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Abstract 

    Sometimes in a manufacturing environment, a robotic arm is wanted to move in a 

straight path such as welding, painting and assembling. This straight path causes the 

manipulator to actuate all or most of its joints in the same time to track the path. Along 

this path, the manipulator may reach a specific singular configuration in its workspace 

at which one or more joints are in their limits, or a part of the path lies outside the 

workspace. These conditions make the arm’s movement be unsmooth and may cause 

damage to the manufacturing process. In this paper, the singularities inside the 

workspace of a 4-DOF spherical manipulator are indicated and a method is presented 

for finding the arm configurations (assuming that all joints are actuated at the same 

time) along a straight path between an initial and a goal configurations. All joint limits 

are presented and if a part of the path lies outside the workspace, the model processes 

this condition by introducing a new initial configuration through changing the third 

joint’s (q3) position only. A smooth straight path is generated between any two 

configurations using the parametric equations of the line connecting them. Unlike the 

analytical inverse kinematics, which needs a (4 x 4) homogeneous transformations 

convention matrix (DH) to find the joint variables, this method needs only the initial 

configuration, goal configuration, link lengths and the corresponding Cartesian 

coordinates of the path. It always gives the correct solution for the under taken path. 

 

Keywords: Singularity, Jacobian matrix, rank deficiency, path generation, kinematics, 

configuration. 

    

 واربع درجات من الحرية توليد مسارات مستقيمة أمنة و التحقق منها لذراع ألي ذو حركة كروية
 

 الخلاصة
عمى مسار مستقيم كما ىو الحال في المحام والطلاء  التَحَرُّكفي البيئة الصناعية, أحيانا يطمب من الذراع الألي 

جميع أو معظم مفاصمو )مشغلاتو( في نفس الوقت  والتجميع. ىذا المسار المستقيم قد يجبر الذراع عمى  تحريك
في محيط عممو فييا أحد أو أكثر من مفاصمو   لكي يتعقب المسار. وعمى طول المسار, قد يصل الذراع إلى نقاط

تكون قد وصمت إلى الحد المسموح بو والتي لايمكن بو الذراع مواصمة حركتو أو أن ىذا المسار قد يكون بشكل 
قع خارج فضاء عمل الذراع  وكل ىذا يجعل عمل أو حركة الذراع غير سمس أو قد يسبب الضرر كمي أو جزئي وا

لمميمة الموكمة بيا. في ىذا البحث, كل نقاط التي عندىا الذراع يخسر أحد أو أكثر من حركة مفاصمو داخل 
كروية. يتم تقديم طريقة فضاء عممو يتم التحقق منيا. الذراع المستعمل لو أربع درجات من الحرية وذات حركة 

تعتمد عمى حركة الذراع عمى مسار مستقيم بين نقطة بداية الحركة ونقطة اليدف ويتم فييا حساب مقدار حركة كل 
مفصل )عمى فرض أن كل المفاصل تتحرك في نفس الوقت( لضمان بقاء الذراع عمى المسار. في حالة كون كل 

الذراع فأن الطريق أعلاه سوف يقوم بحساب نقطة بداية جديدة أو جزء من ىذا المسار يقع خارج فضاء عمل 
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لحركة الذراع بأعتماد عمى تغير قيمة المفصل الثالث فقط. يتم أعتماد معادلة الخط المستقيم الثلاثي البعد في إيجاد 
ى مصفوفة مسار مستقيم بين أية نقطتين وعمى الخلاف من الحل العكسي لممعادلات الكينماتيكية )التي تحتاج إل

4x4  في إيجاد مقادير حركة المفاصل( تحتاج ىذه الطريقة فقط إلى المعمومات حول نقطتي البداية واليدف وأبعاد
 . الذراع و أحداثيات النقاط المنتخبة عمى المسار. الطريقة دائما تعطي الحل الصحيح لممسار المعتمد

 

 الكممات الدالة
 مرتبة, توليد المسار, الكينماتيك, مجموعة قيم المفاصل.    النقص , , مصفوفة الجاكوبيالانفراديةالنقاط 

 

Notations 

X       Cartesian position vector. 

Φ(q)   position vector in terms of joint 

 q       Vector of generalized coordinates    

          (joint variables).                  

 n      number of DOF. 

P      A (3x1) translation vector. 

R      A (3x3) rotation matrix.                                       

T      A (4x4) transformation matrix. 

S      A set. 

u       A subvector of generalized                

  

 

qintial    = [q1i q2i q3i q4i]   initial  

              configurations. 

 qgoal    = [q1g q2g q3g q4g]   goal 

              configurations.                            

Φq(q)  Jacobian matrix.            

pi        A singular set of constant  

           generalized coordinates.   

R
n
     Space of n- coordinates. 

Ψ      A bounded parameterized  

         subsurface. 

t        A parameter.    

 

Introduction 

 

    Many tasks performed by a 

manipulator arm in a manufacturing 

environment such as welding, spray-

painting and assembling, required that 

the end-effector follows a straight path 

trajectory connecting an initial 

configuration to a goal configuration.       

    During this process of motion, 

singular behavior of the manipulator 

may occur inside its workspace, or a part 

of the straight path lies outside the 

workspace. All theses conditions make 

the path be unsmooth which by itself 

may cause damages to the manufacturing 

process.  In simple terms, a singularity of 

a robotic arm occurs where the number 

of instantaneous degree of freedom 

(DOF) of its end-effector differs from 

the expected number based on the DOF 

of its individual actuated joints. There 

are mainly three types of manipulator 

singularities: work-space boundary 

singularity at which one of the joints 

reaches its limit, a singularity inside the 

work-space at which one or more joints 

reach their limits, and a singularity also 

inside the workspace at which the 

manipulator losses one of its DOF 

without being any joint at its limit.  

    The significance of singularities in the 

design and control of robots is well 

known and there is an extensive 

literature on the determination and 

analysis of singularities for a wide 

variety of serial manipulators-indeed 

such an analysis is an essential part of 

manipulator design. Donelan
[1]

, in his 

study, provides singularity theory 

methodologies for a deeper analysis with 

the aim of classifying singularities, 

providing local models and local and 

global invariants, and surveys the 

applications of singularity-theoretic 

methods in robot kinematics and 

presents some new results. Investigations 

of manipulator singularities are reported 

by Abdel-Malek
[2]

. He presented 

algorithms base on the Jacobian matrix 

coordinates. 
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ranks deficiency and classified the 

singularity into three types: type I, where 

no joints reach their limits and types II 

and III where some joints reach their 

limits. According to theses types, a 

series of generalized constant 

coordinates subset vectors is generated 

that can be submitted into the position 

vector of the end-effector to produce a 

series of parametric singular surfaces 

and curves as a function of the remaining 

generalized non constant coordinate 

vectors. These singular curves and 

surfaces can be used also to draw the 

interior and exterior boundaries to the 

workspace of the robotic arm; this is 

shown by the work of Abdel-Malek
[3]

.  

    One of the main problems in robotics 

research is the generation of trajectories 

that a manipulator must follow and the 

computation of the joint variables 

required to move the hand to the target 

positions. A proper motion plan can have 

advantages with respect to different 

aspects, for example, obstacle avoidance, 

work or method simplicity and 

efficiency, better tracking performance 

etc.  For multi-link robotic systems, the 

automatic task execution can be divided 

into three smaller subproblems
[4]

:  

P1 For a given robot and task, plan a 

path for the end-effector between two 

specified positions. Such a path optimize 

a performance index, in the mean time 

satisfies either equality (for instance, 

robot’s end-tip is required to move on a 

surface) or inequality (for instance, 

obstacle avoidance, joint angle limit) 

constraints. 

P2 For a given end-effector path 

expressed in the task (operational) space 

(usually coincides with the Cartesian 

space), find the joint trajectory according 

to our knowledge about the robot 

kinematics and kinetics. Similarly, some 

performance index can be optimized in 

case of a redundant robot; namely, the 

robot has more DOFs than necessary to 

perform the given task.  

P3 Design a feedback controller which 

can track the given reference joint 

trajectory accurately.  

    Generation of path trajectory is 

usually accomplished by the inverse 

kinematics of the manipulator, which 

may be hard to derive or may not exist at 

all. As alternative approaches, neural 

networks and optimal search methods 

have been used for inverse kinematics 

modeling and control in robotics. 

Rosales, Gan, Hu, and Oyama
[5]

 present 

a first analytical solution to the inverse 

kinematics of Pioneer 2 robotic arm 

which combined with an optimal search 

method. On some rare occasions, the 

inverse model provides completely 

wrong solution due to the inaccuracy 

problem in atan2 function, which is a 

disadvantage of the analytical inverse 

model and in order to avoid this 

problem, they used a hybrid approach. 

This approach works as follows: given a 

desired DH convention, the inverse 

kinematic will provide joint variables. Its 

corresponding position and orientation 

will be calculated using the forward 

kinematics and if this solution meets the 

correctness criterion, the joint variables 

will be sent to the arm, otherwise, an 

optimal search will be conducted to get a 

satisfactory solution. Qin and Perpinan
[6]

 

present a machine learning approach for 

trajectory inverse kinematics. Given a 

trajectory in workspace, find a feasible 

trajectory in angle space (joint space). 

The method learns offline a conditional 

density model of the joint variables 

given the workspace coordinates. This 

density implicit defines the multivalued 

inverse kinematics mapping for any 

workspace point. At run time, the 

method computes the modes of the 

conditional density given each of the 

workspace points, and finds the 

reconstructed joint variable by 

74 



Tikrit Journal of Eng. Sciences/Vol.18/No.2/June 2011, (72-87) 

  

minimizing over the set of modes a 

global, trajectory –wide constraint that 

penalties discontinuous jumps in joint 

space or invalid inverse. They 

demonstrate the approach with a PUMA 

560 robot arm. Their approach works 

well even when the workspace trajectory 

contains singularities. Calderon, Rosales, 

and Alfaro
[7]

 presents a comparison 

between an analytical inverse kinematics 

based hybrid approach and a resolve 

motion rate control method (RMRC) for 

controlling the Pioneer arm. In their 

work, trajectories for arm to follow in 

the Cartesian space or work space are 

obtained by image processing via 

imitation. This implies having a 

transformation from the visual 

information of the external model to the 

execution information of the arm. The 

transformation process gives the 

position/orientation of a specific point 

and the processing of sequential images 

produces a sequence of target points. 

    As it can be noted from above, there 

are many problems in path generation 

and joint variable calculations. These 

problems can be summarized into two 

mainly problems: 

1- Singularities, 

2- The uncertainties that may result in 

the solutions of the inverse 

kinematics model, therefore, the 

researchers produced many methods 

and approaches to overcome these 

problems.  

    In this paper, a 4-DOF spherical 

manipulator is presented. All 

singularities of the manipulator are 

obtained using the algorithms in the 

work of Abdel-Malek
[2]

. A method based 

on the geometry movement of the 

spherical manipulator is developed. A 

straight line connects an initial and final 

configuration and according to the 

parametric equation of this line, the end-

effector is forced to track the path by 

computing the joint variables. The 

method assumes that all joints must be 

actuated at the same time. The first joint 

variable (q1) is calculated depending on 

the change in the parametric coordinates, 

the second joint variable (q2) changes in 

the interval [q2 initial,     q2 goal] with a 

specified step, and the third and fourth 

joint variables (q3, q4) are computed 

based on corresponding q2 and the 

change in the parametric coordinates. (q2 

& q3) are updated when (q4) has a 

negative value, since q4                   [q4: 

0 → 400] and this is by letting q4 = 0 

and computing the corresponding q2 & 

q3. If a part of the path lies outside the 

workspace, the method produces a new 

initial configuration by changing (q3) 

only. The paper is organized as follows: 

kinematics of the manipulator is given in 

section 2. In section 3, the singularity 

algorithms and generation of the joint 

variables according to the path 

parametric equation are presented. 

Finally, some conclusions are given in 

section 4. 

 

 Manipulator Kinematics 

1- Forward Kinematics     

    For a serial manipulator, the forward 

(direct) kinematics describes the position 

of the end-effector– parametrised in 

space by, say, x1,….., x6 where three 

parameters correspond to translations, 

and three to rotations– as a function f of 

the actuated joint variables q1, …., qn. 

The joint variables are the angles 

between the links in the case of revolute 

joints, and the link extension in the case 

of prismatic joints. The fixed coordinate 

systems attached to the 4- link spherical 

manipulator linkages, which called the 

word or base frame, are shown in figure 

(1). Five word frames are used to 

describe the position and orientation of 

the end-effector (frame 4) with respect to 

manipulator base (frame 0). The 

homogeneous transformations or 

Denavit-Hartenberg (DH) convention is 
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used to simplify the transformation 

among the attached coordinate frames, 

combines the operations of rotation (R) 

and translations (P) into a single general 

matrix multiplication, and finds the link 

parameters. For the manipulator shown 

in figure (1), the four DH convention 

matrices are: 
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q1 and q3 are joints 1 & 3 angles, q2 and 

q4 are joints 2 & 4 extensions, and d1 and 

d4 are the link lengths. The general 

forward kinematics DH transformation 

can be obtained by 
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i
iT ,and is given 

as below: 
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with link parameter shown in table (1). 

This manipulator has joint constraints as 

follows: 

 

0 ≤ q1 ≤ 360
0
, 0 ≤ q2 ≤ 400 mm,  

-75
0
 ≤ q3 ≤ 180

0
, and 0 ≤ q4 ≤ 400 mm. 

2-Inverse Kinematics 

    The inverse kinematics problem 

concerned with finding the joints 

variables in terms of the end-effector 

position and orientation, and it is, in 

general, more difficult than forward 

kinematics problem. The more degrees 

of freedom that the manipulator may 

have, the more difficult inverse 

kinematics solution is. Because the 

current manipulator has 4-DOF, closed 

form solution, that based on analytic 

expressions, can be used
[8]

. 

Let: 
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be a (4x4) homogenous transformation, 

here H represents the desired position 

and orientation of the end-effector on the 

path, and the task is to find the values for 

joint variables so that HT 0

4 . 

Therefore: 
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and for q2 & q4 
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Equations (7) through (11) are the 

general solutions of inverse kinematics. 

 

Path Trajectory 

1- Verification 

    It must be noted that the singularity 

algorithms listed in this section are 

presented in the work of Abdel-

Malek
[2,3]

. The position vector of a point 

on the end-effector of a serial 

manipulator can be written in the terms 

of joint coordinates as: 

 

X = Φ (q)                                        ..(12) 

 

where qR
n
 and Φ (q) can be obtained 

from the forward kinematics DH 

conversion which can be written as: 

 

 
 








 


10

0

0 qR
T n

n                          ..(13) 

 

End-effector velocities can be 

determined by deriving eq.(12) w.r.t. 

time: 


 qX q    
 
                                   ..(14) 

where jiq q , (i, j: 0 → n). 

Define a subvector pi of q as a set of 

constant generalized coordinates piR
m
 

where m ≤ n-1, and q = u pi. Singular 

sets pi can be obtained from studying the 

rank-deficiency of the Jacobian matrix. 

Three singularity types are identified:  

1- Jacobian singularities: this is obtained 

when no joints reach their limits and 

they satisfy the following eq.: 

 

S
(1)

 = {pi R
m
: Rank[Φq] < 3, for some 

constant subset of q}                      ..(15) 

         

2- Singularity sets characterized by the 

null space criterion imposed on the 

reduced-order manipulator i.e. some 

joints reach their limits. These sets 

satisfy the eq.: 

S
(2)

 = { piR
m
: dim[null( )( *

* qT

q
 )] ≥ 1, 

for some constant subset of q}       ..(16) 

 

*q
  denotes the Jacobian after reducing 

the order of the manipulator (substituting 

a joint limit). and, 

3- Singularity sets defined by a 

combination of all constant generalized 

coordinates: 

 

S
(3)

 = { piR
n-2

: [ it

j

it

i qq limlim , ], for i, j : 

1→ n; i ≠ j}                                    ..(17) 

 

    Substituting these singular sets into 

the position vector given by eq.(12) 

yields singular surfaces and curves 

parameterized by Ψ(u) such that: 

 

  Φ(u, pi) =   Ψ(u)                            ..(18)  

 

The position vector of a point on the 

end-effector of the spatial manipulator 

shown in figure (1) is: 
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where q = [q1 q2 q3 q4]
T
, and the 

Jacobian is derived as: 
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where s1,3 & c1,3 denote sin(q1,3) and 

cos(q1,3) respectively.  

    The Jacobian rank-deficiency is 

studied under the conditions of the 

singularity sets and the following results 

are found: 

There are no singular sets due to 

Jacobian singularities because the results 

obtained from eq.(15) do not satisfy the 

joint constraints. Therefore, S
(1)

 = null. 

Singularity sets defined by fixing one 

joint at its limit and solving eq.(16) are 

given by S
(2)

 = {p1, p2} where p1 =  (q3 = 

90
0
, q4 = 0) and p2 = (q3 = 90

0
, q4 = 400). 

And finally, singularity sets resulting 

from the combinations of any two joints 

reaching their limits are S
(3)

 = {pi, i = 3 

→ 14} where p3 =  (q2 = 0, q3 = -75
0
), p4 

=  (q2 = 0, q3 = 180
0
), p5 =  (q2 = 0, q4 = 

0),  

p6 =  (q2 = 0, q4 = 400), p7 =  (q2 = 400, 

q3 = -75
0
), p8 =  (q2 = 400, q3 = 180

0
),  

p9 =  (q2 = 400, q4 = 0), p10 =  (q2 = 400, 

q4 = 400), p11 =  (q3 = -75
0
, q4 = 0),  

p12 =  (q3 = -75
0
, q4 = 400), p13 = (q3 = 

180
0
, q4 = 0), and p14 = (q3 = 180

0
, q4 = 

400). Substituting each set of pi, (i: 1 → 

14) into eq.(19) yields singular surfaces 

in R
3
 (Ψi) part of which are shown in 

figure (2) and the manipulator 

workspace which is shown in figure (3). 

                                                                                                                            

2- Generation (finding joint variables) 
    The aim of this work is finding the 

manipulator configurations (joint 

variables) along a straight path 

connecting an initial configuration to a 

goal one without using the inverse 

kinematic model, which may give 

uncertain solution or no solution. In the 

current implementation, the straight path 

between [qintial] & [qgoal] is simulated as 

a line in R
3
 space with parametric 

equations given by: 

 

[X] = [Xinital] + [∆X]* t,  0 ≤ t ≤ 1    ..(21)                  

 

 

where [∆X] = [Xgoal] – [Xintial]        ...(22) 

 

[Xintial] & [Xgoal] are the initial and goal 

Cartesian coordinate vectors defined by 

substituting [qintial] & [qgoal] into eq.(19). 

By choosing a specific increment nd, the 

path can be divided into nd subintervals 

with end points   line parametric 

equations. At each point, the 

manipulator’s configuration can be 

determined as the following algorithm: 

(k: 1 → nd), t = (k-1)/nd, and point 

coordinate vector is found from eq.(21). 

According to point coordinate vector and 

figure (4), the first joint variable q1 can 

be computed as: 
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                                                        ..(23) 

 

The second joint variable q2 varies 

uniformly with the assumed increment: 

 

(q2)k = q2intial + (k-1) 
.
 n2                 ..(24) 

 

where   n2 = (∆q2)/nd. Third joint 

variable q3 is determined depending on 

the coordinate vector and q2 as shown in 

figure (5):   
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where kkk yxd 22 )()()(  . And 

finally, the fourth joint variable q4 is 

computed using the following equation: 

(figure (6)) 

 

4

22

124 )()))(()(()( dddqzq kkkk                                                                             

                                                        ..(26) 

 

The joint variables q1, q2, and q3 have 

values that  joint constraints, but q4 

may go out the minimum joint constraint 

and to avoid this state, it is assumed that 

q4 = 0 and new values of q2 and q3 are 

evaluated: 

 

For (q3)k < 0,  q4 = 0,  

 

1

22

42 )()()( dddzq kkk         ..(27) 

 

and reuse of eq.(25). Now all joint 

variables are known, but q1 and q3 must 

be updated according to the initial 

configuration qintial. For q1, if (q3)k > 90
0
:         

 

 kk qq )()( 11                             ..(28)  

 

and for q3, if (q3)k <  (q3)k+1  & ∆q3 < 0, 

then : 

 

11121

1

13 )/()))(()((tan)( 



  kkkk ddqzq

                                                        ..(29) 

as shown in figure (7). 

    If the straight path (line) that connects 

[qintial] & [qgoal] manipulator’s work 

space, then equations (23) through (29) 

give the required joint variables that can 

make the end-effector follows this 

straight path and ensure that all joint 

variables joint constraints. But if all or 

a part of it   manipulator’s workspace, 

then the initial configuration qi must be 

changed so the path can be tracked. In 

this work, to produce a new qi, the 

following technique is presented: q3i is 

changed to a new one so that the straight 

path between the new [qintial] & [qgoal] be 

tangent to the semicircle that is a part of 

the manipulator boundary workspace, 

generated when q2 = q4 = 0 and q3   (q3: 

-75
0
 → 180

0
), in the two configurations 

plane. This technique gives two values 

of q3i.   Figure (8) shows the four 

probabilities that all or a part of the path 

lies out the manipulator’s workspace. 

From figure (8), the following 

calculations can be made to find out if 

the path   workspace and produce a 

new [qintial] based on the above 

technique: 

 

If {(q3i > 90
0
 & ∆q3 > 0 & (z)k < d1}    or 

{(q3)k < -75
0
} or 

{
2

4

2

1

22 )( ddzyx kkk  }, then some or 

all determined joint variables may 

 joint constraints (i.e. all or a part of the 

path   workspace), therefore, a new q3i 

is generated as listed below:  

 



























2

4

2

2

4

2

44

44

222

dDD

dDD

qdD

qdD

zyxD

gcg

ici

gg

ii

p

               ...(30) 

 

since the angles α1 and α2 are always    > 

90
0
, it can be calculated as: 
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….(31) 

based on the values of  α1 and α2, the 

lengths of AD are computed: 
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.           .(32) 

also the new values of q3 are always less 

than 90
0
, therefore,  
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                                                        ..(33) 

 

now, the new values of [qintial]  can be 

generated by editing the values of q3i : 
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q
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q
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q
qq

3

3

3

33

3

3

3

33

)(

)(

               ..(34) 

 

the form of eq.(34) ensures that the new 

calculated values of q3i are edited 

corresponding to the sign of ∆q3. The 

choice of q3i (q3i: q3iB or q3iS), that satisfy 

the above technique, is made by 

introducing a parameter called Itest. 

When the two values of q3i are 

generated, the method uses q3iS first to 

produce [qintial], then all joint variables 

are calculated if any value of [q]   joint 

constraints, which means that the path   

workspace, then q3iB is submitted to 

determine [qintial].  

    Figure (9) shows a model of the 

spherical manipulator that was 

manufactured to help in building and 

applying the presented method. Four 

different sets of [qintial] & [qgoal] are used 

as inputs to the method for testing and 

table (2) shows the results. The method 

flowchart is shown in figure (10).  

   

Conclusions 

        In this paper, a method is built for 

determining the joint variables of a 

spherical manipulator with 4-DOF end-

effector to track a straight path between 

two given configurations. In this method, 

when all or a part of the path lies out the 

workspace, a new initial configuration is 

generated. All singularity surfaces of the 

manipulator workspace are also 

determined. The presented method 

always gives a suitable unique solution. 

The exist of singular surfaces in the 

manipulator workspaces does not affect 

the solution because the method 

computations depend on dividing the 

path between [qintial] & [qgoal] into 

subintervals at which all joint variables 

are calculated. The method can be 

improved to make the current 

manipulator tracks any known paths. For 

same calculations, the number of inputs 

in this method is less than general 

inverse kinematics since the last one 

needs the DH matrix at each point for 

the same path.  
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Table (1): DH parameters for the 4-link spherical manipulator 

Link ai (mm) αi di (mm) θi 

1 0 0
0
 d1=30 q1 

2 0 90
0
 q2  0

0
 

3 0 90
0
 0 q3 + 90

0
 

4 0 0
0
 q4 + d4 0 

qi = joint variable, d4 = 30 

 

Point coordinates generated 

from the parametric equation 

(eq. (21)). 

The corresponding generated joint 

variables. 

The tracking point coordinates 

computed by substituting the 

corresponding generated joint 

variables into the forward 

kinematics (eq.(19)).   
xp 

(mm) 

yp 

(mm) 

zp 

(mm) 

q1 

(degree) 
q2 (mm) 

q3 

(degree) 

q4 

(mm) 

xt 

(mm) 

yt 

(mm) 

zt 

(mm) 
0.5788 -17.1771 58.3187 120 18.8888 108.8888 7.8888 0.5788 -17.1771 58.3187 

1.0750 -3.0051 51.0075 120 17.8550 75.0505 8 1.0750 -3.0051 51.0075 

-1.7713 0.7010 57.3181 120 01.8011 58.5135 0 -1.7713 0.7010 57.3181 

-11.0857 08.1177 03.0770 120 07.7888 17.0057 3.7005 -11.0857 08.1177 03.0770 

-10.5705 30.3150 00.3588 120 35.8888 38.7185 13.7805 -10.5705 30.3150 00.3588 

-07.7180 11.1051 70.0010 120 10.7888 01.5503 01.7130 -07.7180 11.1051 70.0010 

-30.3538 75.8711 75.3775 120 17.8888 17.0500 78.1075 -30.3538 75.8711 75.3775 

Table (2): The results of four sets of different [qinitial] & [qgoal] used 

as inputs to the method, nd = 11. 
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xp 

(mm) 

yp 

(mm) 

zp 

(mm) 

q1 

(degree) 
q2 (mm) 

q3 

(degree) 

q4 

(mm) 

xt 

(mm) 

yt 

(mm) 

zt 

(mm) 
   350 7.8888 108.8888 17.8888    

   350 0.5703 50.5081 0    

   350 -0.7081 08.1877 0    

   350 -11.5777 00.0170 0    

   350 -15.7001 57.3575 8    

   350 35.7888 -58.8888 10.7888    

   350 11.8888 -58.8888 38.8888    

   350 78.7888 -58.8888 15.7888    

   350 75.8888 -58.8888 57.8888    

   350 53.7888 -58.8888 00.7888    

   350 58.8888 -58.8888 188.8888    

[qinitial] = [350
0
 5 120

0
 15], [qgoal] = [350

0
 70 -60

0
 100], a part of the straight path that connects [qinitial] & [qgoal], 

lies outside the workspace, therefore, q3)new = 53.68
0
 is calculated and add to the q3i to form a new [qinitial] = [350

0
  

5  55.30
0
  15] 

xp 

(mm) 

yp 

(mm) 

zp 

(mm) 

q1 

(degree) 
q2 (mm) 

q3 

(degree) 

q4 

(mm) 
xt 

(mm) 

yt 

(mm) 

zt 

(mm) 

-7.8355 17.5717 55.0111 350 7.8888 55.3088 17.8888 -7.8355 17.5717 55.0111 

-11.3030 17.5177 55.3315 350 11.7888 10.5875 1.1308 -11.3030 17.5177 55.3315 

-13.5073 03.5577 70.1700 350 15.3500 03.5737 8 -13.5073 03.5577 70.1700 

-15.8575 05.0130 17.7500 350 01.7888 -0.5100 0.7055 -15.8575 05.0130 17.7500 

-10.1008 31.7850 18.5731 350 31.8888 -00.0517 10.8571 -10.1008 31.7850 18.5731 

-08.5503 37.7510 31.0137 350 35.7888 -18.5551 01.5510 -08.5503 37.7510 31.0137 

-03.1115 18.8370 00.7317 350 11.8888 -15.0175 30.0000 -03.1115 18.8370 00.7317 

xp 

(mm) 

yp 

(mm) 

zp 

(mm) 

q1 

(degree) 
q2 (mm) 

q3 

(degree) 

q4 

(mm) 

xt 

(mm) 

yt 

(mm) 

zt 

(mm) 

3.7537 -08.0871 085.3015 188.8888 108 118.8888 38.8888 3.7537 -08.0871 085.3015 

15.1577 -17.5507 100.0511 310.1118 110 53.3703 00.1110 15.1577 -17.5507 100.0511 

31.3003 -11.1375 151.3185 318.1557 181 10.0571 08.8377 31.3003 -11.1375 151.3185 

17.3885 -5.7705 173.0080 371.5103 75 31.0057 03.7573 17.3885 -5.7705 173.0080 

77.0130 -0.8510 135.0770 370.8870 00 15.1537 30.8185 77.0130 -0.8510 135.0770 

53.1075 0.1571 110.5571 1.7305 08 5.0100 13.5703 53.1075 0.1571 110.5571 

05.8308 5.8108 181.0707 1.5858 50 -8.1053 75.3031 05.8308 5.8108 181.0707 

188.7781 11.7107 03.5307 5.7051 51 -7.5550 50.1075 188.7781 11.7107 03.5307 

111.0500 15.8077 55.0108 5.7501 75 -7.5571 05.5705 111.0500 15.8077 55.0108 

100.5573 08.5000 10.5755 7.8701 10 -10.5531 183.5557 100.5573 08.5000 10.5755 

110.5055 07.1775 31.1551 18.8888 18 -17.8888 108.8888 110.5055 07.1775 31.1551 

[qinitial] = [100
0
 120 100

0
 30], [qgoal] = [10

0
 40 -15

0
 120], the straight path that connects [qinitial] & [qgoal], lies 

inside the workspace. q3)new = 0
0
. 
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xp 

(mm) 

yp 

(mm) 

zp 

(mm) 

q1 

(degree) 
q2 (mm) 

q3 

(degree) 

q4 

(mm) 

xt 

(mm) 

yt 

(mm) 

zt 

(mm) 
   388.8888 8   08.8888   38.8888    

   308.7515 18.8888 55.7005 11.5870    

   317.3807 53.7773 50.1377 0    

   7.5087 77.5088 57.3183 0    

   17.5750 110.0070 51.1750 0    

   00.7511 088.8888     -51.1580 5.7385    

   37.1310 018.8888   -57.1783 07.0085    

   37.1507 008.8888 -51.7511 13.5715    

   10.5503 308.8888  - 53.1013 50.1010    

   17.8753 358.8888   -51.3777 01.0078    

   15.8888 188.8888   -57.8888 188.8888    

[qinitial] = [300
0
 0 80

0
 30], [qgoal] = [47

0
 400 -75

0
 100], a part of the straight path that connects [qinitial] & [qgoal], 

lies outside the workspace, therefore, q3)new = 13.3101
0
 is calculated and add to the q3i to form a new [qinitial] = 

[300
0
 0 35.5755

0
 30] 

xp 

(mm) 

yp 

(mm) 

zp 

(mm) 

q1 

(degree) 
q2 (mm) 

q3 

(degree) 

q4 

(mm) 
xt 

(mm) 

yt 

(mm) 

zt 

(mm) 

   01.8557                               -11.5017                       57.0017                      388.888 0 35.5755 38.8888                                   01.8557                               -11.5017                       57.0017                      

03.7715 -37.8773 07.5005 101.3150 18 17.1005 15.5707 03.7715 -37.8773 07.5005 

03.0105 -00.1051 113.7131 387.7007 08 7.1775 5.0580 03.0105 -00.1051 113.7131 

03.5385 -01.5757 135.1810 315.1301 108 -01.3787 1.7750 03.5385 -01.5757 135.1810 

03.5105 -17.1555 151.0578 305.0710 158 -17.5510 18.1575 03.5105 -17.1555 151.0578 

03.7855 -0.7307 107.1070 318.8351 088 -58.0501 01.3500 03.7855 -0.7307 107.1070 

03.3715 -1.7873 080.7057 377.3313 018 -50.7750 37.3500 03.3715 -1.7873 080.7057 

03.0005 1.5177 030.0153 11.1775 008 -50.0075 78.5053 03.0005 1.5177 030.0153 

03.1580 11.3171 075.5801 05.8775 308 -51.7185 55.5737 03.1580 11.3171 075.5801 

03.8700 15.7503 008.7507 35.7107 358 -57.8187 03.0588 03.8700 15.7503 008.7507 

00.7150 01.5857 381.1075 15.8888 188 -57.8888 188.8888 00.7150 01.5857 381.1075 
 

 

 

x0 

x3 

z4 

d1 

d4 

q4 

q2 

x1 

x2 x4 

y0 

y1 

y2 

y3 

y4 

z0 

z1 

z2 
z3 

q1 

q3 

 

Figure (1): The spherical manipulator with frame assignments 
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x0 - axis 

y0 - axis 

q1 

q1 

q1 

q1 

+ xk 

+ xk 

- xk 

- xk 

+ yk  
+ yk  

- yk  

Manipulator top 

view (z0 = 0) 

 
a- In x-z plane (Δq1 = 0)  b- In 3D (q1: 0 → 90

0
)  

Figure (2): Singularity surfaces  

 
 

Figure (4): Calculations of q1 

- yk  

Figure (3): Manipulator’s work space  

b- In 3D (q1: 0 → 90
0
)  a- In x-z plane (Δq1 = 0)  
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x0 - axis 

Manipulator side 

view (y0 = 0) 

z0 - axis (Δq3) < 0 

After all values of (q3)k are computed by eq. 

(25), corresponding values must be 

recomputed by eq. (29)  if (q3)k <  (q3)k+1  & 

∆q3 < 0 . 

x0 - axis 

Manipulator 

side view (y0 = 

0) 
z0 - axis 

(q3)k 

z0 - axis 

Here, the manipulate has this shape 

due to (q3)k and if (q1)k is calculated 

using eq. (23) than it gives a wrong 

value which must be corrected by 

eq. (28)   

(q1)k 

Here, the manipulate has this shape 

due to (q1)k which can be computed 

by eq. (23) 

x0 - axis 

x0 - axis 

z0 - axis 

zk – ((q2)k + d1) 

zk  

(q2)k + d1 

d1 

(q2)k  

Manipulator side 

view (y0 = 0) project of (d)k 

q4 

d4 

z0 - axis 

x0 - axis 

q3 

q3 

q3 

zk – ((q2)k + d1) 

zk  

(q2)k + d1 

d1 

(q2)k  

Manipulator side 

view (y0 = 0) 

zk  (q2)k + d1 

project of (d)k 

project of (d)k 

Figure (5): Calculations of q3 

Figure (6): Calculations of q4 

 

Figure (7): Recalculations of q1 & q3 
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x0,1 

y0  

y1,2  

x1,2 
d1 

qinitial 

qgoal 

R=Di  

Di  

Di  

A  

B  

Dp  

C  

d4 

Dg  

Dci  

O  

Dcg  

D  

d4 

q3  

New qinitial 

α2  
α1  

 
 

Dp  

 

New qinitial 

x0,1 

y0  

y1,2  

x1,2 
d1 qinitial 

qgoal 

R=Di  

Di  

Di  

A  

B  

C  
Dg  

Dci  

O  

Dcg  

D  
d4 q3  

α1  
α2 

 

 

Case (1) 

All the path lies  

outside the workspace 

 

Case (2) 

A part of the path lies 

out the workspace, also 

shown in cases 3 & 4. 

 
 

Dp   

 

x0,1 

y0  

y1,2  
x1,2 

d1 

qinitial 

qgoal 

R=Di  

Di  

Di  

A  

C  Dg  

Dci  

O  

Dcg  

D  

d4 

α1  

α2  

B  

 

q3  

New qinitial 

 

 

Case (3) 

 

Dp = Di + Dg  

 

New qinitial 

x0,1 

y0  

y1,2  

x1,2 
d1 

qinitial 

qgoal 

R=Di  

Di  

Di  

A  

B  

C  

Dg  

Dci  

O  

Dcg  

D  

d4 

q3  

α1  

α2 = 0  

 

 

Case (4) 

 

Dp = distance between [qintial] & [qgoal] (points A & B). 

Di = distance between the origin of frame 2 [qintial] and   

        the new one (points O, A, and D). 
Dg = distance between the origin and [qgoal] (point O and B). 

Dcg = distance between the tangent point of the semicircular and    

          [qgoal] (points B and C). 
Dci = distance between the tangent point and the new [qintial] (points  

         C and D). 

α1 = angle in ΔBCO. 
α2 = angle in ΔABO. 

   

 
 

Figure (8): The four probabilities of the straight path 

 

Figure (9): The model of the spherical manipulator in different configurations 

 

Zero reference point 
 

q2 = 0, q3 = 180
0
, 

q4 = 400 

 

 

q1 

q2 
q3 

q4 

 

q2 = 0, q3 = -75
0
, 

 q4 = 400 

 

 

 

q1 = 10
0
 q2 = 400,  

q3 = 75
0
, q4 = 400 

 

 



Tikrit Journal of Eng. Sciences/Vol.18/No.2/June 2011, (72-87) 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

(q1)1 ← (q1i)  

k ←1 , nd, 1 
 

Is  

{(q3i) < π/2 & Δq3 > 0 & (z)j < d1} or      

{(q3)k < -75} or {xk
2 + yk

2 – (zk – d1)
2 < 

d4
2} 

No 

k ← k +1 

Yes 

α1 ← sin-1(d4 / dg). 

α2 ← cos-1((d 2 + dg
2 – di

2) / (2*d*dg)). 
 

 

q3B ← cos-1{(2*di - ADB
2) / 2*di). 

q3S ← cos-1{(2*di – ADS
2) / 2*di). 

 

 
q3iB ← q3i + (│Δq3│/ Δq3)* q3B. 

q3iS ← q3i + (│Δq3│/ Δq3)* q3S. 
 

 

ADB
2 ← {d 2 + (dci + dcg)

2 – 2*d*(dci + dcg) *cos(α1 + α2)} 

ADS
2 ← {d 2 + (dci + dcg)

2 – 2*d*(dci + dcg) *cos(α1 –  α2)} 
 

 

d  ← sqrt ([xg]
2 – [xi]

2). 

di ← d4 + q4i . 

dg ← d4 + q4g . 

dci← sqrt (d2
i – d2

4), dcg← sqrt (d2
g – d2

4). 
 

 

 

Is  

Itest = 0 

No 

q3i ← q3iS 
 

 

Is  

Itest  = 1 

Itest ← 1 
 

 

Yes 

q3i ← q3iB 
 

 

No 

Itest ← 0 
 

 

Yes 

Print [q]k 

End 

C 

Is  

(z)k < (q2)k + d1 
Yes 

No 

(q4)k ← ││((z)k – ((q2)k + d1)) + (d)k││ – d4 

Is  

(q4)k < 0.0 

(q4)k ← 0.0 

(q2)k ← (z)k) – sqrt (d2
4 – (d)2

k) – d1 

Yes 

Is  

(q3)1 ≠ (q3i) 

(q3)k ← π –  tan-1│((z)k – ((q2)k + d1)) / (d)k│ 

Yes 
k ← k +1 

No 

k ←2 , n, 1 
 

B 

(q3)k ←  tan-1│((z)k – ((q2)k + d1)) / (d)k│ 

k ← k +1 

Is  

(q3)k < (q3)k+1 & Δq3 < 0 

No 

No 

k ←1 , nd, 1 
 

Is  

(q3i) > π / 2  

(q1)k ← (q1)k  –  π 

Yes 

k ← k + 1 

No 

(q3)k+1 ← tan-1│((z)k+1 – ((q2)k+1 + d1)) / (d)k+1│ 

Yes 

(q3)k ← –  tan-1│(((q2)k + d1) – (z)k) / (d)k│ 

Read, n, [q]i, [q]g 

[Δq]← [q]g - [q]i 

d1 = 30, d4 = 30 

Itest = 0 
 

Manipulator Forward 

Kinematics  

  [xi], [xg] 

 

k ←1 , nd, 1 

 

n1← Δq2 / n 

 

s ←k – 1 

t ← s / nd 

 

Line Parametric Equation 

[x]k ←[xi] + ([xg] – [xi] * t) 

(q1)k ← tan-1│(y)k / (x)k│ 

(q1)k ← π –  tan-1│(y)k / (x)k│ (q1)k ← π + tan-1│(y)k / (x)k│ 

- & + - & - 

(q1)k ← 2π –  tan-1│(y)k / (x)k│ 

(q2)k ← (q2i) + s*n1 

(d)k ← sqrt((x)2
k + (y)2

k) 

+ & - 

(q3)k← tan-1│((z)k – ((q2)k + d1))/(d)k│ 

Is  

(q3)1 ≠ (q3i) 

(q3)k ← π –  tan-1│((z)k – ((q2)k + d1)) / (d)k│ 

Yes 

A 

No 

B 

G 

Is  

(x)k & (y)k 

 
+ & + 
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Figure (10): The method overall flow 

chart 
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