
 Eng. & Tech. Journal, Vol.30, No.1, 2012

167

Approximate Solution for Linear Time- Delayed Improper 
Integral Equation Using Orthogonal Polynomials 

Hayat Adel Ali 
 Department  of Applied Sciences, University of Technology /Baghdad

    Email: hayatt adel@yahoo.com 

Received on: 5/5/2011 & Accepted on: 6/10/2011 

ABSTRACT 
     In this paper we adopt the collocation method based on orthogonal polynomials 
(Laguerre, Hermite) to solve linear time delayed improper integral equation 
approximately. Some examples are given to illustrate the high accuracy and the 
efficiency of the proposed numerical techniques. 
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 الحل التقریبي للمعادلات التكاملیة المعتلة الخطیة ذات زمن متباطئ 
ةدود المتعامدباستخدام متعددات الح  

 الخلاصة
 ,Laguerre)في ھذا البحث تم تبني طریقة التجمیع بالاعتماد على متعددات الحدود المتعامدة   

Hermite) بعض الأمثلة . كأساس لحل المعادلات التكاملیة المعتلة الخطیة ذات زمن متباطئ تقریبیا
. رحةالعددیة المقت ةأعطیت لبیان الدقة العالیة والكفاءة للتقنی

INTRODUCTION 
he integral equation is called improper integral equation if one or both of it's
limits are infinite. Many problems of electromagnetic scattering problem 
boundary integral equation [3,12] lead to improper integral equation. Many 

researchers have developed the approximate method to solve improper integral 
equation using Galerkin method with Laguerre polynomials as a bases function [1] 
while Sloan [2] used quadrature methods for solving integral equation of the 
second kind over infinite intervals. 
The general form of the improper integral equation is:- 

∫
∞

+=
0

)(),()()( dttftsksgsf  ...(1) 

or   ∫
∞

∞−

+= dttftsksgsf )(),()()(                        ...(2)

where g(s) is continuous function and the kernel K(s,t) might has singularity in the 
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 and f(s) is to be determined 

1- The linear time- delayed improper integral equation [2,4,11] (LT-DIIE) 
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    The general form of (LT-DIIE) can be written as follows 
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Where (τ>0) is a appositive integral called time delayed 

2-ORTHOGONAL BASES POLYNOMIALS [5] 
    Orthogonal polynomials and their properties have a major role in both pure and 
applied mathematics as well as in a numerical computation. Some important 
properties that will be needed throughout this paper, some of these properties 
which are:- 
  2.1 Laguerre Polynomials [1,6,7] 
      The Laguerre polynomials denoted by Ln(s) are important sets of orthogonal 
polynomial over the interval [0,∞). 

Consider Laguerre base polynomials as {L0(s),L1(s),..., Ln(s)} 
Where 
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With the following properties  
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And 
║Lm(s)║=1    m=0,1,2,... 

2.2 Hermite polynomials [6,9,10] 
      The Hermite polynomials Hn(s) are a set of orthogonal polynomials over the 
domain (-∞,∞). It is well known that the general form of Hermite polynomials is 
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With the following properties 
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And 

║Hm(s)║=1    m=0,1,2,... 
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3. COLLOCATION METHOD 
     Collocation method has been applying for along time and Kantorovich gave a 
general scheme for defining and analyzing the collocation method to solve the 
linear operator equations [7, part II]. 
 
To solve the equation approximately  
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We usually choose a finite dimensional family of polynomials (Laguerre and 
Hermite) that is believed to contain a function fn(s) close to the exact solution f(s). 
3.1 Solving (LT-DIIE) by Collocation Method With Aid of Laguerre 

Polynomials  
      Consider the linear time delay improper integral equation  
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By approximating f(s) into linear combination of Laguerre polynomials  
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and substituting into equation (8), yield 
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For which we have the residue equation  
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So, in this method the collocation points s0,s1,s2,...,sn are on the interval [0,∞) such 

that             
)1( n

js j +
=                      j=0,1,...,n 

Hence we have Rn(sj)=0                      j=0,1,...,n 
 
This leads to  
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Equ(11) can be seen as a system of n+1 equations in n+1 unknown coefficients ci , 
i=0,1,...,n 
This system can easily be written in matrix formal as AC=G 
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By using Guass elimination to determine the values ci which satisfy equ(9). 
3.2 Solving (LT-DIIE) Using Collocation Method With Aid of Hermite                   

Polynomial 
       We will use Hermite polynomials as a bases function to approximate f(s) in the 
equation 
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Substituting equ(13) into equ(12) we get 
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So, we have the residue equation 
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This system can be written in matrix formal as  BC=G 
Where 
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By solving this system by using Gauss elimination to get the values of ci, which 
satisfy equ(13). 
 
NUMERICAL EXAMPLE 
Example 1 
     Consider the following delay infinite integral equation 
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By using Hermite polynomials we get 

2
2

102211002 )24(2)()()()()( cssccsHcsHcsHcsfsf −++=++=≅  

2
2

10 )2)1(4()1(2)1()( cscscsR −−+−+−= π  

So 

























−

−

−

=
































−
−

−−
=

2
4

2
1

2

144)1(
22)1(
20)1(

2

1

0

π

π

π

π
π
π

c
c
c

B

 

Hence 

4
1,0,
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The approximate solution is 2
2 )( ssf =  

 
Example 2 
 
    Consider the following delay infinite integral equation  
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with exact solution  )cos()( ssf =  
using Laguerre polynomial 
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Substitute it in the above equation we get 
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By applying the proposed algorithm the solution of eq(1) for different values of n 
for arbitrary final time  the values of ci  displayed in tables(1).  
Table (2) presents a comparison between the exact and numerical solution obtained 
by collocation method with aid of Laguerre polynomial for [ ]1,0∈t  depending on 
least square error (L.S.E). 
 
CONCLUSIONS 
  Collocation method as an approximate method for solving linear time delayed 
improper integral equation using orthogonal polynomials was proposed. The 
method based on Laguerre and Hermite polynomials. From the numerical results in 
table(1) it is clear that using these functions to approximate the solution produce 
accurate results as n increases and the numerical solution convergent to the correct 
one as the length of series increase.   
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Table(1) 

n n= 5 n=    7 n= 10 

c1 0.4993 0.5116 0.5026 

c2 0.5913 0.4023 0.4760 
c3 -0.0806 0.7208 0.4252 

c4 0.5863 -1.2390 0.7449-  
c5 -0.6721 1.8094 1.9608 

c6 0 -1.8533 4.1275- 

c7 0 0.6536 5.2238 

c8 0 0 4.6654- 

c9 0 0 2.5444 

c10 0 0 0.5966- 
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Table (2) 

 
                                                                                                  

 
  

  
  
  
  
  
  
  
  
  
  
  
  

      

t n=5 n=7 n=10 Exact 
0 0.9244 1.0054 0.9985 1.0000 

0.1 0.9629 0.9990 0.9959 0.9950 
0.2 0.9799 0.9835 0.9821 0.9801 
0.3 0.9774 0.9588 0.9578 0.9553 
0.4 0.9574 0.9247 0.9235 0.9211 
0.5 0.9217 0.8814 0.8798 0.8776 
0.6 0.9217 0.8293 0.8272 0.8253 
0.7 0.8105 0.7688 0.7663 0.7648 
0.8 0.7383 0.7005 0.6978 0.6967 
0.9 0.6572 0.6250 0.6224 0.6216 
1 0.5688 0.5433 0.5408 0.5403 

L.S.E 0.0186 1.6235e-004 3.1797e-005  

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com



