
Tikrit Journal of Eng. Sciences/Vol.18/No.3/September 2011, (89-105)

Hardware Implementation Of Line Clipping A lgorithm By Using FPGA

Amar I. Dawod

Computer Engineering Dept. - University of Mosul

 Abstract

The computer graphics system performance is increasing faster than any other

computing application. Algorithms for line clipping against convex polygons and lines

have been studied for a long time and many research papers have been published so far.

In spite of the latest graphical hardware development and significant increase of

performance the clipping is still a bottleneck of any graphical system. So its

implementation in hardware is essential for real time applications. In this paper clipping

operation is discussed and a hardware implementation of the line clipping algorithm is

presented and finally formulated and tested using Field Programmable Gate Arrays

(FPGA). The designed hardware unit consists of two parts : the first is positional code

generator unit and the second is the clipping unit. Finally it is worth mentioning that the

designed unit is capable of clipping (232524) line segments per second.

Keywords: Clipping, Graphical Pipeline, Real time, FPGA.

 لخوارزمية القطع لقطعة خط مستقيم الكيان المادي تنفيذ
 حقميا لمبرمجة القابمة البوابات باستخدام

 الخلاصة
أكثااة ماان أ مسااتمة تزا ااد ح لاا فاا تطب ق تهاا ح ساا ب ال الةساا م مجاا ل فاا الأداء سااة متطمباا إن

هااا أس سا إحاد مان ت تباةالقطا خ اةزم تها لمخطا ط المساتق م المتام مم تطب ق أخة ح ث أن
 باا لة م ماان التطاا ة .المجاا ل فقااد تاام إجااةاء الدةاساا البحاا ث الكث ااةج ل ياا ط اال جاادا فاا هااا الخ اةزم اا

 الز ااا دج اله مااا فااا ساااة الأداء إل أن مم ااا القطااا ل تااازال تمثااال راااق الزج جااا فااا أ مر مااا ةسااام الكب اااة
ح س ب . لاا تبة ترف اه من خلال المك را الم د ا تاة ة جادا فا تطب قا الازمن الحق قا . ر ي ا مم ا

لك ا ن الما د لخ اةزم ا القطا المقتةحا إا تام القط من خلال هاا البحث فتلا ن الك فقد تم ترف ا تصام م ا
. أن ال حاادج المصاامم حقم اا البةمجاا لإ اا دج الق بماا الب اباا مصااف ف ب سااتخدامإ ااداده اختب ةهاا ب ااكل رهاا

, ك ن الجازء الأ ل مسال ل ان ت ل اد الةماز ألما ي أما الجازء الثا ر ف كا ن مسال ل ان ترف اا جزء نتتألف من
(يط خاط 232524قط . أخ ةا فمن الجد ة ب لاكة أن ال حدج المصمم ي دةج مى ترف ا مم القط لا) مم ال

 مستق م ف الث ر ال احدج.
حقميا البرمجة لإعادة القابمة البوابات مصفوفةالكممات الدالة: القطع، منظومة رسم حاسوبية،

89

Tikrit Journal of Eng. Sciences/Vol.18/No.3/September 2011, (89-105)

Introduction

With procedures for displaying

output primitives and their attributes, a

variety of pictures and graphs can be

created. One of the most fundamental

operation in the implementation of

computer graphics is clipping. The

clipping is done because of the limitation

that no imaging system can see the

whole world at once and the limitation of

the display window of any display

device. The human retina has a limited

size corresponding to an approximation

90- degree field of view. Cameras have

film of limited size and we can adjust

their fields of view by selecting different

lenses. We obtain the equivalent

property in the synthetic camera by

placing a clipping rectangle of limited

size in the projection plane
[1]

.

Quite often we wish to display

only a portion of the total picture. In this

case a window is used to select that

portion of the picture which is to be

viewed(much like clipping or cutting out

a picture from a magazine). This is

known as clipping. Generally any

procedure that identifies those portions

of a picture which are either inside or

outside a specified region of a space is

referred to as a clipping algorithm or

simply clipping. The two dimensional

region against which an object is to be

clipped is called a clip window. The

process of clipping determines which

elements of the picture lies inside the

window and hence they are visible. The

algorithm selected for clipping depends

on the geometric shape of the clipping

window
[2]

.

Blinn J.F. in 1991 described the

standard computer graphics transform-

clip-draw pipeline, and an overview of

the clipping function is given. A simple

algorithm for performing line clipping is

presented. Homogeneous clipping, Z

clipping, and global clipping using the

algorithm are discussed
[3]

.

Patrick G. M. in 1992 introduced

a paper presenting a new 2D polygon

clipping method, based on the

Sutherland-Cohen 2D line clipping

method. After discussing three basic

polygon clipping algorithms, a different

approach is proposed, explaining the

principles of a new algorithm and

presenting it step by step. A proposed

implementation of the algorithm is given

along with some results. A comparison

between the proposed method, the Liang

and Barsky algorithm, and the

Sutherland-Hodgman algorithm is also

presented, showing performances up to

eight times the speed of the Sutherland-

Hodgman algorithm, and up to three

times the Liang and Barsky algorithm.

The algorithm proposed can use floating

point or integer operations, which can be

useful for fast or simple

implementations
[4]

.

Václav Skala in 1996 presented

A new algorithm for line clipping by

convex polygon with O(1) processing

complexity. It is based on dual space

representation and space subdivision

technique. The suggested algorithm also

demonstrates that pre-processing can be

used in order to speed up solution of

some problems in computer graphics

applications significantly. Theoretical

considerations and experimental results

are also presented
[5]

.

Nishita T. and Johan H. in 1999

Introduced a paper discusses a curved

tubular object which is a surface swept

by a sphere/circle moving along a curve.

For the trajectory curve, a 3D Bezier

curve is employed, and its radius can be

varied along the curve. In general, its

surface cannot be defined by a closed

form, while a high degree of polynomial

must be solved for ray/surface

intersection. This paper proposes an

effective rendering method which uses a

scan line algorithm for detecting curved

tubular objects on the projection plane.

09

Tikrit Journal of Eng. Sciences/Vol.18/No.3/September 2011, (89-105)

The calculation of the distance from a

point to a curve plays an important role

in the algorithm. Bezier Clipping

Method is employed for this

calculation
[6]

.

Mingjun Zhang and Chaman L.

Sabharwal in 2002 presented an

improved parametric line clipping

algorithm. The line clipping algorithm is

extended to polygon clipping. The

implementations of both algorithms are

claimed to be novel and outperform

many previous algorithms in the

literature. This is supported by

theoretical consideration and

experimental results on randomly

selected lines and polygons. The

algorithms are implemented in Java. The

Java applet allows the user to visualize

the experimental results by comparing

the existing algorithms and the new

algorithms
[7]

.

Skala V.I in 2004 presents a new

robust and fast algorithm for line

clipping by a convex polygon. The

algorithm uses a preprocessing

procedure in order to obtain significant

speed up. The proposed algorithm is

especially convenient for applications

where points or lines are represented in

homogeneous coordinates. The

algorithm does not use division in

floating point representation since the

resulting points are in homogeneous

coordinates. The algorithms benefit if

vector-vector hardware supported

operations can be used
[8]

.

O'Toole A.J. , Harms J. and

Snow S.L in 2005 described a database

of static images and video clips of

human faces and people that is useful for

testing algorithms for face and person

recognition, head/eye tracking, and

computer graphics modeling of natural

human motions. For each person there

are nine static “facial mug shots” and a

series of video streams. The videos

include a “moving facial mug shot,” a

facial speech clip, one or more dynamic

facial expression clips, two gait videos,

and a conversation video taken at a

moderate distance from the camera.

Complete data sets are available for 284

subjects and duplicate data sets, taken

subsequent to the original set, are

available for 229 subjects
[9]

.

Yong Kui Liu , Xiao Qiang

Wang and Shu Zhe Bao in 2007

introduced a universal algorithm for

polygon clipping, which is a frequent

operation in GIS. In the proposed

solution, the clipping polygons can be

concave and may include holes. This

algorithm is based on so-called entry/exit

intersection point property, which has to

be explicitly determined only at the first

calculated intersection point. It uses a

simple but efficient data structure based

on a single-linked list. Boolean union

and the difference between input

polygons can also be determined after

small modifications. This algorithm can

easily be adapted to Boolean operations

between regions composed of polygon

sets
[10]

.

The Clipping Algorithm

Line clipping is a fundamental

approach whose efficiency directly

affects the performance of a whole

graphics system, involves several parts.

First a given line segment is tested to

determine whether it lies completely

inside the clipping window. If it does not

the line segment is tested to determine

whether it lies completely outside the

window, if it is not completely inside or

completely outside, intersection

calculation must be performed with one

or more clipping boundaries to compute

the new segment line
[11-12]

.

Generally the method speeds up

the processing of line segment by

performing initial tests that reduces the

number of intersection that must be

calculated. Every line end point in a

01

Tikrit Journal of Eng. Sciences/Vol.18/No.3/September 2011, (89-105)

picture is assigned a four digit binary

code , called a position code or region

code, that identifies the location of the

point relative to the boundaries of the

clipping window. Regions are set up in

reference to the boundaries as shown in

figure (1). Each bit position in the

region code is used to indicate one of the

four relative coordinate positions of the

point with respect to the clip window: to

the left , right, top, bottom
[12-13]

. By

numbering the bit positions in the region

code as 1 through 4 from right to left ,

the coordinate regions can be correlated

with bit position as

Bit 1: left side.

Bit 2: right side.

Bit 3: down side.

Bit 4: upper side.

A value of 1 in any bit position

indicates that the point is in that relative

position otherwise the bit position is set

to 0. Bit values in the region code are

determined by comparing endpoint

coordinate values (x , y) to the clip

boundaries. For example bit 1 is set to 1

if x < Xmin. The other three bit values

can be determined using similar

comparisons. Now the region codes for

all line endpoints have been established

and so we can quickly determine which

lines are completely inside the clip

window and which are clearly outside.

Any lines that are completely lies within

the window boundaries have region code

of 0000 for both endpoints and these

lines are accepted. Any lines that have a

1 in the same bit position in the region

codes for each endpoint are completely

outside the clipping window and these

lines are rejected because the two

endpoints are outside from the same

region. A method that can be used to test

lines for total clipping is to perform the

logical AND operation with both region

codes. If the result is not 0000 the line is

completely outside the clipping region.

Lines that can not be identified as

completely inside or completely outside

a clip window by these tests are checked

for intersection with the window

boundaries. Such lines may cross into

the window interior. The clipping

process is started for a line by comparing

an outside endpoint to a clipping

boundary to determine how much of the

line can be discarded. Then the

remaining part of the line is checked

against the other boundaries and this

operation is continued until either the

line is totally discarded or a section is

found inside the window
[1-14]

. The

algorithm is designed to check line

endpoints against clipping boundaries in

the order left , right , bottom, top.

Different orientations of different

line segments are shown in figure(2).

Line ab is completely inside the clipping

window and no clipping process is

required. On the other hand line cd is

rejected since its end vertices are both

outside the window and the logical AND

of their codes produces a non zero, This

shows that both vertices are a way from

one side of the clipping window which

excludes any possibility of intersection

of the line segment with the window,

Line ef has one vertex inside the window

while the second vertex is outside, This

line requires clipping so its intersection

point has to be computed and its external

parts is rejected when this intersection

point replaces the outside vertex, If both

vertices are outside and the logical AND

of their codes produces zero then the line

segment between them may or may not

intersect the clipping window, Lines gh

and kl in figure 2 have these properties

and require more tests
[15]

.

The intersection of line segment

with the clipping window are computed

using parametrical definition. A line

segment which is between two endpoints

P1 and P2 can be represented

parametrically as follows:

92

Tikrit Journal of Eng. Sciences/Vol.18/No.3/September 2011, (89-105)

P(t1) = P1 + t1(P2 - P1) or

t1 =(P(t1) – P1)/(P2 - P1) …1

P(t2) = P2 + t2(P2 - P1) or

t2 =(P(t2) – P2)/(P2 - P1) …2

The parameter t has any value in

the range 0 to 1 where each value

represents a distinct single point P(t)

between the end points P1 and P2

inclusive.

 In figure (3) two line segments

are shown. The summation value of

parameters (t1 + t2) for the line ab is

less than 1. The same value for line cd is

more than 1. This suggests that any line

segment is rejected if it produces

(/t1/+/t2/) > 1 and its intersection are

computed otherwise. This test is

performed only for those line segments

which have both end vertices outside the

clipping window and the logical AND of

their end vertices codes is zero
[15]

.

 When a vertex is away from

more than one side of the clipping

window like vertex (a) in figure (3)

which is away from both the left and

bottom sides at the same time more than

one intersection exists. The intersection

which produces a higher value for the

parameter t is the required one
[15]

.

 Finally the calculation of any

intersection point will include computing

the parameter (t) first using a known

coordinate value of this point which is

set to the border parameter value. The

computed value t is then used to

calculate the other unknown coordinate

value of the intersection point according

to the following equations:

For the intersection with left or right

sides respectively:

 t1= (X - X1) / (X2-X1) , Xi=X ,

Yi=Y1+ t1 (Y2-Y1) …3

 t2= (X - X2) / (X2-X1) , Xi=X ,

Yi=Y2+ t2 (Y2-Y1) ...4

where X is Xmin or Xmax.

For the intersection with top or bottom

sides respectively:

t1= (Y - Y1) /(Y2-Y1) , Yi=Y ,

Xi=X1+ t1 (X2-X1) ...5

t2= (Y - Y2) / (Y2-Y1) , Yi=Y ,

Xi=X2+ t2 (X2-X1) ...6

where Y is Ymin or Ymax.
 Figure (4) illustrates a flowchart for

the implementation of line clipping

algorithm.

The Hardware Unit

In this section a hardware

implementation using FPGA of the

clipping algorithm is presented. A

hardware unit is divided in two parts as

shown in figure (5) & figure(6). The first

unit is responsible for positional code

generation. A block diagram of the

positional code designed unit is

illustrated in figure (5). The inputs of

this unit are the clipping window and the

vertices of a line segment that will be

clipped. Positional code unit compares

V1 and V2 to the clipping window by

testing it against left and right sides and

against up and down sides to create C1

and C2. After that the unit checks the

vertices if they are completely inside the

clipping window or outside and so it

gives enable signal to the second unit

that clips the line and computes the new

vertices after performing the clipping

operation.

When the enable signal is "ON"

the clipping unit starts to check V1 and

V2 if they are outside from the left and

right sides using AND operation to

compute the new vertices after

computing the normalized parameters(t1

& t2). After that the designed unit

checks the vertices from the up and

down sides and performs the extra test to

determine if the second intersection is

necessary and computes the new vertices

after computing the normalized

parameter.

Test and results

 The hardware unit is

implemented using VHDL and

93

Tikrit Journal of Eng. Sciences/Vol.18/No.3/September 2011, (89-105)

synthesized using FPGA available on the

kit-board Spartan-3E. Figure (7) shows

the simulation wave forms for an

example 1 executed by the implemented

hardware unit. Table (1) shows the

utilization resources of Spartan3 Kit that

is used to implement the unit.

As shown in figure(7) the input

representation is 24 bit, 12bit for integer

and 12 bit for fraction. The inputs

vertices for test example are (f9c.000 h ,

320.000 h) and (4b0.000 h ,f38.000 h)

which are equivalent to (-100, 800)

and(1200, -200). The input clipping

window are (000.000 h , 000.000h) and

(3ff.000h , 31f.000h) which are

equivalent to (0,0) and (1023,799). The

first step of the implemented unit is

computing C1 and C2, as shown in the

simulation C1 is 5 that mean V1 is out

from the lift and down sides and C2 is A

hex that mean V2 is out from the right

and up sides. After that accept1 ,reject1

and enable is generated from C1 and C2

to accept the line if the two vertices is

inside the window or reject the line if

they are outside, The two signals are off

as shown in figure (7) and enable signal

is on to enable the clipping unit to

compute the intersection of the vertices

with clipping window to generate the

new vertices. In the next clock the

vertices are checked if they are outside

from the left and right side and t1 and t2

and the new vertices are computed.

However, the simulation of this step

values in figure (7) are calculated

theoretically according to the clipping

algorithm for comparison. Because V1 is

out from the left side So t1 is calculated

according to the equation (3) to be

000.13b hex which equivalent to

0.0769043 and then by using t1, yn1 is

calculated to be 2d3.188 hex which is

equivalent to 723.096 , and hence the

new vertex is (0,723). On the other hand

V2 is out from the right side So t2 is

calculated according to the equation (4)

to be fff.cc2 hex which equivalent to -

0.13623 and then by using t2, yn2 is

calculated to be fc0.3b0 hex which is

equivalent to -63.7695. In the next clock

the vertices are checked if they are

outside from the down and up side and if

the intersection is necessary after extra

test is performed t1 and t2 and the new

vertices are computed. Because yn1 <

Ymax so the second intersection is not

necessary although V1 is outside from

down side and because V2 is outside

from the up and yn2 < Ymin so the

second intersection is necessary to

compute the correct vertex. The

simulation of the this step values in

figure (7) are calculated also

theoretically for comparison. So t2 is

calculated to be fff.ccd hex which is

equivalent to - 0.199951 and then by

using t2, xn2 is calculated to be 3ac.104

hex which is equivalent to 940.064 and

hence the new vertex is (940,0).

The final step of the designed

unit is computing the addition of the

absolute value of t1 and t2 and

comparing it with 1 to decide if the

clipped line is accepted or not and set the

accept1 signal as shown in the

simulation figure.

Figure(8) shows the simulation

wave forms for a second example

executed by the implemented hardware

unit.

In figure(8) the inputs vertices

for test example 2 are (064.000 h

,0c8.000 h) and (258.000 h ,028.000 h)

which are equivalent to (100, 200)

and(600, 40), The input clipping window

are (000.000 h , 000.000h) and (1ff.000h

, 1ff.000h) which are equivalent to (0,0)

and (511,511), As shown in the figure

C1 and C2 are computed in the first step

and their values are 0 and 2 respectively,

That means V1 is inside the clipping

window and V2 is outside the clipping

window from right side, After that

accept1 ,reject1 and enable are generated

94

Tikrit Journal of Eng. Sciences/Vol.18/No.3/September 2011, (89-105)

form the value of C1 and C2 to accept

the line if the two vertices are inside the

window or reject the line if they are

outside, The two signals are off as

shown in figure (8) and enable signal is

on to enable the clipping unit to compute

the intersection of the vertices with

clipping window to generate the new

vertices, Then the clipping unit checks

vertices if they are outside from the left

and right sides, As shown from the value

of C1 ,V1 is inside the window so the

vertex doesn’t require to compute the

intersection of its coordinate and the

parameter value (t1) so t1 is equal to

zero and the values of xn1 & yn1 are

loaded by the input vertex V1(064.000 h

,0c8.000 h), On the other hand the

second vertex is clipped because C2 is 2

which means that V2 is outside from the

right side so t2 , xn2 and yn2 are

calculated to determine the correct

clipped vertex, After the applying

equation (4) to compute the value of t2

which is equal to fff.d27 h which is

equivalent to -0.17797 and then compute

the value of xn2 which is equal to

1ff.000 h which is equivalent to 511 and

finally computes the value of yn2 which

is equal to 044.7a0 h which is

equivalent to 68.4766.

In order to test the designed unit

in complete graphic system the clipping

unit is attached to the scan conversion

graphical sub-system
[16]

. So the complete

graphic system consist of five parts

,display list memory ,line clipping

unit(which is designed in our paper)

,graphic controller, frame buffer and

refresh controller.

 The main function of the graphic

controller is to resolve each line into its

constituent pixels and store them into the

frame buffer memory. The scan

conversion unit needs to clip these lines

to the required screen before they are

being scan converted. This can be

achieved by the designed unit. The

vertices values of the displayed lines are

downloaded to the graphic system using

JTAG bus and after that these values are

stored in the display list memory, and

then the clipping unit read tow vertices

from the display list memory to

computes the new vertices of the clipped

line and give the start signal to the

graphic controller to begins the scan

conversion operation to produces pixels

which are stored in the frame buffer

from which they are then taken by

refresh controller, using read cycles, for

the display operation.

Figure (9) shows the results

scenes that produced by complete

graphic system. As shown there are two

simple scene each one contain simple

object consist of multiple line with red

background, in the first scene all lines

inside the window and no clipping

process is required. On the other hand

when the same object is generated with

shift in X and Y coordinate as shown in

the second scene, the clipping process is

necessary to clip all lines that lie outside

the window to perform the display

operation of the scene correctly.

Performance and conclusions

The execution time is considered

one of the most important aspects of any

real time graphic system. Usually the

execution time of a graphic system is a

function of the complexity of the load.

The graphical load complexity can be

measured by the total number of vertices

or number of lines used in data base. To

speed up the execution of the clipping

algorithm implementation in hardware is

required. In order to practically examine

the clipping designed unit it is used to

execute line clipping with 1000 lines

entered to the implemented unit for high

load testing. The time elapsed in this test

is 43 μ seconds which means that the

designed unit is able to clip (232524)

lines per second. A line clipping

95

Tikrit Journal of Eng. Sciences/Vol.18/No.3/September 2011, (89-105)

algorithm is designed in a way suitable

to be implemented in hardware and can

be adopted to clip the polygon where

each polygon can be considered as

collection of lines and each line is

clipped individually with the designed

unit then clipped polygon is enclosed by

portions of the clipping boundaries. It is

very obvious from designed hardware

unit that the processing element of each

vertex is implemented in parallel mode

as shown in figure (5) and figure (6) so

the performance of the designed unit is

increased but on the other hand the

hardware cost is increased too. When the

reduction hardware cost is critical factor

and very essential the designed unit can

be adopted too because it is implemented

in suitable way to execute the clipping

operation sequentially on each vertex so

the hardware cost is minimized to half

but on the other hand the execution time

is nearly duplicated.

References
1- Edward Angel, “ Interactive Computer

Graphic, A Top-Down Approach

Using OpenGL ” Third Edition 2003.

2- Donald Hearn and M. Pauline,

“Computer graphic ” ,Third edition,

Prentice Hall International, Inc

(1997).

3- Blinn J.F. “Jim Blinn's corner-a trip

down the graphics pipeline: line

clipping” Computer Graphics and

Applications, IEEE ,Volume: 11, No:

1 page(s): 98-105 ,ISSN: 0272-1716 ,

Jan 1991.

4- Patrick G. M. “A new, fast method

for 2D polygon clipping: analysis and

software implementation” ACM

Transactions on Graphics (TOG)

Volume 11 , Issue 3, Pages: 276 –

290,ISSN:0730-0301, 1992.

5- Václav Skala , “Line clipping in E2

with O(1) processing complexity”,

Computers & Graphics Volume 20,

No 4, Pages 523-530, July-August

1996.

6- Nishita T. , Johan H., “A scan line

algorithm for rendering curved

tubular objects” , Computer Graphics

and Applications, Proceedings

Seventh Pacific Conference, Page(s)

:92 - 101 Digital Object Identifier

10.1109/PCCGA.1999.803352, Oct.

1999.

7- Mingjun Zhang, Chaman L.

Sabharwal , “An efficient

implementation of parametric line and

polygon clipping algorithm”

Symposium on Applied Computing

Proceedings of the 2002 ACM

symposium on Applied computing

Madrid, Spain, Pages: 796 – 800

,ISBN:1-58113-445-2, Year of

Publication: 2002.

8- Skala V.I ,“A new line clipping

algorithm with hardware

acceleration” Computer Graphics

International, Page(s):270 – 273,

Digital Object Identifier

10.1109/CGI.2004.1309220,

Proceedings 19-19 June 2004.

9- O'Toole A.J., Harms J., Snow S.L.,

Hurst D.R., Pappas M.R., Ayyad J.H.,

Abdi H., “A Video Database of

Moving Faces and People” , IEEE

TRANSACTIONS ON PATTERN

ANALYSIS AND MACHINE

INTELLIGENCE, VOL. 27, NO. 5,

,Page(s):812-816 ,Digital Object

Identifier 10.1109/TPAMI, MAY

2005.

10- Yong Kui Liu , Xiao Qiang Wang ,

Shu Zhe Bao , Matej Gomboši , Borut

alik,” An algorithm for polygon

clipping and for determining polygon

intersections and unions”, Computers

& Geosciences, Volume 33 , No 5 ,

Pages 589-598 ISSN:0098-3004,

May 2007.

11- Wang Jin , Lu Guo-dong, Peng Qun-

sheng and Wu Xuan-hui ,” Line

clipping against polygonal window

96

Tikrit Journal of Eng. Sciences/Vol.18/No.3/September 2011, (89-105)

algorithm based on the multiple

virtual boxes rejecting”, Journal of

Zhejiang University SCIENCE ,

Volume 6 ,No 1, Pages:100-107,

ISSN 1009-3095, 2005.

12- Mark S. Sobkow, Paul Pospisil and

Yee-Hong Yang. “A Fast Two-

Dimensional Line Clipping

Algorithm via Line Encoding”,

Computer & Graphics, Vol. 11, No.

4, Pages. 459–467, 1987.

13- David F. Rogers “ Mathematical

element for computer Graphic”,

McGraw-Hill Inc (1997).

14- F.S. Hill, Jr. “computer graphic using

OpenGL “ second edition , Prentice

Hall International , Inc (2001).

15- Fakhraldeen H.ALI , “A Concurrent

Processing System For The

Generation of Real-Time Three

Dimension Graphics “ , Ph.D thesis ,

Bradford University ,U.K , 1989.
16- Fakhiraldeen H. Ali ,Amar I. Dawod

," FPGA Design And Implementation

Of A Scan Conversion Graphical Sub-

System", Al-Rafidain Engg., Vol. 8,

No. 2, 2007.

97

Tikrit Journal of Eng. Sciences/Vol.18/No.3/September 2011, (89-105)

Figure (1) Binary Position Code

Figure(2) Different Orientations Of Line Segments

Figure (3) Line Segment And Their Parametrical Portions

a

b

c

t1

t2
t1 t2

d

a

b c

d

f

e

g

h

k

l

000

Window

1000

0100

0010 0001

1010 1001

0110 0101

98

Tikrit Journal of Eng. Sciences/Vol.18/No.3/September 2011, (89-105)

 Input the clipping window:

 Xmin ,Xmax, Ymin ,Ymax

Input vertices

 V1:x1,y1 V2:x2,y2

i=1

Ci=0

Xi :Xw

Ci=Ci+2

Xi < Xmin Xi > Xmax

Yi < Ymin Yi > Ymax

i >2 ?

No

t1=0,t2=0

Yes

i=i+1

Ci=Ci+1

Yi :Yw

Ci=Ci+4 Ci=Ci+8

Are
c1=c2=0?

Accept the line
No

Yes

 c1 And
c2=0?

No

Reject the line

Yes

1

Start

End

Xmax ≥xi ≥Xmin

Ymax ≥yi ≥Ymin

 99

Tikrit Journal of Eng. Sciences/Vol.18/No.3/September 2011, (89-105)

 Figure (4)The Clipping Algorithm

t1 + t2

 >= 1?

1

 Vn1=V1 ,Vn2=V2, i=1

ci AND
1=0?

ti=(Xmin-xi)/(x2-x1)

xni=Xmin

yni=yi +ti*(y2-y1)

No Yes

ci AND

2=0?

Yes

No

ti=(Xmax-xi)/(x2-x1)

xni=Xmax

yni=yi +ti (y2-y1)

ci AND

4=0?

No Yes

yni >

Ymax?

ti=(Ymax-yi)/(y2-y1)

yni=Ymax

xni=xi +ti (x2-x1)

Yes ci AND

8=0?

yni <

Ymin?

No Yes No

Yes
No

ti=(Ymin-yi)/(y2-y1)

yni=Ymin
xni=xi +ti (x2-x1)

 i = i +1

i >2 ?
No

Yes

No Yes

Accept the line Reject the line

End

199

Tikrit Journal of Eng. Sciences/Vol.18/No.3/September 2011, (89-105)

 Figure (5)Positional Code Unit

V1 V2 Xmin Ymin Xmax Ymax

Comparator

X1

Comparator

X1

Comparator Comparator

Y1 Y1

Comparator

X2

Comparator

X2

Comparator Comparator

Y2 Y2

Selector

Selector

0 1

Adder

0

0 2

2

Selector

0 8

Adder

Adder

Selector

0 4

Adder

C1

Decision Circuit

Enable

Selector

Selector

0 1

Adder

0

0 2

2

Selector

0 8

Adder

Adder

Selector

0 4

Adder

C2

Comparator Comparator

0 0

And

101

Tikrit Journal of Eng. Sciences/Vol.18/No.3/September 2011, (89-105)

Figure (6) The Clipping Unit

And

Selector

And

Subtract Subtract

C1 1 2

V1

0

0

Divider

Vn1

Loader

t1

Subtract

 Multiplier

Adder

X2 X1 X1

Y2 Y1

And And

8 4

Y1

Extra Test

Unit Ymax
Ymin

Divider

Loader

Xmin
Xmax

Selector
0

0
Y1

Subtract

 Multiplier Adder

Adder

Comparator

1

Accept

And

Selector

And

Subtract Subtract

1 2

V2

0

0

divider

Vn2

Loader

t2

Subtract

 Multiplier

Adder

X2 X1 X2

Y2 Y1

And And

8 4

Y2

Extra Test

Unit

Loader

Xmin
Xmax

Selector
0

Y2

Subtract

 Multiplier Adder

Ymax
Ymin

0

Divider

C2 Enable

102

Tikrit Journal of Eng. Sciences/Vol.18/No.3/September 2011, (89-105)

Figure(7)Simulation Results of Example(1)

Where:

x1, y1 & x2, y2: the first and second vertices.

Xmin & Ymin & Xmax & Ymax: Clipping window.

C1 & C2 : positional code for the first and second vertices.

Accept1: accept line signal.

Reject1: reject line signal.

Enable :enable signal.

t1&t2 :normalized parameters.

xn1, yn1 & xn2, yn2: the new vertices.

103

Tikrit Journal of Eng. Sciences/Vol.18/No.3/September 2011, (89-105)

Figure(8)Simulation Example 2 Results

 Figure(9) Generated Scenes

104

Tikrit Journal of Eng. Sciences/Vol.18/No.3/September 2011, (89-105)

Table(1) Resources Utilization Of the Implemented Unit

Ratio Total

Resources

Utilized

Resources

Type Resources

(or Frequency)

53% 4656 2467 Number of Slices

2% 9312 209 Number of Slices

Flip Flops

40% 9312 3724 Number of 4 input

LUTs

31% 232 144 Number of

Bounded IOBs

0 % 20 0 Number of Block

RAMS

40% 20 8 Number of MULT18X18s

4% 24 1 Number of GCLKs

116.262 MHZ

Maximum Operating

Frequency

105

