferrand. 25-29 July 2008. International Sunflower Association. Paris, France.
Seiler, G.J., 1997. Anatomy and morphology of Sunflower. p. 67-111. In A.A. Schneiter (ed.). Sunflower technology and production. ASA, CSSA and SSSA, Madison, Wis.
Silva, P.R.; D.A., Fleck and J.C., Heckler 1985.Artificial defoliation during the budding stage in Sunflower (H. annuus L.). Field crop abstract 38(6):3182-3191 .
Steel, R.G.D. and J.H., Torrie. 1980. Principles and Procedures of Statistics. Mc Graw Hill Book Co., New York, USA.
Steer, B.T.; P.D. Coaldrake, C.J. Pearson and C.P., Canty 1986. Effects of Nitrogen Supply and Population Density on Plant Developement and Yield Components of Irrigated Sunflower (Helianthus annuus L.). Field Crops Res. 13, 99-115.

Steer, B.T., P.J., Hocking; A.A., Kortt, and C.M., Roxburgh 1988. Effect of components between seed and defoliation of Sunflower (Helianthus annuus L.). Field Crops Resurge 18(2):71-85.
Sterjo, S., 1989. Data on the sowing time and density of plants of sunflower hybrid. Buletini Shkencave Bujqesore, 28(1): 37-46 .
Stoyanova, Y., 1974. Sunflower Crops and Their Problems In Bulgaria. P. 43-46. In Proceedings of the 6th International Sunflower Conference, Bucharest, Romania. 22-24 July 1974. International Sunflower Association. Paris, France.
Tandon, H. 1999. Methods of analysis of soil, plants, water and fertilizers. Fertilizer Development and Consultation Organization, New Delhi, India, pp: 144.
Thompson, J.A. and I.G., Fenton 1979. Influence of Plant Population on Yield and Yield Components of Irrigated Sunflower (Helianthus annuus L.) in Southern New South Wales. Aust. J. Exp. Agriculture Anim. Husb. 19, 570-574.
Urie, A.L., L.N. Leininger and D.E. Zimmer, 1968. Effects of degree and time of defoliation on yield and attributes of Sunflower (Helianthus annuus L.). Crop Sci., 8(1):747-750.
Vannozzi, G.P., M. Baldini and A. Benvenuti, 1988. The responses of sunflower cultivar, sown late in the season, to different irrigation regimes. Sementi Elette, 34: 19-23.
Villalobos, F.J., V.O. Sadras, A. Soriano and E., Fereres. 1992. Effects of plant population and genotype on sunflower dry matter partitioning and yield. In: Proc. 2nd Cong. of the European Soc. for Agron.,Warwick University, 23-28 August 1992, 9(2): 144-149.
Zaffaroni, E. and A.A., Schneiter 1991. Sunflower (Helianthus annuus L.) Production as Influenced by Plant Type, Plant Population, and Row Arrangement. Agron. J. 83, 113-118.

This document was created with Win2PDF available at http://www.daneprairie.com. The unregistered version of Win2PDF is for evaluation or non-commercial use only.

