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Abstract

Sometimes in a manufacturing environment, a robotic arm is wanted to move in a
straight path such as welding, painting and assembling. This straight path causes the
manipulator to actuate all or most of its joints in the same time to track the path. Along
this path, the manipulator may reach a specific singular configuration in its workspace
at which one or more joints are in their limits, or a part of the path lies outside the
workspace. These conditions make the arm’s movement be unsmooth and may cause
damage to the manufacturing process. In this paper, the singularities inside the
workspace of a 4-DOF spherical manipulator are indicated and a method is presented
for finding the arm configurations (assuming that all joints are actuated at the same
time) along a straight path between an initial and a goal configurations. All joint limits
are presented and if a part of the path lies outside the workspace, the model processes
this condition by introducing a new initial configuration through changing the third
joint’s (q3) position only. A smooth straight path is generated between any two
configurations using the parametric equations of the line connecting them. Unlike the
analytical inverse kinematics, which needs a (4 x 4) homogeneous transformations
convention matrix (DH) to find the joint variables, this method needs only the initial
configuration, goal configuration, link lengths and the corresponding Cartesian
coordinates of the path. It always gives the correct solution for the under taken path.

Keywords: Singularity, Jacobian matrix, rank deficiency, path generation, kinematics,
configuration.
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Notations

X Cartesian position vector.

®(g) position vector in terms of joint

q  Vector of generalized coordinates
(joint variables).

n  number of DOF.

P A (3x1) translation vector.

R A (3x3) rotation matrix.

T A (4x4) transformation matrix.

S Aset

u

A subvector of generalized
coordinates.

Introduction

Many tasks performed by a
manipulator arm in a manufacturing
environment such as welding, spray-
painting and assembling, required that
the end-effector follows a straight path
trajectory  connecting an initial
configuration to a goal configuration.

During this process of motion,
singular behavior of the manipulator
may occur inside its workspace, or a part
of the straight path lies outside the
workspace. All theses conditions make
the path be unsmooth which by itself
may cause damages to the manufacturing
process. In simple terms, a singularity of
a robotic arm occurs where the number
of instantaneous degree of freedom
(DOF) of its end-effector differs from
the expected number based on the DOF
of its individual actuated joints. There
are mainly three types of manipulator
singularities: ~ work-space  boundary
singularity at which one of the joints
reaches its limit, a singularity inside the

= [01i 02i Gai g4i] initial
configurations.
Ogoal = [O1g G2g Gsg Oag] goal
configurations.
®y(q) Jacobian matrix.
Pi A singular set of constant
generalized coordinates.
R"  Space of n- coordinates.
¥ A bounded parameterized
subsurface.
t A parameter.

Qintial

work-space at which one or more joints
reach their limits, and a singularity also
inside the workspace at which the
manipulator losses one of its DOF
without being any joint at its limit.

The significance of singularities in the
design and control of robots is well
known and there is an extensive
literature on the determination and
analysis of singularities for a wide
variety of serial manipulators-indeed
such an analysis is an essential part of
manipulator design. Donelan!™, in his
study, provides singularity theory
methodologies for a deeper analysis with
the aim of classifying singularities,
providing local models and local and
global invariants, and surveys the
applications  of  singularity-theoretic
methods in robot kinematics and
presents some new results. Investigations
of manipulator sin?ularities are reported
by Abdel-Malek. He presented
algorithms base on the Jacobian matrix
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ranks deficiency and classified the
singularity into three types: type I, where
no joints reach their limits and types Il
and 111 where some joints reach their
limits. According to theses types, a
series of generalized constant
coordinates subset vectors is generated
that can be submitted into the position
vector of the end-effector to produce a
series of parametric singular surfaces
and curves as a function of the remaining
generalized non constant coordinate
vectors. These singular curves and
surfaces can be used also to draw the
interior and exterior boundaries to the
workspace of the robotic arm; this is
shown by the work of Abdel-Malek®!.
One of the main problems in robotics
research is the generation of trajectories
that a manipulator must follow and the
computation of the joint variables
required to move the hand to the target
positions. A proper motion plan can have
advantages with respect to different
aspects, for example, obstacle avoidance,
work or method simplicity and
efficiency, better tracking performance
etc. For multi-link robotic systems, the
automatic task execution can be divided
into three smaller subproblems:
P1 For a given robot and task, plan a
path for the end-effector between two
specified positions. Such a path optimize
a performance index, in the mean time
satisfies either equality (for instance,
robot’s end-tip is required to move on a
surface) or inequality (for instance,
obstacle avoidance, joint angle limit)
constraints.
P2 For a given end-effector path
expressed in the task (operational) space
(usually coincides with the Cartesian
space), find the joint trajectory according
to our knowledge about the robot
kinematics and kinetics. Similarly, some
performance index can be optimized in
case of a redundant robot; namely, the

robot has more DOFs than necessary to
perform the given task.

P3 Design a feedback controller which
can track the given reference joint
trajectory accurately.

Generation of path trajectory is
usually accomplished by the inverse
kinematics of the manipulator, which
may be hard to derive or may not exist at
all. As alternative approaches, neural
networks and optimal search methods
have been used for inverse kinematics
modeling and control in robotics.
Rosales, Gan, Hu, and Oyama® present
a first analytical solution to the inverse
kinematics of Pioneer 2 robotic arm
which combined with an optimal search
method. On some rare occasions, the
inverse model provides completely
wrong solution due to the inaccuracy
problem in atan2 function, which is a
disadvantage of the analytical inverse
model and in order to avoid this
problem, they used a hybrid approach.
This approach works as follows: given a
desired DH convention, the inverse
kinematic will provide joint variables. Its
corresponding position and orientation
will be calculated using the forward
kinematics and if this solution meets the
correctness criterion, the joint variables
will be sent to the arm, otherwise, an
optimal search will be conducted to get a
satisfactory solution. Qin and Perpinan!®
present a machine learning approach for
trajectory inverse kinematics. Given a
trajectory in workspace, find a feasible
trajectory in angle space (joint space).
The method learns offline a conditional
density model of the joint variables
given the workspace coordinates. This
density implicit defines the multivalued
inverse kinematics mapping for any
workspace point. At run time, the
method computes the modes of the
conditional density given each of the
workspace points, and finds the
reconstructed  joint  variable by



Tikrit Journal of Eng. Sciences/Vol.18/No.2/June 2011, (72-87)

minimizing over the set of modes a
global, trajectory —wide constraint that
penalties discontinuous jumps in joint
space or invalid inverse. They
demonstrate the approach with a PUMA
560 robot arm. Their approach works
well even when the workspace trajectory
contains singularities. Calderon, Rosales,
and Alfaro!” presents a comparison
between an analytical inverse kinematics
based hybrid approach and a resolve
motion rate control method (RMRC) for
controlling the Pioneer arm. In their
work, trajectories for arm to follow in
the Cartesian space or work space are
obtained by image processing via
imitation. This implies having a
transformation ~ from  the  visual
information of the external model to the
execution information of the arm. The
transformation  process  gives the
position/orientation of a specific point
and the processing of sequential images
produces a sequence of target points.

As it can be noted from above, there
are many problems in path generation
and joint variable calculations. These
problems can be summarized into two
mainly problems:

1- Singularities,

2- The uncertainties that may result in
the solutions of the inverse
kinematics model, therefore, the
researchers produced many methods
and approaches to overcome these
problems.

In this paper, a 4-DOF spherical
manipulator IS presented. All
singularities of the manipulator are
obtained using the algorithms in the
work of Abdel-Malek™. A method based
on the geometry movement of the
spherical manipulator is developed. A
straight line connects an initial and final
configuration and according to the
parametric equation of this line, the end-
effector is forced to track the path by
computing the joint variables. The

method assumes that all joints must be
actuated at the same time. The first joint
variable (qy) is calculated depending on
the change in the parametric coordinates,
the second joint variable (gy) changes in
the interval [y initial, 02 goat] With a
specified step, and the third and fourth
joint variables (g3, ¢4) are computed
based on corresponding g, and the
change in the parametric coordinates. (g2
& qz) are updated when (gs) has a
negative value, since q4 € [9a:
0 — 400] and this is by letting g4 = 0
and computing the corresponding q; &
gs. If a part of the path lies outside the
workspace, the method produces a new
initial configuration by changing (Q3)
only. The paper is organized as follows:
kinematics of the manipulator is given in
section 2. In section 3, the singularity
algorithms and generation of the joint
variables according to the path
parametric equation are presented.
Finally, some conclusions are given in
section 4.

Manipulator Kinematics
1- Forward Kinematics

For a serial manipulator, the forward
(direct) kinematics describes the position
of the end-effector— parametrised in
space by, say, Xi,....., X¢ Where three
parameters correspond to translations,
and three to rotations— as a function f of
the actuated joint variables qi, ...., Qn.
The joint variables are the angles
between the links in the case of revolute
joints, and the link extension in the case
of prismatic joints. The fixed coordinate
systems attached to the 4- link spherical
manipulator linkages, which called the
word or base frame, are shown in figure
(1). Five word frames are used to
describe the position and orientation of
the end-effector (frame 4) with respect to
manipulator base (frame 0). The
homogeneous transformations or
Denavit-Hartenberg (DH) convention is
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used to simplify the transformation
among the attached coordinate frames,
combines the operations of rotation (R)
and translations (P) into a single general
matrix multiplication, and finds the link
parameters. For the manipulator shown
in figure (1), the four DH convention
matrices are:

cosg, -sing; 0 O
To_ sing, cosq, 0 O 1)
1o 0 1 d, )
0 0 0 1
10 0 O
T1_ 00 -1 0 )
> 101 0 q )
00 0 1
[—sing, 0 cosqg, O
cosg, O sing; O
T32: ? ? +(3)
0 1 0 O
|0 o 0 1
1.0 0 0
010 0
i = -(4)
0 01 g,+d,
0 0O 1

g and gz are joints 1 & 3 angles, g, and
g4 are joints 2 & 4 extensions, and d; and
d, are the link lengths. The general
forward kinematics DH transformation

4

can be obtained by [ [T'i1 ,and is given
i=1

as below:

—cosg,sing,  sing,  cosg,cosq, (g, +d,)c0sq, COSQ,
-singsing, —cosq, singcosq, (g, +d,)sing, cosg,
€0sq, 0 sing,  (q,+4d,)sing, +q, +d,
0 0 0 1

.(5)

with link parameter shown in table (1).

T, =

This manipulator has joint constraints as
follows:

0 <1 <360°% 0 <o <400 mm,
-75% < g3 < 180°, and 0 < g4 < 400 mm.
2-Inverse Kinematics

The inverse Kkinematics problem
concerned with finding the joints
variables in terms of the end-effector
position and orientation, and it is, in
general, more difficult than forward
kinematics problem. The more degrees
of freedom that the manipulator may
have, the more difficult inverse
kinematics solution is. Because the
current manipulator has 4-DOF, closed
form solution, that based on analytic
expressions, can be used!.

Let:
rll r12 r13 px
H = 1 Ny hs Py (6)
r31 I’32 r33 pz
0O 0 0 1

be a (4x4) homogenous transformation,
here H represents the desired position
and orientation of the end-effector on the
path, and the task is to find the values for

joint variables so that T)=H.
Therefore:
., =sing, i
= tan 2(r,,,—r.

r,, = —COS ql}ql ( 12 22)

(7)
and
I, =COS Qs i

= tan 2(r;,,—T.

r33 — Sin q3 }qS ( 31 33)

.(8)
and for g, & q4
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p, = (a, +d,)cosq, cosq,
p, —d,cosg, cosq, -(9)
C0S g, COSQ,

q, =

or

p, = (0, +d,)sing, cosq,
p, —d,sing, cosq, -(10)
sing, cosq,

q, =

and

p, =(q, +d,)sing, +0q, +dl}
q, = p, - (d, +d,)sing, —d, | ~11)

Equations (7) through (11) are the
general solutions of inverse kinematics.

Path Trajectory
1- Verification

It must be noted that the singularity
algorithms listed in this section are
presented in the work of Abdel-
Malek!??!. The position vector of a point
on the end-effector of a serial
manipulator can be written in the terms
of joint coordinates as:

X=®d(q) -(12)

where qeR" and @ (g) can be obtained
from the forward kinematics DH
conversion which can be written as:

To_ {RS <D(q)} 13)

" l0 1

78

End-effector  velocities can  be
determined by deriving eq.(12) w.r.t.
time:

X=0,q .(14)

where® =o®, /oq;, (i, j: 0 — n).
Define a subvector p; of g as a set of

constant generalized coordinates pjeR™
where m < n-1, and g = uu p;. Singular
sets p; can be obtained from studying the
rank-deficiency of the Jacobian matrix.
Three singularity types are identified:

1- Jacobian singularities: this is obtained
when no joints reach their limits and
they satisfy the following eq.:

SW = {pie R™ Rank[d,] < 3, for some
constant subset of q} ..(15)

2- Singularity sets characterized by the
null space criterion imposed on the
reduced-order manipulator i.e. some
joints reach their limits. These sets
satisfy the eq.:

$@ = { pieR™ dim[null(®7. (4"))] = 1,
for some constant subset of g}  ..(16)

D denotes the Jacobian after reducing

the order of the manipulator (substituting
a joint limit). and,

3- Singularity sets defined by a
combination of all constant generalized
coordinates:

5(3) — { piERn 2: [q'llmlt'qulmn]’ for E

1—n;i#j} .(17)

Substituting these singular sets into
the position vector given by eq.(12)
yields singular surfaces and curves
parameterized by W (u) such that:

O(u, p)) = ¥(u) -(18)

The position vector of a point on the
end-effector of the spatial manipulator
shown in figure (1) is:

(q, +d,)cosq, cosq,
®(q) = (q, +d,)sing, cosg, -.(19)
(q, +d,)sing, +q, +d,
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where g = [q1 92 s qs]", and the
Jacobian is derived as:

_(q4+d4)3103 0 _(q4+d4)0153 ClC3
@, =| (q,+d,)ce, 0 —(q,+d,)s,S; S.Cq
0 1 (@ +d)e, s

..(20)

where s;3 & C13 denote sin(gis) and
cos(qa 3) respectively.

The Jacobian rank-deficiency is
studied under the conditions of the
singularity sets and the following results
are found:

There are no singular sets due to
Jacobian singularities because the results
obtained from eq.(15) do not satisfy the
joint constraints. Therefore, S® = null.
Singularity sets defined by fixing one
joint at its limit and solving eq.(16) are
given by S® = {ps, p.} where p; = (g3 =
90°, g4 = 0) and p, = (g3 = 90°, g = 400).
And finally, singularity sets resulting
from the combinations of any two joints
reaching their limits are S® = {p;, i = 3
— 14} where p3 = (92 =0, g3 = -75°), ps
=) (92=0, 03 = 180°), ps = (02 =0, G4 =
0),

Ps = (q2 =0, Qs = 400)1 p7 = (q2 = 400,
s = -75°%), ps = (g2 = 400, g3 = 180°),

P = (02 =400, gs = 0), p1o = (g2 = 400,
04 = 400), p11 = (g5 = -75°, g4 = 0),

P2 = (g3 = -75", da = 400), P13 = (s =
180° g4 = 0), and pw = (g3 = 180°, qu =
400). Substituting each set of p;, (i: 1 —
14) into eq.(19) yields singular surfaces
in R® (Wi) part of which are shown in
figure (2) and the manipulator
workspace which is shown in figure (3).

2- Generation (finding joint variables)

The aim of this work is finding the
manipulator configurations (joint
variables) along a straight path
connecting an initial configuration to a
goal one without using the inverse
kinematic model, which may give

uncertain solution or no solution. In the
current implementation, the straight path
between [Qintial] & [Agoar] IS Simulated as
a line in R® space with parametric
equations given by:

[X] = Xinita] + [AX]<t, 0<t<1 .(21)

where [AX] = [Xgoal] — [Xintial] ...(22)
[Xintiar] & [Xgoal] are the initial and goal
Cartesian coordinate vectors defined by
substituting [Qintiar] & [Ogoal] INt0 €q.(19).
By choosing a specific increment ng, the
path can be divided into ng subintervals
with end points e line parametric
equations. At each point, the
manipulator’s configuration can be
determined as the following algorithm:
(k: 1 — ng), t = (k-1)/ng, and point
coordinate vector is found from eq.(21).
According to point coordinate vector and
figure (4), the first joint variable g; can
be computed as:

-1 y i
tan|>&if (+x, &+Y,)

k

1 y .
xr —tan| =X if (—x, &+Y,)

Xk
(ql)k = .
7r+tan£,if (=X &=Y,)
Xy
2 Y|
27 —tan—,if (+x, &-Yy,)
X

k

.(23)

The second joint variable q, varies
uniformly with the assumed increment:

(d2)k = Gaintial + (k-1) " Ny .(24)

where N2 = (AQ2)/ng. Third joint
variable gz is determined depending on
the coordinate vector and g, as shown in
figure (5):
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i @i = (@) +d0)]
@
(@), = e~ tan A LD ), ()
tan| () zd‘;l)‘(z)k i (@), < (@), + 4,
(25)
where  (d), =/(X)%+(y)’% . And

finally, the fourth joint variable q4 is
computed using the following equation:

(figure (6))

() = (@) — (@), +0,)? +(d)% —d,
.(26)

The joint variables qi, g2, and gz have
values that e joint constraints, but g
may go out the minimum joint constraint
and to avoid this state, it is assumed that
gs = 0 and new values of g, and gz are
evaluated:

For (03)k <0, g4 =0,

.(27)

80
and reuse of eq.(25). Now all joint
variables are known, but g; and gz must
be updated according to the initial
configuration Qintiat- FOr s, if (Q3)k > 90%

(qZ)k = (Z)k - (d4)2 _dk2 _dl

(@) =(a) —7 -(28)

and for ga, if (ga)k < (Ga)+1 & AQs <0,
then :

(@) = (@s — (@)es + ) (), 0
.(29)

as shown in figure (7).

If the straight path (line) that connects
[Qintia] & [Ogoar] € manipulator’s work
space, then equations (23) through (29)
give the required joint variables that can

79

make the end-effector follows this
straight path and ensure that all joint
variables e joint constraints. But if all or
a part of it ¢ manipulator’s workspace,
then the initial configuration g; must be
changed so the path can be tracked. In
this work, to produce a new g, the
following technique is presented: Qg is
changed to a new one so that the straight
path between the new [Qintiar] & [Agoar] b€
tangent to the semicircle that is a part of
the manipulator boundary workspace,
generated when g2 =04 = 0 and g3 € (Qa:
-75° — 180°), in the two configurations
plane. This technique gives two values
of Qsi. Figure (8) shows the four
probabilities that all or a part of the path
lies out the manipulator’s workspace.
From figure (8), the following
calculations can be made to find out if
the path ¢ workspace and produce a
new [Qinia] based on the above
technique:

If {(05i > 90° & Az >0 & (Z)k <di} or
{(@s) < -75%} or
{xZ+y} —(z,—d,)* <d?}, then some or
all determined joint variables may
¢ joint constraints (i.e. all or a part of the
path ¢ workspace), therefore, a new Qs;
is generated as listed below:

D, = JAX? + Ay + Az
D =d, +0qy
Dg :d4+q4g

Dy :\/Diz_df
D,, =D; —d?

cg
since the angles a; and a, are always
90°, it can be calculated as:

.(30)

>
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o, =sin(d, /D,) an

R
a, =cos((D,’ +D; -D})/2:D, - D,)
based on the values of a; and a», the
lengths of AD are computed:

AD; =(D,’ +(D, +D,,)* ~2:D, (D + D) - 0s(at, + ;)
AD? =(D,’ + (D4 +D,)* ~2:D, -(D, +D,,)-cos(a, - ,))
(32)

also the new values of gz are always less
than 90°, therefore,

-1
Usg = cos((2- Di2 - AD;)/Z ’ Di2)

Uss = 0615((2' Di2 - ADSZ)/Z' Diz)
.(33)

now, the new values of [Qinia] can be
generated by editing the values of gs; :

|Ag,|

O3 =05 + (A—qg) O3
..(34)
Osis =0q + (%) 03
T T Agg

the form of eq.(34) ensures that the new
calculated values of Qs are edited
corresponding to the sign of Ags. The
choice of gs;i (gsi: gsig OF (sis), that satisfy
the above technique, is made by
introducing a parameter called st
When the two values of gz are
generated, the method uses qgis first to
produce [Qinial], then all joint variables
are calculated if any value of [q] ¢ joint
constraints, which means that the path ¢
workspace, then gsig is submitted to
determine [Qintial]-

Figure (9) shows a model of the
spherical ~ manipulator  that  was
manufactured to help in building and
applying the presented method. Four
different sets of [Qintial] & [0goal] are used
as inputs to the method for testing and

table (2) shows the results. The method
flowchart is shown in figure (10).

Conclusions

In this paper, a method is built for
determining the joint variables of a
spherical manipulator with 4-DOF end-
effector to track a straight path between
two given configurations. In this method,
when all or a part of the path lies out the
workspace, a new initial configuration is
generated. All singularity surfaces of the
manipulator ~ workspace are  also
determined. The presented method
always gives a suitable unique solution.
The exist of singular surfaces in the
manipulator workspaces does not affect
the solution because the method
computations depend on dividing the
path Dbetween [Qinia] & [Qgoa] iINtO
subintervals at which all joint variables
are calculated. The method can be
improved to make the current
manipulator tracks any known paths. For
same calculations, the number of inputs
in this method is less than general
inverse kinematics since the last one
needs the DH matrix at each point for
the same path.
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Table (1): DH parameters for the 4-link spheri

Link | aj (mm) | di (mm)
1 0 0’ d;=30
2 0 90’ 0>
3 0 90° 0 0
4 0 0° Qs + dg
g; = joint variable, d, = 30

Table (2): The results of four sets of different [

as inputs to the method, ng=1

Point coordinates generated
from the parametric equation

(eq. (22)).

The corresponding generated joint
variables.

X Y Z 1 SK] C
(m?n) (m?n) (m?n) (degree) | %2 (mm) (degree) (m
8.7500 -15.1554 | 703109 120 10.0000 | 120.0000 5.0
1.8978 -3.2871 74.8257 120 15.0668 | 97.2687 (
-4.9543 8.5812 79.3404 120 21.0241 70.7137 (

-11.8065 | 20.4495 83.8552 120 29.5000 | 45.8865 39
-18.6587 | 323178 88.3700 120 36.0000 | 30.9407 13.:
255108 | 44.1861 92.8848 120 425000 | 21.7783 24
323630 | 56.0544 97.3996 120 49.0000 | 15.8688 50.]
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Xp Yp Zp 0: gz (Mm) 03 Q4 Xt Yt Z;
(mm) (mm) (mm) (degree) 2 (degree) (mm) (mm) (mm) (mm)
3.5635 -20.2094 206.3816 100.0000 120 110.0000 30.0000 3.5635 -20.2094 206.3816
17.4759 -15.6725 188.8611 318.1140 112 63.3923 224118 17.4759 -15.6725 188.8611

31.3883 -11.1356 1713407 | 340.4669 104 48.2694 20.0355 31.3883 -11.1356 171.3407
45.3007 -6.5987 153.8202 [ 351.7123 96 31.2875 23.5693 45.3007 -6.5987 153.8202
59.2132 -2.0618 136.2998 358.0058 88 17.1639 32.0107 59.2132 -2.0618 136.2998
73.1256 24751 118.7794 1.9386 80 6.8422 43.6923 73.1256 24751 118.7794
87.0380 7.0120 101.2589 4.6060 72 -0.4863 57.3231 87.0380 7.0120 101.2589
100.9504 11.5489 83.7385 6.5264 64 -5.7668 72.1257 100.9504 11.5489 83.7385
114.8628 16.0859 66.2180 79721 56 9.6791 87.6586 114.8628 16.0859 66.2180
128.7753 20.6228 48.6976 9.0984 48 -12.6631 103.6675 | 128.7753 20.6228 48.6976
142.6877 25.1597 31.1771 10.0000 40 -15.0000 120.0000 | 142.6877 25.1597 31.1771

[Ginitiar] = [100° 120 1007 30], [qgoa.] = [10° 40 -15° 120], the straight path that connects [Ginitiar] & [dgoal], lies

inside the workspace. 03)new = 0.

X Yy Z 1 a3 4
(m?n) (m?n) (m?n) (degree)  (mm) (degree) (mn
350 5.0000 120.0000 15.0C

350 8.6523 62.7204 0

350 -2.9201 80.4059 0

350 -11.7599 82.8192 0

350 -17.9224 65.3757 0

350 37.5000 -60.0000 12.5C

350 44.0000 -60.0000 30.0C

350 50.5000 -60.0000 47.5(

350 57.0000 -60.0000 65.0C

350 63.5000 -60.0000 82.5C

350 70.0000 -60.0000 100.0¢

[Qinitiar] = [350° 5 120 15], [qgoa] = [350° 70 -60° 100], a part of the straigh
lies outside the workspace, therefore, gs)new = 53.68° is calculated and add

5 66.32° 15]

(rr):rr;w) (rr):rr;w) (rrz1$n) (degiee) G (mm) (deg?ee) (rr?;
-9.0366 | 156519 | 762111 350 50000 | 663200 | 15.0¢
-11.3830 | 197159 | 67.3317 350 115000 | 48.6097 | 443
-13.7293 | 237799 | 58.4522 350 163682 | 23.7535 0
2160756 | 27.8438 | 49.5728 350 245000 | -8.7128 2.52
2184220 | 319078 | 40.6934 350 310000 | -28.8615 | 12.0¢
207683 | 359718 | 31.8139 350 37.5000 | -40.6674 | 24.7
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Xp Yp Zp Q1 g (mm) s Qs Xt Yt Z;
(mm) (mm) (mm) (degree) 2 (degree) (mm) (mm) (mm) (mm)

300.0000 0 80.0000 30.0000
320.9747 40.0000 77.5227 11.6052
345.3025 73.5553 72.4359 0

5.7809 95.6200 69.3403 0

19.7972 118.2252 64.1568 0

28.9644 200.0000 -64.1700 6.9307

35.1348 240.0000 -69.4503 25.2206

39.4785 280.0000 -71.9744 43.7947

42.6683 320.0000 - 73.4243 62.4818

45.0963 360.0000 -74.3555 81.2250

47.0000 400.0000 -75.0000 100.0000

[Ginitiar] = [300° 0 80° 30], [qgoa] = [47° 400 -75° 100], a part of the straight path that connects [Qinitiar] & [dgoar],
lies outside the workspace, therefore, g3)new = 43.3424° is calculated and add to the g3 to form a new [Qinitial] =

[300° 0 36.6576° 30]

Xp Yp Zp 1 Q3 Qs Xt Yt Z;
(mm) (mm) (mm) (degree) A (mm) (degree) (mm) (mm) (mm) (mm)
24.0665 | -41.6845 65.8219 300.000 0 36.6576 30.0000 24.0665 | -41.6845 65.8219

23.9546 | -35.0553 89.6827 124.3462 40 15.1286 16.7985 23.9546 -35.0553 89.6827
23.8426 | -28.4261 113.5434 | 309.9885 80 5.4556 7.2702 23.8426 284261 | 113.5434
23.7306 | -21.7969 | 137.4042 | 317.4321 84 3 21.3509 4.5962 23.7306 21.7969 | 137.4042
23.6187 -15.1677 | 1612650 | 327.2918 1ou -45.6712 10.1696 23.6187 -15.1677 | 161.2650
23.5067 -8.5385 185.1258 | 340.0371 200 -60.8681 21.3728 23.5067 -8.5385 185.1258
23.3947 -1.9093 208.9865 | 3553343 240 -68.9578 35.3728
23.2827 4.7199 232.8473 11.4597 280 -72.8857 50.7273
23.1708 11.3491 256.7081 | 26.0957 320 -74.5406 | 66.7939
23.0588 17.9783 | 280.5689 | 37.9425 360 -75.0405 83.2700
22.9468 24.6075 | 304.4296 | 47.0000 400 -75.0000 | 100.0000

Figure (1): The spherical manipulator with fre
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Figure (2): Singularity surfaces
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Figure (4): Calculations of q;
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20 - axis Manipulator side

A project of (d)y view (yo = 0)
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|
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Figure (6): Calculations of g4
Manipulator
Zo; axis side view (yo = 2, axis
_____ 0) -
________ . SR, ) Y
><0>- axis Z4 >0F axis

Here, the manipulate has this shape
due to (gs)¢ and if (gy)y is calculated
using eq. (23) than it gives a wrong
value which must be corrected by
eq. (28)

by eg. (23)

Here, the manipulate has this shape
due to (g;)« which can be computed

Manipulator side

Zo L BXIS view (yo = 0)

z— () + dy)
Zx

(@) + di
> -
0~ axis

Zk (@) + di

________ . A

project of (d)¢

Figure (5): Calculations of g3

Figure (7): Recalculations of q; & 3
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(Aqa)k) 2 - axis
| <
. >
1\

Manipulator side
view (yo = 0)

A
4 Xo = axis
After all values of (qs)x are computed by eq.
(25), corresponding values must be
recomputed by eq. (29) if (Ga)c < (Ga)1 &
Agz<0.
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New Qinitiat D

Ginitial X12

Xo1

Case (1)
All the path lies
outside the workspace

D

initial

NEW initial

D, = distance between [Qiniar] & [goa] (POINts A & B).

D; = distance between the origin of frame 2 [inia] and
the new one (points O, A, and D).

D, = distance between the origin and [qgea] (point O and B).

D = distance between the tangent point of the semicircular and

[Ggoa] (points B and C).

D.; = distance between the tangent point and the new [Qintar] (POINtS
C and D).

o1 = angle in ABCO.

ap = angle in AABO.

Zero reference point g2=0, g3 = 180",

g4 = 400

R=D
Y12 B
D, Cgoal
[goal
T\{E‘YV initial D > )\ % Dy
G e L
A D I3) X1,2
Ginitial & Yo
Xo.1
Case (2)

A part of the path lies
out the workspace, also
shown in cases 3 & 4.

D New Ginital

Ginitial R=D;
D, =D; + Dy
Q=0
0. X12
dy ygT Deg
I Dg ;0,1
Case (4) <
qgoal B

0: = 10° g, = 400,
gz = 75°, 4 = 400

92=0, g3 =-75",
g4 =400

Figure (9): The model of the spherical manipulator in different configurations
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Read, n, [q];, [al
7
dy =30,d,=30

lest=10 (G~ — tan™ | (@) + di) — @) / (@) | |7

[Ag]« [qlg- [al;

Manipulator Forward
Kinematics

. bl

[ @ — @)@ -a
|
|
|
|

| @ | @ ((qz» +d) + (@] | - de

17

m _____ | (@) tan™ | (@)~ (@ + ) / (@)
A

s—k-1

t—s/ng

12

Line Parametric Equation

X —Dxi] + ([xa] = [xi] +1)

&+ A -&-

\I; Is ;I,
n (O & (Y)k n
| (@ — n— tan? | )/ | | | (@ — 7+ tan | ()] 00k |
&- +& Yes
| @2 wlonronl || @ lowmd |
Y i i Y

(Go)k = (Gai) + ey

(@) sart(©)’ + ()%

[ @@ @@ oo |

(@) — m— tan | (@) — ((G2) + dp)) / (o) |

{(a3) <n2 & AQ3 >0 & (2)j<di}or
{(@s) < -75} or {2 + & — (@ — dy)* <

d — sqrt ([x] - [xl).

Ay« dg + Qyq -

dej— sqrt (d% — d%), Aege— sqrt (d29 —d?,).
k7 End

0y «— sin” (d4

).
az  cos((d 2 + d2 — d?)  (2:dedly).
v

ADg? — {d 2+ (0 + dog)? — 20(di + dog) -c0s(ay + )}
ADg? — {d 2+ (dgi + Aog)? — 2:0x(ds + Uog) ~cOS(0g — @)} \ 4

v

Qap — cos {(2+d; - ADg?) / 2.d;).
Qas — cos{(2-d; — AD?) / 2.d).

* Q3i < Gais Q3i < Gais
sig < Gai + (| Ad ’ / Ad3)« Gss,
Gais < Gai + (| Ads [/ Adg)« Gs. | Imn— 1 | | liest <= 0 |

é(_l

Figure (10): The method overall flow
chart
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