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Abstract 

Voltage stability is indeed a dynamic problem. Dynamic analysis is important for  

better understanding of voltage instability process. In this work an analysis for voltage 

stability from bifurcation and voltage collapse point of view based on a center 

manifold voltage collapse model. A static and dynamic load models were used to 

explain voltage collapse. The basic equations of  simple power system and load are 

used to demonstrate voltage collapse dynamics and bifurcation theory. These 

equations are also developed in a manner, which is suitable for the Matlab-Simulink 

application. Detection of voltage collapse before it reaches the critical collapse point 

was obtained in simulation results.     
Keywords: Power System Stability, Voltage Stability, Voltage Collapse, Bifurcation, 

Reactive Power Compensation and Matlab-Simulink.  

 

 أنظمة القدرة الكهربائيةفي نهيار الفولتية الكشف المباشر ل 
 خلاصةال

استتتتتتت الاللت ا هي  لتتتتتتتت أتتتتتتتم كي  لذلتتتتتتتي  ستتتتتتتل ت يل ي لذلتتتتتتتت  تتتتتتت ا  ي    لتتتتتتت  ا تتتتتتتيل ي لذم   تتتتتتت   تتتتتتتيا   ه تتتتتتت  ان  
 تتتتتتت     لتتتتتتت  استتتتتتت الاللت ا هي  لتتتتتتتت كتتتتتتتي  لذل  ع تتتتتتت   ا تتتتتتتت ا  لتتتتتتتيل ا هي  لتتتتتتتت  0ع  لتتتتتتتيس عتتتتتتتي  استتتتتتت الاللت ا هي  لتتتتتتتت

يذتتتتتتت  و ع تتتتتتت   تتتتتتتيو ضي ستتتتتتتك  أتتتتتتت ا اا  لتتتتتتتيل يي تتتتتتت  ذتتتتتتت  و  تتتتتتتل لل استتتتتتت  يا  ا   تتتتتتتي  ا  يك تتتتتتتت  يا  شتتتتتتت ل 
يا    لذتتتتتت يا     تتتتت  كي   لذتتتتتيس ا   لتتتتتتن ا   تتتتتيياس ا سيستتتتتلت    تتتتتي     تتتتتي  ا اتتتتتيل  يا   تتتتتي   ا  ستتتتت  ي ت 
   ي تتتتتت  ضي شتتتتتتلو ا  لتتتتتتيل ا هي  لتتتتتتت يا  شتتتتتت ل ن   تتتتتتس   ي    تتتتتتي ك للاتتتتتتت ك لتتتتتت   ذتتتتتتين   يستتتتتتكت  تتتتتتم    تتتتتتل س

 ا ك  ن    ا  صي  ع ل ي  م   يئج أ ا ن ذشف ا  ليل ا هي  لت قك   يي  ي Mat labكل ي ج 
الكممااااااا الدالاااااةة اناااااتقرارية أنظماااااة القااااادرةي اناااااتقرارية الفولتياااااةي انهياااااار الفولتياااااةي التشااااا ي ي ت اااااوي  

  القدرة المتفاعمة. 
 

List of symbols 

C       compensated load capacitor in p.u. 

dm    damping coefficient.  

Eo  infinity bus or slack bus voltage   

(p.u.). 

Em Amplitude of generator internal 

voltage (p.u.). 

Kpw, Kpv,Kqw,Kqv and Kqv2   Constant 

parameters for the real and reactive 

load power.   

M     Generator moment of inertia in p.u. 

Pm    Mechanical power in p.u. 

P&Q Real and reactive power load 

demand respectively.  

V  Amplitude terminal load voltage (p.u.).  

  Speed and equal to . 

Yo  Amplitude of equivalent impedance 

for the transformer and transmission 

line in p.u. 
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Ym  Amplitude of equivalent impedance 

for the generator, transformer and 

transmission line in p.u. 

   Internal terminal load voltage angle in 

degree. 

m  Internal generator voltage angle in  

degree. 

Introduction 

The continuing interconnections of 

bulk power systems, brought about by 

economic and environmental pressures, 

have led to an increasingly complex 

system that must operate ever closer to 

limits of stability. This operating 

environment has contributed to the 

growing importance of the problems 

associated with the dynamic stability 

assessment of power systems. To a large 

extent, this is also due to the fact that 

most of the major power system 

breakdowns are caused by problems 

relating to the system dynamic 

responses. It is believed that new types 

of instability emerge as the system 

approaches the limits of stability. 

One type of system instability, which 

occurs when the system is heavily 

loaded, is voltage collapse. This event is 

characterized by a slow variation in the 

system operating point, due to increase 

in loads, in such a way that voltage 

magnitudes gradually decrease until a 

sharp, accelerated change occurs.  

Voltage collapse in electric power 

systems has recently received significant 

attention in the literature (see, e.g., 

reference no. 1 for a synopsis), this has 

been attributed to increases in demand 

which result in operation of an electric 

power system near its stability limits. A 

number of physical mechanisms have 

been identified as possibly leading to 

voltage collapse.  From a mathematical 

perspective, voltage collapse has been 

viewed as arising from a bifurcation of 

the power system governing equations 

as a parameter is varied through some 

critical value. In several papers 
[9-15]

,  
voltage collapse is viewed as an 

instability that coincides with the 

disappearance of the steady state 

operating point as a system parameter, 

such as a reactive power demand is 

quasistatically varied.  In the language 

of bifurcation theory, these papers link 

voltage collapse to a fold or saddle node 

bifurcation of the nominal equilibrium 

point. 

Dobson and Chiang 1989 presented a 

mechanism for voltage collapse, which 

postulates that this phenomenon occurs 

at a saddle node bifurcation of 

equilibrium points.  They employed the 

Center Manifold Theorem to understand 

the ensuing dynamics, in the same 

paper, they introduced a simplex 

example power system containing a 

generator, an infinite bus and a nonlinear 

load (as shown in Figure (1)). The 

saddle node bifurcation mechanism for 

voltage collapse postulated by Dobson 

1989 was investigated for this example 

of Abed et. al 1992  and Wang et.al 

1992 

All essential distinction exists between 

the mathematical formulation of voltage 

collapse problems and transient stability 

problems.  In studying transient stability 
[5,6]

, one often interested in whether or 

not a given power system can maintain 

synchronism (stability) after being 

subjected to a physical disturbance of 

moderate or large proportions.  The 

faulted power system in such a case has 

been perturbed in a severe way from 

steady state, and one studies the 

possibility of the post-fault system 

returning to steady state (regaining 

synchronism). In the voltage collapse 

scenario, however, the disturbance may 

be viewed as a slow change in a system 

parameter, such as a power demand. 

Thus, the disturbance does not 

necessarily perturb the system away 

from steady state. The steady state varies 
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continuously with the changing system 

parameter until it disappears at a saddle 

node bifurcation point. It is therefore not 

surprising that saddle node bifurcation is 

being studied as a possible route to 

voltage collapse 
[7]

.  

 In this paper, a suitable model is set 

up to analyze the power system in 
[2,4]

. 

This model is then used with the some 

cases such as change in load and in the 

reactive load power as well as using 

constant and dynamic load, as induction 

motor.  

The basic equations of the power 

system and load are also developed in a 

manner, which is suitable for the 

Matlab-Simulink application 
[8]

 and not 

depended on ready programs (compact 

program package) such as Auto 
[16]

. The 

computer results show that voltage 

collapse may be studied before 

bifurcation with a static model and after 

bifurcation with a dynamic model so the 

goal of this work is to show the richness 

of the qualitative behaviors, which may 

occur near voltage collapse, and to 

illustrate their effect on system 

trajectories. 

 

Saddle-Node Bifurcations & Voltage 

Collapse 

A saddle-node bifurcation is the 

disappearance of system equilibrium as 

parameters change slowly. The saddle-

node bifurcation of mot interest to 

power system engineers occurs when a 

stable equilibrium at which the power 

system operates disappears
 [1]

. The 

consequence of this loss of the operating 

equilibrium is that the system state 

changes dynamically. In particular, the 

dynamics can be such that the system 

voltages fall in a voltage collapse. Since 

a saddle-node bifurcation can cause a 

voltage collapse therefore, it is useful to 

study saddle-node bifurcations of power 

system models in order to avoid these 

collapses, such as using PID controller 

to control saddle-node bifurcations 
[17]

. 

 

Reactive Power and Voltage Collapse 

Voltage collapse typically occurs in 

power systems that are heavily loaded, 

faulted and/or has reactive power 

shortages.  Voltage collapse is system 

instability that it involves many power 

system components and their variables 

at once. Indeed, voltage collapse often 

involves an entire power system, 

although it usually has a relatively larger 

involvement in one particular area of the 

power system 
[1]

.  

Although many other variables are 

typically involved, some physical insight 

into the nature of voltage collapse may 

be gained by examining the production, 

transmission, and consumption of 

reactive power. Voltage collapse is 

associated with the reactive power 

demands of loads not being met because 

of limitations in the production and 

transmission of reactive power. 

Limitations are the production of 

reactive power include generator and 

SVC reactive power limits and the 

reduced reactive power produced by 

capacitors at low voltages. The primary 

limitations on the transmission of 

reactive power are the high reactive 

power loss on heavily loaded lines and 

line outages.  Reactive power demands 

of loads increases with the increasing of 

load, motor stalling, or changes in load 

composition such as an increased 

proportion of compressor load. 

  

The Model 

This section summarizes an example 

from Dobson and Wang
[2,4]

 to illustrate 

how voltage collapse model applies to 

the power system model shown in 

Figure (1). One generator is a slack bus 

and the other generator has constant 

voltage magnitude E, and angle 

dynamics given by the swing equation: 
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   …..(1) 

where M, dm, and Pm, are the generator 

moment of inertia, damping coefficient, 

and mechanical power respectively. 

The load model includes a dynamic 

induction motor based on a model of 

Walve 1986 with a constant PQ load in 

parallel. The induction motor model 

specifies the real and reactive power 

demands P and Q of the motor in terms 

of load voltage V and frequency  . The 

combined model for the motor and the 

PQ load 
[2]

 is: 

)(1 VTVKKPPoP pVpw
  

                                                       …..(2) 
2

21 VKVKKQQoQ qVqVqw  

                 …..(3) 

where Po, Qo are the constant real and 

reactive powers of the motor and P1, Q1 

represent the PQ load. 

From eq.(3): 

Kqw

QQoQVKqvVKqv 12 2 
                                                    

       …..(4) 

Substitute Eq.(4) in Eq.(2) we get: 

KpvKqwT

PPPoKqwQQQoKpw
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VKpvKqwKqvKpwVKqvKpw
V
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           …..(5) 

thus,  

 

mm                                         …..(6) 

From Eq.(1)&(6) we get: 

M

Pmmdm
m





   

M

mYmEmmmYmVEm )sin()sin( 2  

           …..(7) 

 In Eq.(3) Q1 is chosen as the system 

parameter so that increasing Q1 

corresponds to increasing the load 

reactive power demand. The load also 

includes a capacitor C as part of its 

constant impedance representation in 

order to maintain the voltage magnitude 

at a normal and reasonable value. It is 

convenient to derive the Thevenin 

equivalent circuit with the capacitor. 

The adjusted values are: 
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The real and reactive powers supplied to 

the load by the network are: 

)sin(

)'sin(''),(

mmYmVEm

oVYoEoVP
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                                                   …..(12) 

In order to compute bifurcation 

value Q1 and the associated bifurcation 

equilibrium point, the following 

approximate formulas
[15]

 are used as 

shown in appendix (A) equation (A3). 

The bifurcation value is:   

 

  0'2

''1

2 



VYmYoKqv

VYmEmYoEoKqvQQo
   

                                                     …..(13) 

and the voltage magnitude at the 

bifurcation equilibrium point is: 

 
 

Qo
YmYoKqv

YmEmYoEoKqv
Q 






'24

''
2

*

1

                                               

    

                                                     …..(14) 

Formulas (13) and (14) are derived from 

the approximate static model given in 

Dobson 1988: 
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 YmYoKqv

YmEmYoEoKqv
V






'24

''*
 …..(15)                                             …..(4.15) 

The last three equations show the 

relationship between the bifurcation 

point and certain load, transmission 

network and generator parameters.  

 

Bifurcations 

Consider the modified power system 

model described by Dobson 1989 which 

is given by Eqs. (1), (2)&(3) in the 

general form: 

),( xFx   …..(16) 

where x is the state vector and  is a 

time-varying parameter vector. 

Specifically, in the power system model 

described in section (4), x = (V) and 

 denotes the parameter vector that 

includes real and reactive power 

demands at each load bus. The 

parameters in Eq. (16) are subject to 

variation and, as a result, changes may 

occur in the qualitative structure of the 

solutions of the static equation 

associated with Eq. (16), i.e., solutions 

of F(x,=0 for certain values of . For 

example, a change in the number of 

solutions for x may occur as the 

parameters vary. As a result, the 

dynamic behavior of Eq. (16) may be 

altered.  

Bifurcation theory
[1]

 is concerned 

with branching of the static solutions of 

Eq.(16) and, in particular, it is interested 

in how solutions x() branch as  varies. 

These changes, when they occur, are 

called Bifurcations and the parameter 

values at which a bifurcation happens 

are called bifurcation values.  

It is important in our following 

analysis of voltage collapse to 

distinguish two different periods: the 

period before bifurcation and the period 

after bifurcation.  Power systems are 

normally operated near a stable 

equilibrium point.  As system 

parameters change slowly, the stable 

equilibrium point changes position but 

remains a stable equilibrium point.  This 

situation may be modeled with the static 

model F(x,)=0 by regarding F(x,)=0 

as specifying the position of the stable 

equilibrium point x as a function of .  

(Here it would be more precise to call 

F(x,)=0 a quasistatic model since  

varies and causes corresponding 

variations  in (x).  This model may also 

be called parametric load flow model. 

Exceptionally, variation in  will cause 

the stable equilibrium point to bifurcate. 

The stable equilibrium point of Eq. (16) 

may then disappear or become unstable 

depending on the way in which the 

parameter is varied and the specific 

structure of the system.  

After the bifurcation, the system 

state will evolve according to the 

dynamics of Eq.(16). (Some types of 

bifurcation result in the persistence of 

the stable equilibrium point even after 

the bifurcation and the static model 

apply just as before the bifurcation.  

However, we do not expect this sort of 

bifurcation to be typical in power 

systems.) To summarize, analysis of a 

typical bifurcation of a stable 

equilibrium point in a power system 

with slowly moving parameters has two 

parts: 

1.Before the bifurcation when the 

(quasi) static model applies. 

2.After the bifurcation when the 

dynamical model (16) applies. 

The current research on voltage 

collapse uses the static model and only 

considers the system before the 

bifurcation.   

 

Simulation Procedure 

In this work, the voltage stability 

procedure used to perform the 

simulation by the proposed model would 

be presented by a simple block diagram 

as shown in Figure (2). The simulation 

has been made with the use of the step-
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by-step solution with using ode15s, 

ordinary differential equations which are 

used to solve stiff problem with good 

accuracy. The used program is Mat lab 

7.4
[8]

 to which fast and accurate results 

could be obtained. The differential 

equations from Eqs.(1) to (7) are 

arrangement in such away by using the 

following figure to the results.  

 

Results and Discussion 

       A model of the sample system 

shown in Figure (1) and foregoing 

equations are used to illustrate the 

process of voltage collapse. For the 

bifurcations analysis. Figure (3) shows 

the bifurcation diagram, which relates 

between voltage magnitude V and 

reactive power demand Q1. This figure 

investigates a generic mechanism 

leading to disappearance of stable 

equilibrium points and the consequent 

system dynamics for one-parameter 

dynamical systems. To simplify the 

discussion, note first that in Figure (3) 

which shows the relation between six 

bifurcation’s depicted. For Q1<10.95, a 

stable equilibrium point exists. (Upper 

left in Figure (3)). As Q1 is increased, 

an unstable (“sub-critical”) Hopf 

bifurcation is encountered at point 

Q1=10.95. As Q1 is increased further 

the stationary point regains stability at 

Q1=Q1*=11.42 through a stable 

(“supercritical”) Hopf bifurcation. 

Figure (4) shows an example of a 

typical voltage collapse, for the fourth 

order models, phenomenon after a 

saddle node bifurcation. The initial 

conditions used to generate the 

simulations are: 

9.0,14.0,001.0,35.0  Vandm  . 

Note the oscillatory nature of 

solution due to varying in Q1, where 

Q1=11.25+0.005t. The previous 

example, Figure (4), demonstrated the 

center manifold model for the dynamics 

of voltage collapse after a saddle node 

bifurcation. Now we simulate the 

behavior of the example both before and 

after the bifurcation to illustrate the 

entire process (we use the same set 

parameters as that in the above except 

Ym and capacitance C changes with 

bifurcation value Q1*, Q1*=Q1 at 

saddle node). The system can supply 

sufficient reactive power to the load 

while Q1<Q1*. After the bifurcation, 

the behavior is similar to that predicted 

by the dynamical center manifold 

model. 

Figure (5) shown the relationship 

between the transmission line parameter 

and the bifurcation value (Q1*). This 

figure indicates that a larger 

transmission capacity ensures a larger 

bifurcation value.  

One good and efficient way to 

increase the capacity of the power 

system is to using reactive power 

compensation such as using capacitors at 

load bus as shown in Figure (1). The 

relationship between the bifurcation 

value of the system, which described in 

equations (1- 15) and the amount of 

capacity installed at load bus is shown in 

Figure (6), which shows also the effects 

on load voltage (V). 

The previous figure, Figure (3), 

shows what happens as the reactive 

power demand Q1 increases. For 

Q1<10.95 only a point stable (ps) and a 

point unstable (pu) equilibrium exit. 

Voltage collapse happens when a 

perturbation kicks the system out of the 

basin of attraction. Figure (7) shows the 

relationship between m, ,and V where 

at the moment of bifurcation W
u
(pu), 

unstable manifold, no longer goes to ps 

but accumulates on u instead. 

Therefore W
u
(pu) is contained in 

W
s
(u), stable manifold, the basin of 

attraction of ps can no longer have the 

trumpet shape. For larger Q1-values 

W
u
(pu) lies outside W

s
(u) and is no 

longer part of the basin of attraction of 
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ps. Figure (8) shows the relationship 

between m and when the system 

goes toward voltage collapse. 

Figure (9) shows the stable 

manifold periodic orbit with long 

simulation time equal to 180 sec. In this 

case, small disturbances cannot push the 

system out of the basin of attraction, i.e. 

the system always operates near ps.  
     

Conclusions 

1-Several voltage collapses are of slowly 

decreasing voltage nature followed by 

an accelerating collapse in voltage. In 

this paper, we clarify the static and 

dynamic models used to explain this 

type of voltage collapse where the static 

model is used before a saddle-node 

bifurcation and the dynamic model is 

employed after the bifurcation. 

2-Bifurcations have been studied for a 

power system dynamic model, which 

has previously been used to illustrate 

voltage collapse. It was found that for 

this model, the nominal operating point 

undergoes dynamic bifurcations prior to 

the static bifurcation to which voltage 

collapse has been attributed. These 

dynamic bifurcations result in a reduced 

stability margin in parameter space. 

Moreover, a short oscillatory voltage 

transient typically occurs prior to 

voltage collapse for this model. In 

addition, it was found that the model 

admits large amplitude bifurcations 

including cyclic fold and period 

doubling bifurcations; the latter leading 

to period doubling cascades and the 

resulting chaotic behavior. The relative 

importance of these effects in general 

power systems under stressed conditions 

is a topic for further research. 

3-Most of the previous analysis of 

voltage collapse has considered only the 

period before bifurcation. In this paper 

we show by an example that voltage 

collapse can be prospective before it 

happens and can be treated by reactive 

power control (Q) or by load shedding 

(P).  

Appendix (A): (Computation of 

bifurcation value Q1) 

A saddle node bifurcation was 

found by solving equations 4, 5 and 7 

with left hand side equal to zero as 

shown in Figure (3). Therefore, from 

equation (4) the following equations can 

be obtained : 

 

012 2  QQoQVKqvVKqv ..(A1) 

All angles at this point (saddle node) 

near to zero so equation (11) modified to 

  

 )'('' 2 YmYoVVYmEmVYoEoQ  ..(A2) 

Substituted eq. (A2) in eq. (A1) we get: 

 

 

  0'2

''1

2 



VYmYoKqv

VYmVmYoEoKqvQQo
...(A3) 

 The voltage magnitude at the 

bifurcation equilibrium point is shown in 

the following equations, which driven 

from the approximate static model given 

in Dobson
[15]

 and the above formulas, : 

 
 

Qo
YmYoKqv

YmEmYoEoKqv
Q 






'24

''
2

*

1
 ..(A4) 

 
 YmYoKqv

YmEmYoEoKqv
V






'24

''*
 ..(A5)                                                            …..(A5) 

Appendix (B)  

The sample power system 

parameter values used in the simulation 

are
[2]

: 

,4.0Kpw ,3.0Kpv ,03.0Kqw

,8.2Kqv ,1.22 Kqv

3.1,6.0,5.8  QoPoT  

0.5

,5.2',0.12',0.8',0.12

,0.1,0.5,0.20,0.01







Ym

EooYoC

EooYoP





 

05.0

,3.0,0.1,0.1,0.5





D

MPmEmm
  

All parameter values are in per unit 

except for angles, which are in degrees. 

 

35 



Tikrit Journal of Eng. Sciences / Vol.18 / No.1 / March 2011, (29-44) 
 

 

  

Reference 
1-IEEE/PES Power System Stability 

Subcommittee Special Publication, 

“Voltage Stability Assessment, 

Procedures and Guides”, Final 

Version, December 2000.   

2-I.Dobson and H.-D. Chiang, “Towards 

a theory of voltage collapse in electric 

power systems”, Systems and Control 

Letters, Vol. 13, 1989, pp. 253-262. 

3-E. H. Abed, J.C. Alexander, H. Wang, 

A.M.A. Hamdan, and H.C. Lee, 

“Dynamic bifurcations in a power 

system model exhibiting voltage 

collapse,” Technical Research Report, 

University of Maryland, pp. 1-15, 

TR92-26, 25-Feb, 1992. 

4-H. O. Wang, E. H. Abed, and A.M.A. 

Hamdan, “Bifurcations, Chaos and 

Crises in power system Voltage 

Collapse,” Technical Research Report, 

University of Maryland, pp. 1-23, 

TR92-72, 25-Feb, 1992 

5-Peter W. Sauer and M. A. Pai, “ Power 

System Dynamics and Stability” , 

Prentice Hall Inc. 1998. 

6-B. M. Weedy, Electric Power Systems. 

Great Britain: Wiley, 1972. 

7-E. H. Abed, et al., “On bifurcations in 

power system models and voltage 

collapse,” in Proc. 29th Conf. Decision 

and Control, pp. 3014-3015, 1990. 

8-Matlab Works Inc. “ Simulink 

(Dynamic System Simulation for 

MATLAB)”, version 7.4, 2007. 

9-M. M. Begovic and A. G. Phadke, 

“Analysis of voltage collapse by 

simulation,” Znt. Symp. Circuits and 

Systems, May 1989. 

10-K. T. Vu and C. C. Liu, “Dynamic 

mechanisms of voltage collapse”, 

Systems and Control Letters, vol. 15, 

pp. 329-338, 1990. 

11-T. Van Cutsem, “A method to 

compute reactive power margins with 

respect to voltage collapse,” LYEE 

Trans. Power Systems, vol. voltage 

collapse,” LYEE Trans. Power 

Systems, vol. 6, pp. 145-156, Feb. 

1991. 

12-H.-D. Chiang, C.-W. Liu, P.P- 

Varaiya, F.F. Wu and M.G. Lauby, 

"Chaos in a simple power system", 

Paper No.92 WM 151-1 PWRS, IEEE 

Winter Power Meeting, 1992. 

13-K. Walve, “ Modeling of Power 

System Components at Severe 

Disturbance”, CIGRE paper 38-18, 

International Conference on Large 

High Voltage Electrical Systems, 

1986.   

14-K.T. Vu and C.C. Liu "Dynamic 

mechanisms of voltage collapse," 

Systems and Control letters, Vol. 15, 

1990, pp. 329-338. 

15-I. Dobson and H.-D. Chiang, “A 

model of voltage collapse in electric  

power systems”, IEEE Proceedings of 

27
th

 Conference on Control and 

Decision, Dec.1988, Austin, Tx, pp. 

2104-2109. 

16-EJ. Doedel, “AUTO: A program for 

the automatic bifurcation analysis of 

autonomous systems”, Cong. Num.,  

   Vol.30, pp. 265-284, 1981. 

17-D. Rosas, C Amaro and Alvarez, 

“Control of A Saddle Node 

Bifurcation in Power System using A 

PID Control”, Journal of Applied 

Research and Technology, Vol.1, 

No.1, April 2003, pp.94-102. 

 

 

 

36 



Tikrit Journal of Eng. Sciences / Vol.18 / No.1 / March 2011, (29-44) 
 

 

 

 
 

 

 
 
 
 
 
 

Figure (2) Simulink model for the sample system 
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Figure (1) Power System Model. 
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Figure (3) Bifurcation diagram 
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(b) 

(a) 

(c) 

Figure (4) Voltage magnitude, angles (m,  ), and varying Q1 with 

the time at load bus when bifurcation occurs.   
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Figure (5) Relationship between the transmission line parameter and: 

(One) Voltage magnitude at bifurcation point.   

(Two) The bifurcation value (Q1*) and Voltage magnitude at bifurcation point.   

 

(b) 

(a) 
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Figure (6) Relationship between the installed capacity at the load bus and: 

(a) The bifurcation value (Q1*).  

(b) The bifurcation value (Q1*) and Voltage magnitude at bifurcation point.  
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(a) 

(b)  
Figure (7) Relationship between m & , where: 

(a) Unstable chaotic orbit for Q1=11.25+ 0.005t, simulation time=32.919sec.  

     (b)A stable periodic orbit for Q1=11.25+ 0.005t, simulation time=2.65sec. 

          Where Ps & Pu are points of stable and unstable respectively. 
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Figure (8) Relationship between m &  with simulation time=30sec, where: 

(a) Unstable chaotic orbit for Q1=11.25+ 0.005658t.  

     (b)A stable periodic orbit for Q1>11.42. 

(a) 

Q1*=11.42 

(b) 
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(c) 

Figure (9) The stable manifold periodic orbit with long simulation 

time=180sec, where: 

(a) Relationship between m,  &V .  

(b) Relationship between V & Time. 

(c) Relationship between m,  & Time. 

(a) 

(b) 
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