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ABSTRACT

In this paper we adopt the collocation method based on orthogonal polynomials
(Laguerre, Hermite) to solve linear time delayed improper integral equation
approximately. Some examples are given to illustrate the high accuracy and the
efficiency of the proposed numerical techniques.
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INTRODUCTION
he integral equation is called improper integral equation if one or both of its
limits are infinite. Many problems of eectromagnetic scattering problem
boundary integral equation [3,12] lead to improper integral equation. Many
researchers have developed the approximate method to solve improper integral
equation using Galerkin method with Laguerre polynomials as a bases function [1]
while Sloan [2] used quadrature methods for solving integral equation of the
second kind over infinite intervals.
The general form of the improper integral equation is:-

f(s) =g(s) + gk(s,t) f (t)dt (1)
o f(s)=g(s)+ ¥c‘j((s,t) f(t)dt (2

where g(s) is continuous function and the kernel K(s,t) might has singularity in the
i(st):0£st<¥ @

| v and f(s) isto be determined
T(st):-¥ <st <¥g

region D =

1- Thelinear time- delayed improper integral equation [2,4,11] (LT-DIIE)
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The general form of (LT-DIIE) can be written as follows

f(s-t)= g(s)+¥d<(s,t)f(t)dt -3

f(s-t)=g(s)+ :jk(s,t)f(t)dt ..(4)

Where (t>0) is a appositive integral called time delayed

2-ORTHOGONAL BASES POLYNOMIALS[5]

Orthogonal polynomials and their properties have a mgjor role in both pure and
applied mathematics as wel as in a numerical computation. Some important
properties that will be needed throughout this paper, some of these properties
which are-

2.1 L aguerre Polynomials [1,6,7]
The Laguerre polynomials denoted by L(s) are important sets of orthogonal
polynomial over the interval [0,0).

Consider Laguerre base polynomials as {Lo(S),L1(9),..., Ln(S)}

Where
& (-)"an g,
L = - 7 T ...(5
a (S ma:.o - gmés ®)

With the following properties

(Lo L) =8 L(9L,(9ds=0  men

And
ILw@®||=1 m=0,1,2,...

2.2 Hermite polynomials [6,9,10]
The Hermite polynomials H,(s) are a set of orthogonal polynomials over the
domain (-o0,00). It iswdl known that the general form of Hermite polynomials is

[n/2] (- )k

Holo)=na o0

With the following properties

(2s)™ % -.(6)

(Hu(9),H,(9)= ¥c‘jﬂ'SZHm(s)Hn(s)dszo MmN
And ¥

[Ha(®) =1 m=0,1,2...
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3. COLLOCATION METHOD

Collocation method has been applying for along time and Kantorovich gave a
general scheme for defining and analyzing the collocation method to solve the
linear operator equations [7, part 11].

To solve the equation approximately
f(s-t)=9g(s)+ c‘j((s,t) f(t)dt sl D={[0,¥)or (-¥,¥)}

We usually choose a finite dimensional family of polynomials (Laguerre and
Hermite) that is bdieved to contain a function f,(s) close to the exact solution f(s).
3.1 Solving (LT-DIIE) by Collocation Method With Aid of Laguerre
Polynomials
Consider thelinear time delay improper integral equation

f(s-t)= g(s)+i‘j<(s,t)f(t)dt -(8)
By approximating f(s) into linear combination of 0Laguerre polynomials
f(9=1,=40L( (©)
and substituting into equation (8), yied -
é”g cL(s-t)=9(9 +B<(s.t)<§”g oL (@)t -+-(10)
iz 0 iz

For which we have the residue equation

R(9=46(L(s-1)- GK(SUL O - g9

Let mj(s):i‘)K(s,t)Li(t)dt j=0,1,2....

S0, in this method the collocation points ,S1,S,,...,S, are on theinterval [0,00) such
j

that S, = j=0,1,...,n
@+n)
Hence we have Ry(s)=0 j=0,1,....n
This leads to
A c(Li(s -t)- m(s)=g(s) ~(11)

i=0
Equ(11) can be seen as a system of n+1 equations in n+1 unknown coefficients ¢; ,
i=0,1,...,n
This system can easily be written in matrix formal as AC=G
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where
4450-1u9) LE-O-16) LLGEO-mE  dls)
&(q D-ng6) LE-1-mO L LE--mEe) -8y
[ [ o [ ¢ eM U

&(sﬁ-w-na(so LE-t)-ms) LLE-D-msX  &(s)a

By using Guass dimination to determine the values ¢; which satisfy equ(9).
3.2 Solving (L T-DIIE) Using Collocation M ethod With Aid of Hermite

Polynomial
We will use Hermite polynomials as a bases function to approximate f(s) in the
equation
f(s-1) = 9(8)+ (s, T (Dt --(12)
Such that 7
f(s) @f,(s)=Q cH (s) ...(13)
i=0
Substituting equ(13) into equ(12) we get
n ¥
AcH (s-t)=g(9+ (kS HH, Bt (14)
i=0 -y
So, we have the residue equation
R(9=A6(H,(s-1)- KsHH,0dt- o9 +-(15)
i=0 _¥
Le  p(s)= d((s t)H, (t)dt
The collocation points S, S ,...,S, 0N thelnterval (-¥,¥) are
S, —L j=0,1,...,n
1+n
Hence R (s;)=0 j=01,...,n
Thisleads to
Ac(H (s -t)- p(s))=9(s) - (16)

i=0
This system can be written in matrix formal as BC=G
Where
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é9(s,)u

G a
&5-0-R@ HE-D-nE L HE-0-nex _g9(S)

s dbED-RE HE-D-RE LHED-REO ~ & | 0
é [l ] (@) ] ( A

é S - u
-6 HEbD-pE LHG-0-nek  69(S,)0

By solving this system by using Gauss dimination to get the values of ¢, which
satisfy equ(13).

NUMERICAL EXAMPLE
Example 1
Consider the following delay infinite integral equation

fe-9=-9- P4

2
with exact solution f () = s°
By using Hermite polynomials we get
F(9 @9 =GHy(9 +GH (9 +eH,(9 =G +25G +(45™- 2,
R =6 (1- Vp) +2s- D¢ +(4(s- )% - 2,

¥
ae' ft)dt
¥

So
e-Jp U
p N e u
Q-Vp) 0 -2l ¢ ZJ_u
B=dl-vp) 2 2@gc13:g1-7p3
§1-Vp) 4 1404 &_ﬁg
é 24
Hence
1 1
¢, ==,¢=0,c,==
2 4

The approximate solution is f,(s) = s

Example 2

Consider the following dday infinite integral equation
¥
f(s- 1) =cosls- 1)- &+ f(t)dt (D)
0

with exact solution  f (S) = cos(s)
using Laguerre polynomial
f(9) @f,(9=acL(9

i=0
Substitute it in the above equation we get

PDF created with pdfFactory Pro trial version www.pdffactory.com



http://www.pdffactory.com
http://www.pdffactory.com

. & Tech. Journal, Vol.30, No.1, 2012 Approximate Solution for Linear Time- Delayed
Improper Integral Equation Using Orthogonal
Palynomials

n ¥ n
acL(s-)=cog(s-1)- te+ g QL (dt
0

i=0 i=0

n ¥ iy 5
R =acL(s-- g acl td
i=0 0 i=0
By applying the proposed algorithm the solution of eg(1) for different values of n
for arbitrary final time the values of ¢, displayed in tables(1).
Table (2) presents a comparison between the exact and numerical solution obtained
by collocation method with aid of Laguerre polynomial for t1 [0,1] depending on

least square error (L.S.E).

CONCLUSIONS

Collocation method as an approximate method for solving linear time delayed
improper integral equation using orthogonal polynomials was proposed. The
method based on Laguerre and Hermite polynomials. From the numerical results in
table(1) it is clear that using these functions to approximate the solution produce
accurate results as n increases and the numerical solution convergent to the correct
one as the length of series increase.
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Table(1)

n n=5 n= 7 n= 10

C 0.4993 0.5116 0.5026
C2 0.5913 0.4023 0.4760
Cs -0.0806 0.7208 0.4252
C4 0.5863 -1.2390 -0.7449
Cs -0.6721 1.8094 1.9608
Cs 0 -1.8533 -4,1275
Cr 0 0.6536 5.2238
Cs 0 0 -4.6654
Cy 0 0 2.5444
C10 0 0 -0.5966
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Table (2)
t n=5 n=7 n=10 Exact
0 0.9244 1.00%4 0.9985 1.0000
0.1 0.9629 0.9990 0.9959 0.9950
0.2 0.9799 0.9835 0.9821 0.9801
0.3 0.9774 0.9588 0.9578 0.9553
0.4 0.9574 0.9247 0.9235 0.9211
0.5 0.9217 0.8814 0.8798 0.8776
0.6 0.9217 0.8293 0.8272 0.8253
0.7 0.8105 0.7688 0.7663 0.7648
0.8 0.7383 0.7005 0.6978 0.6967
0.9 0.6572 0.6250 0.6224 0.6216
1 0.5688 0.5433 0.5408 0.5403
L.SE 0.0186 1.6235e-004 | 3.1797e-005
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