SCHEDULING IDENTICAL JOBS WITH UNEQUAL READY TIMES ON UNIFORM PARALLEL MACHINES TO MINIMIZE THE MAXIMUM EARLINESS

\author{

1. د.حنان علي جيجان
 قسم الرياضبات كلية الحلّوم الجامعة المستتصرية
 (hanan altaai@yahoo.com
 2. حسام عبد علي محمد
 قسم الرياضيات كلية التربية جامعة كربلاء
 hussammath@yahoo.com
}

Abstract

المستخلص في هذا البحث درست مسـألة جدولـة المكائن المتوازيــة الموحدة,اخذ بنظر الاعتبـار مســـلة جدولـة n مـن الإعمال غير المتكافئة والمتطابقة على m من المكائن المتوازيـة الموحدة. الهـفـ هو إيجـاد الجدولـة المثلـى لتلـلك الإعمال لتصغير مسألة وقد استخدامنا طرق تقرييبـة بسيطة ذات (الممر المنفرد) والتـي تجهز بحلول قريبـة من الحل الأمثلـ. في حالـة مثلى وبعدد من الدورات النكرارية (1,000,000) أما المسائلّ ذات عدد مكائن اكبر فقد استخدمنا طريقة (الممر المنفرد) النقريبية و التي جهزت بحلول قريبة من الحل الأمثل.

Abstract

This paper consider of scheduling n identical jobs with unequal ready times on m parallel uniform machines to minimize the maximum earliness $Q\left|r_{j}, d_{j}, p_{i}=1\right| E_{\max }$. To solve this lower bound is derived and it is incorporated in a branch-and-bound algorithm, and introduces six simple single-pass heuristic procedures that approximate the optimal solution. On sample problems, the branch-and-bound procedure in most instances was able to find an optimal solution within $1,000,000$ iterations with $n \leq 60$ and $m \leq 3$. For larger values of m, the heuristics provided approximate solutions close to the optimal values.

1 INTRODUCTION

We consider the problem of scheduling n identical jobs with unequal ready times on m uniform parallel machines. In this paper, the term identical jobs means that all jobs have the same processing time on a given machine and the term uniform machines means that the processing time of a job on a particular machine is the ratio of the processing time of the job on a machine with a standard speed to the speed of the particular machine [1]. With identical jobs and uniform parallel machines, the processing time is only a function of the machine working on the job.

This configuration is applicable to capital intensive industries such as semiconductor manufacturing where it is common to find newer, more modern machines running side by side with older, less efficient machines which are kept in operation because of high replacement cost. In this case, the different machines could be processing identical products. This problem is also relevant in the garment industry where it is common to have seamstresses working at different speeds in parallel. Our objective will be to minimize the maximum earliness Each job has a distinct ready time r_{i} and due date d_{j} for $j=1, \ldots, n$. The processing time of a job on machine i is p_{i} for $i=1, \ldots, m$. The problem is to determine the job completion times $C_{j}, j=1, \ldots, n$, that minimizes the maximum earliness, $E_{\max }$, where $E_{j}=\max \left\{d_{j}-C_{j}, 0\right\}$ and $E_{\max }=\max _{j=1, \ldots, n}\left\{E_{j}\right\}$. We use the classification scheme as presented by Graham et al. [2] to formally state the problem as

Journal of Kerbala University , Vol. 8 No. 1 Scientific . 2010

$Q\left|r_{j}, d_{j}, p_{i}=1\right| E_{\max }$. The first field specifies the job and machine configuration as the n-job uniform parallel machine case. The second field states the job characteristics as the identical jobs case with unequal ready times and distinct due dates. The designation $p_{i}=1$ implies that all jobs take the same time to process on a given machine. The third field specifies the objective function as minimizing the maximum earliness.

The majority of the literature on parallel machine scheduling considers the case of non-identical jobs and identical machines. Recently, much research has been directed scheduling problems with unrelated parallel machines please refer to [11, 12, 3, 5, 9]. More recent research with non-identical jobs with equal ready times has focused on the non-identical machines case. For unrelated parallel machines, Martin et al. [4] we present a combinatorial approximation algorithm that matches this approximation quality and Omar [6] which presents a solution algorithm for the problem of minimizing the makespan on unrelated parallel machines with machine eligibility restrictions under fuzziness. For uniform parallel machines, Pinyan and Changyuan [7] develops a heuristic based on a transportation algorithm to also minimize the maximum tardiness. Simons [9] presents a recursive polynomial-time algorithm that guarantees optimality even when the ready times and due dates are not integer multiples of the processing time.

We present six approximate heuristic solution procedures for the problem. A theoretical as well as an experimental comparison of the heuristics is performed. We also present an efficient branch-and-bound procedure that makes use of the heuristics to optimally solve the problem. In Section (3) we compare the performance of the heuristics to the optimal solution procedure on sample problems. The evaluation criteria for the optimal solution procedure (branch-and-bound) are (1) the percentage of times an optimal solution is found given a prespecified time limit in the search and (2) if an optimal solution is found the length of time required to derive the solution. The evaluation criteria for the heuristic procedures are (1) the departure from optimality measured by the minimum maximum earliness given by the heuristic sequence minus the optimal maximum earliness and (2) the percentage of times that the heuristic found an optimal solution.

2 PROBLEM FORMULATION

We present an integer programming model formulation for problem $Q\left|r_{j}, d_{j}, p_{i}=1\right| E_{\max }$. Let $x_{i j k}=1$ if job j is the k th job in the sequence on machine i and zero otherwise. Define $C_{i k}$ as the completion time of the k th job in the sequence on machine $i, k=1, \ldots, n$ and $i=1, \ldots, m$.

$$
\text { Minimize } E_{\max }
$$

Subject to:

$$
\begin{array}{ll}
\sum_{i=1}^{m} \sum_{k=1}^{n} x_{i j k}=1 & j=1, \ldots, n \\
\sum_{j=1}^{n} x_{i j k} \leq 1 & i=1, \ldots, m ; k=1, \ldots, n \\
p_{i}+c_{i, k-1} \leq c_{i, k} & i=1, \ldots, m ; k=1, \ldots, n \\
p_{i}+\sum_{j=1}^{n} r_{j} x_{i j k} \leq c_{i, k} & i=1, \ldots, m ; k=1, \ldots, n \\
\sum_{i=1}^{m} \sum_{k=1}^{n} c_{i k} x_{i j k}=C_{j} & j=1, \ldots, n \\
E_{\max }-\max \left\{0, d_{j}-c_{j}\right\} \geq 0 & 1 \leq j \leq n \\
c_{j 0}=0 & j=1, \ldots, n \\
x_{i j k}=\{0,1\} & 1 \leq i \leq m ; 1 \leq j \leq n ; 1 \leq k \leq n \\
C_{j} \geq 0 & j=1, \ldots n
\end{array}
$$

Journal of Kerbala University, Vol. 8 No. 1 Scientific . 2010

Equation (1) ensures that each job is assigned to only one position in the sequence for some particular machine. Equation (2) guarantees that not more than one job is assigned to any position in the sequence for any machine. Equation (3) restricts the k th job in the sequence of machine i from starting until the $(k-1)$ th job in the sequence finishes processing and Equation (4) prevents a job from processing before its ready time. Equation (5) limits the completion time for each job and Equation (6) defines the maximum earliness, $E_{\max }$.

3 HEURISTIC PROCEDURES

We consider six heuristic procedures to find approximate solutions to problem $Q\left|r_{j}, d_{j}, p_{i}=1\right| E_{\max }$. Some of these heuristics provide an optimal solution to special cases of the problem. In all heuristic procedures considered, a job is scheduled on a machine when either a job becomes ready for processing while a machine is free or the machine becomes available after completing another job while the job to be scheduled is waiting. Note that a job can be released at the same time a machine becomes available. In this case, there will be no job waiting time or idle machine time. The heuristics differ in their selection of job and machine. The six procedures presented here fall into three categories, depending on the choice of the machine for a given job to schedule next. The first category selects the fastest available machine (FAM) and the next category selects the machine that gives the earliest completion time (ECT). These two categories proceed in a forward manner. The third category proceeds backward from an arbitrary distant point in time and selects the machine that gives the latest slack time (LSPT). Within each machine category, two rules for choosing the job are considered. The first depends on the original given job parameters and the second depends on an updated version of these parameters. In the forward procedures the parameter in question is the ready times and in the backward procedure it is the due date. In a forward procedure the selected job is added at the end of the sequence on the machine selected. In a backward procedure, it is added at the beginning. We next present the heuristics.

3.1 Fastest available machine procedures

The first heuristic procedure selects the job to be scheduled next based on the ready times and schedules the selected job on the fastest available machine. This heuristic is referred to as procedure fastest available machine ready time (FAMR). That is, the job to be scheduled next is the job that has been waiting the longest among the unscheduled jobs and ties are broken by selecting the job with the minimum due date or minimum slack time. The job is scheduled on the fastest available (idle) machine. If no machine is currently idle, wait for the first available machine. We now formally present heuristic FAMR. Let N be the set of all jobs and G_{i} the set of jobs that have been assigned to machine $i, i=1, \ldots, m$, ordered based on the sequence of processing. The heuristic is a forward procedure that adds one job at a time to the end of set G_{i}.

3.1.1 Procedure fastest available machine ready time (FAMR)

1. Order jobs in set N in non-decreasing order of ready times r_{j}. Break ties by selecting the job with the minimum due date d_{j} or minimum slack time $\left(d_{j}-p_{i}\right)$.
2. Let job j be the first job in set n. Let $s_{i j}$ be the earliest start time of job j on machine i, i.e. $s_{i j}=\max \left(r_{i}, a_{i}\right)$ for $i, i=1, \ldots, m$ where a_{i} is the completion time of the last job scheduled on machine i. Let g be the machine that minimizes $s_{i j}, i=1, \ldots, m$. Break ties by selecting the machine with the smallest processing time (fastest). Add job j to the end of the sequence in set G_{g} and let $C_{j}=s_{g j}+p_{g}$ and $a_{g}=C_{g}$. Remove job j from set N.
3. If N is an empty set, stop; otherwise, go to step (2).

Journal of Kerbala University, Vol. 8 No. 1 Scientific . 2010

3.1.2 Procedure fastest available machine slack time (FAMS)

For due date performance measures, an obvious improvement to heuristic FAMR is to rank the jobs based on their earliest start times instead of simply on their ready times. In this manner, if two or more jobs are ready for processing when a machine becomes idle, the job with the minimum due date is selected instead of the job that has been waiting the longest (i.e. the job with the minimum ready time). The new heuristic referred to as FAMS may be formally stated as follows.

1. Set $s_{i j}=r_{j}$ for $i=1, \ldots, m$ and $j=1, \ldots, n$.
2. Let h and g be the job and machine, respectively, that minimize $s_{i j}, i=1, \ldots, m$ and $j \in N$.

Break ties in j by selecting the job with the minimum due date or slack time and break ties in i by selecting the machine with the smallest processing time. Add job h to the end of the sequence in set G_{g} and let $C_{h}=s_{g h}+p_{g}$. Remove job h from set N. Update $s_{g l}=\max \left(r_{i}, C_{h}\right)$ for all $l \in N$.
3. If N is an empty set, stop; otherwise, go to step (2).

3.2 Earliest completion time procedures

The above two heuristics are myopic in the sense that an unscheduled job is scheduled on the fastest machine currently idle. It might be better for the job to wait for a faster machine that is currently busy but will be available in the near term. We now present two forward sequencing procedures that look ahead in time. The heuristic procedures make use of the earliest completion time (ECT) rule to select the machine for processing and are referred to as procedures earliest completion time ready time (ECTR) and earliest completion time slack time (ECTS), respectively. If more than one machine can complete a job at the same time, the machine with the longest processing time is selected so that the faster processing machines can be saved for later jobs. As before, in procedure ECTR the job is selected based on the ready times and in procedure ECTS the job is selected based on the earliest start times, and ties in both procedures are broken by selecting the job with the smallest due date. The heuristics can be formally presented as follows.

3.2.1 Procedure earliest completion time ready time (ECTR)

1. Order jobs in set N in non-decreasing order of ready times r_{j}. Break ties by selecting the job with the minimum due date d_{j} or slack times $s_{i j}$.
2. Let job j be the first job in set N. Let $t_{i j}$ be the completion time of job j if scheduled on machine i, i.e. $t_{i j}=\max \left(r_{i}, a_{i}\right)+p_{i}$ for $i, i=1, \ldots, m$ where a_{i} is completion time of the last job in the sequence in set G_{i}. Let g be the machine that minimizes $t_{i j}, i=1, \ldots, m, j=1, \ldots, n$. Break ties by selecting the machine with the longest processing time (the slowest machine). Add job j to the end of the sequence in set G_{g} and let $C_{j}=t_{g j}$ and $a_{g}=C_{j}$. Remove job j from set N.
3. If N is an empty set, stop; otherwise, go to step (2).

3.2.2 Procedure earliest completion time slack time (ECTS)

1. Set $s_{i j}=r_{j}$ for $i=1, \ldots, m$ and $j=1, \ldots, n$.
2. Let job j_{i} be the job with the minimum $s_{i j}$ on machine i for $j \in N$ and $i=1, \ldots, m$. Among ties in $s_{i j}$, select the job with the minimum due date. Let t_{i}, j_{i} be the completion time of job j_{i} if scheduled on machine i, i.e. $t_{i_{j}}=\max \left(r_{j_{i}}, a_{i}\right)+p_{i}$ for $i=1, \ldots, m$ where a_{i} is the completion time of the last job in the sequence in set G_{i}. Let g be the machine that minimizes t_{i}, j_{i}, $i=1, \ldots, m$. Break ties by selecting the slowest machine. Let h be job j_{g}. Add job h to the end

Journal of Kerbala University, Vol. 8 No. 1 Scientific . 2010

of the sequence in set G_{g} and let $C_{h}=t_{g h}$ and $a_{g}=C_{h}$. Remove job h from set N. Update $s_{g l}=\max \left(r_{l}, C_{h}\right)$ for all $l \in N$.
3. If N is an empty set, stop; otherwise, go to step (2).

3.3 Latest slack time procedures

We now present two backward sequencing heuristics that are analogous to heuristic procedures ECTR and ECTS but in reverse time. The heuristics make use of the latest slack time (LSPT) rule to select the machine for processing and we are referred to as Latest start time due date (LSTD) and Latest start time finish times (LSTF), respectively. That is, an unscheduled job is assigned to a machine that can start processing it the latest. Let $S_{j}, \mathrm{j}=1, \ldots, \mathrm{n}$, be the latest slack time of job j. In procedure LSTD the job is selected based on the due dates and in procedure LSTF the job is selected based on the possible finish times and in both procedures ties are broken by selecting the job with the largest ready time. In the backward sequencing heuristics the unscheduled jobs are added to the front of set G_{i}.

3.3.1 Procedure Latest start time due date (LSTD)

1. Order jobs in set N in non-increasing order of due dates. Break ties by selecting the job with the maximum ready time.
2. Let job j be the first job in set n. Let $e_{i j}$ be the slack time of job j if scheduled on machine i, i.e. $e_{i j}=\min \left(d_{j}, q_{i}\right)-p_{i}$ for $i, i=1, \ldots, m$ where q_{i} is the slack time of the first job placed in the sequence in set G_{i}. Let g be the machine that maximizes $e_{i j}, i=1, \ldots, m, j=1, \ldots, n$. Add job j to the beginning of the sequence in set G_{g} and let $S_{j}=e_{g j}$ and $q_{g}=S_{j}$. Remove job j from set N.
3. If N is an empty set, stop; otherwise, go to step (2).

3.3.2 Procedure Latest start time finish times (LSTF)

1. Set the latest finish times $f_{i j}=d_{j}$ for $i=1, \ldots, m$ and $j=1, \ldots, n$.

Let job j_{i} be the job with the maximum $f_{i j}$ on machine i for $j \in N$ and $i=1, \ldots, m$. Among ties in $f_{i j}$, select the job with the maximum ready time. Let e_{i}, j_{i} be the start time of job j_{i} if scheduling identical jobs with unequal ready times on uniform parallel machines scheduled on machine i, i.e. $e_{i j_{i}}=\min \left(d_{j_{i}}, q_{i}\right)-p_{i}$ for $i, i=1, \ldots, m$ where q_{i} is the start time of the first job placed in the sequence in set G_{i}. Let g be the machine that maximizes $e_{i}, j_{i}, i=1, \ldots, m$, and let h be job j_{g}. Add job h to the beginning of the sequence in set G_{g} and let $S_{h}=e_{g h}$ and $q_{g}=S_{h}$. Remove job h from set N. Update $f_{g l}=\min \left(d_{l}, S_{h}\right)$ for all $l \in N$.
2. If N is an empty set, stop; otherwise, go to step (2).

Proposition 1: Let $E_{\max }^{1}$ be the maximum earliness given by heuristic LSPTD and $E_{\max }^{2}$ be the maximum earliness given by heuristic LSPTF. Then, $E_{\max }^{1} \leq E_{\max }^{2}$

Proof: The two heuristics generate a schedule with identical busy periods for each machine i, $i=1, \ldots, m$. What may differ in the solution between the two heuristics is the job allocation to the busy periods. Given a known busy period with latest slack time and two or more jobs with ready times less than the slack time of the busy period, choosing the job with the minimum due date gives a no worse maximum earliness than any other selection rule. Note this is the selection criterion for heuristic LSPTD.

Journal of Kerbala University , Vol. 8 No. 1 Scientific . 2010

4 BRANCH-AND-BOUND PROCEDURE

For problem $Q\left|r_{j}, d_{j}, p_{i}=1\right| E_{\text {max }}$, the heuristics presented in Section (3) do not guarantee an optimal solution even when the order of jobs according to ready times is identical to that of their due dates. Refer to Simons's procedure as algorithm Opt_m1. This algorithm forms the basis for our branch-and-bound procedure. For this problem, a total schedule is defined by an allocation of jobs to machines, σ^{t}, and a sequence of the jobs allocated to each machine, o^{t}. The number of possible allocations of jobs to machines for this problem is $O\left(m^{n}\right)$, and for each machine $i, i=1, \ldots, m$, the number of possible sequences of jobs assigned to it is n_{i} ! Where n_{i} is the number of jobs on machine i with $\sum_{i=1}^{m} n_{i}=n$. The number of possible sequences on all machines for a particular allocation, σ^{t}, is $\prod_{i=1}^{m} n_{i}$ with an upper bound $n!$. This makes the upper bound on the number of possible sequences, $o^{t}, O\left(\left(m^{n}\right)\right.$. A branch-and-bound procedure that searches in this complete space will thus have a worst case node complexity of $O\left(m n^{n}\right)$. However, given a particular job to machine allocation, an optimal solution can be found by using algorithm Opt_m1 to sequence each machine. Therefore, the branch-and-bound procedure focuses only on the allocation of jobs to machines. This observation is summarized in the following proposition.

4.1 Overview of procedure

The solution method follows a branch-and-bound procedure, with each node in the branching tree representing a partial assignment of jobs to machines $s=\left(s_{1}, \ldots, s_{m}\right)$, where $s_{i},(i=1, \ldots, m)$ is the partial allocation on machine i. Let the job sequence on all machines given the partial allocation, s, be $y=\left(y_{1}, \ldots, y_{m}\right)$ where $y_{i}(i=1, \ldots, m)$ is the sequence on machine i. The root of the tree represents $s=b$. A node at level l in the branching tree represents the allocation of jobs $1, \ldots, l$. Let h be the set of jobs not in s. Branching from a node represents the allocation of a job $j \in H$ to some machine $s_{i},(i=1, \ldots, m)$. The choice of job j from h is based on a non-decreasing order of r_{j}. Hence, we index jobs in h in a non-decreasing order of r_{j}. Given the partial allocation of jobs to machines s.

We now present a procedure that determines a lower bound, $E_{\max }$. The first part of the procedure determines a lower bound for the jobs in the allocated set s and the second part for the unscheduled jobs in set h.

4.2 Procedure LB

1. Sequence the jobs allocated to machine i, σ_{i}, using the single machine algorithm Opt_m1 by Simons [9] to get θ_{i}, for $i=1, \ldots, m$.
2. For the sequence θ_{i}, compute the earliness $E_{i}=\max \left\{d_{i}-C_{i}, 0\right\}$ for $j \in \sigma_{i}$.
3. Set $r_{\text {min }}=\min _{j \in H} r_{j}$, set $r_{j}^{\prime}=r_{\text {min }}$ for $j \in H$.
4. Solve the sequencing problem of jobs in h as the equal ready time problem of $Q\left|r_{j}, d_{j}, p_{i}=1\right| E_{\max }$ using procedure ECTS. Let the resulting job to machine allocation and sequence be σ^{\prime} and θ^{\prime}, respectively.
5. For each sequence $\theta_{i}^{\prime}, i=1, \ldots, m$, compute the completion times C_{j} using the ready times r_{j} and compute the earliness $E_{j}=\max \left\{d_{j}-C_{j}, 0\right\}$ for $j \in H$.
6. Set the lower bound $E_{\max }=\max _{j=1, \ldots, n}\left\{E_{j}\right\}$.

Journal of Kerbala University, Vol. 8 No. 1 Scientific . 2010

The validity of the proposed branch-and-bound procedure is derived from the use of algorithm Opt_m1 in both branching and bounding. The rationale of the branching procedure is to limit the search to all possible job-to-machine allocations rather than schedules, since the optimum sequence for a given allocation can be obtained in polynomial time by applying Opt_m1 to sequence jobs on each machine.

The validity of the proposed lower bound on $E_{\max }$ given a particular partial allocation is based on the way the sets of jobs, those already allocated and those unallocated, are scheduled. The allocated set is scheduled using Opt_m1, which provides the minimum $E_{\max }$ for that set. The unallocated set is scheduled using ECT, assuming the ready times of all jobs in the set to be equal to the minimum in the set. This yields a lower bound on $E_{\max }$ for all unallocated jobs, regardless of the sequencing of allocated jobs. It is also because of the application of algorithm Opt_m1 that the order of selecting jobs to add to a partial allocation does not affect the final solution, since jobs are later resequenced using that algorithm. However, selecting the job with minimum ready time helps to improve the efficiency of the algorithm, since it allows the partitioning of the problem, as explained in the following discussion. Let $a_{i}(i=1, \ldots, m)$, be the completion time of the last job sequenced on machine i given by σ_{i}. The quantity σ_{i} represents the availability time of machine i to process an additional unscheduled job. If $a_{i} \leq r_{\text {min }}$ for all $i, i=1, \ldots, m$, then the two sets θ and θ^{\prime} are disjoint and a complete job to machine allocation, σ^{t} can be given by $\sigma^{t}=\sigma \cup \sigma^{\prime}$ and a complete job sequence, θ^{t}, can be given by $\theta^{t}=\theta \cup \theta^{\prime}$.

4.3 Complete branch-and-bound procedure

Let \mathfrak{J} be the list of open nodes. An open node is closed and removed from \mathfrak{J} if all its branches have been generated or its lower bound exceeds an existing feasible solution. Note that the maximum number of nodes that the branch-and-bound procedure will evaluate is $O\left(m^{n}\right)$.

The complete branch-and-bound procedure is as follows.

1. Set the upper bound $E_{\text {max }}^{u}$ to the minimum maximum earliness given by the procedures FAMR,

FAMS, ECTS and LSPTF and let θ^{u} be the resulting job sequence. Initialize the list of open nodes \mathfrak{I} as the root node $\sigma=\phi$. Let the set of unscheduled jobs h be the set of all jobs N.
2. Remove an open node from \mathfrak{J} and let the partial job to machine allocation given by that node be σ and the sequence of jobs given by σ be θ. Let h be the set of jobs not in σ. Let the relaxed ready times be r_{j}^{\prime} and the actual ready times be r_{j} for $j=1, \ldots, n$. Set $r_{\text {min }}=\min _{j \in H} r_{j}$, $r_{j}^{\prime}=r_{j}$, for $j \in s$, and $r_{j}^{\prime}=r_{\text {min }}$ for $j \in H$. Let the machine availability time $a_{i}, i=1, \ldots, m$, be the completion time of the last job in the sequence θ_{i}.
3. Use procedure LB to obtain the lower bound $E_{\max }(\sigma)$. If $E_{\max }(\sigma) \geq E_{\max }^{u}$, go to step (8). Otherwise go to step (4).
4. If $a_{i} \leq r_{\text {min }}$ for all i, set the complete job to machine allocation, σ^{t} to $\sigma^{t}=\sigma \cup \sigma^{\prime}$ and set the complete job sequence, θ^{t}, to $\theta^{t}=\theta \cup \theta^{\prime}$, and go to step (5). Otherwise, go to step (6).
5. Check if the complete allocation σ^{t} is optimal given the partial allocation σ. If $C_{j}-p_{b(j)} \geq r_{j}$ for each $j \in H$ and $i=1, \ldots, m$, where $b(j)$ is the machine allocated to job j in $s \sigma^{t}$, then the complete job to machine allocation σ^{t} is an optimal allocation given the partial allocation σ. Update $E_{\max }^{u}=E_{\max }(\sigma)$ and $\theta^{u}=\theta^{t}$ and go to step (8). Otherwise, go to step (6).
6. Generate a feasible schedule for the complete allocation σ^{t}. For the sequence θ_{j}^{t}, forward schedule on machine $i, i=1, \ldots, m$, to compute the new completion times C_{j} using the actual
ready times r_{j} and compute the earliness $E_{j}=\max \left\{d_{j}-C_{j}, 0\right\}$ for $j \in \sigma_{j}^{t}$. If $E_{\max }^{u} \geq \max _{j=1, \ldots, n} E_{j}$ update $E_{\max }^{u}=\max _{j=1, \ldots, n} E_{j}$ and $\theta^{u}=\theta^{t}$.
7. Let j be the job with the minimum ready time in set h and break ties by selecting the job with the minimum due date. For each machine $i, i=1, \ldots, m$, generate a new branch node that represents the allocation of job j to machine i. The generation of the branch node is as follows. Set $\sigma_{y}=\sigma_{i}, y \neq i$. Set $\sigma_{i}=\sigma_{i} \cup\{j\}$ and perform the following test. If $r_{j} \geq a_{i}$, add j to the end of the partial sequence θ_{i}; otherwise, recomputed a new sequence θ_{i} with the jobs in allocation σ_{i} using algorithm Opt_m1. Refer to this allocation and sequence as σ^{i} and θ^{i}. Add the allocation σ^{i} and resulting sequence θ_{i} as an open node in \mathfrak{J}. Note that the set offspring nodes to σ is the nodes $\sigma^{i}, i=1, \ldots, m$.
8. If there are open nodes in the list \mathfrak{I}, go to step (2); otherwise, the optimal sequence is given by θ^{u} and the optimal maximum earliness is given by $E_{\text {max }}^{u}$.

5 NUMERICAL EXPERIMENTS

We experimentally compared the effectiveness of solutions generated by the heuristic procedures with the optimal solutions generated by the branch-and-bound procedure. The purpose of the experimentation was two-fold. First, it was desired to find how large the problem sizes in terms of m and n the branch-and-bound procedure can efficiently solve. Second, for cases where the branch-and-bound procedure cannot find an optimal solution it was desired to identify the best performing heuristic for different scenarios of the ready times and due dates. Since the number of nodes to evaluate in the branch-and-bound procedure is $O(m n)$, we tested the effectiveness of the solution procedures on different combinations of the number of machines and the number of jobs. The values tested for the number of jobs were $10,20,40$ and 60 and for the number of machines were 2,3 and 5 . Integer data of the processing time on each machine and the ready time and due date of each job were generated from uniform distributions between 1 and $P_{\max }, R_{\max }$ and $D_{\max }$, respectively. Note that adding a constant to all values of ready times or due dates does not change the optimal sequence, though it will affect the earliness of jobs. Hence, it is the relative values of the ready times and due dates, rather than the absolute values, that affect the optimum sequence. Accordingly, we designed experiments to cover different ranges of ready times and due dates, expressed as $\left[1, R_{\max }\right]$ and $\left[1, D_{\max }\right]$, respectively. Also, the range of processing times is defined as [1, $P_{\max }$]. Tested ranges for both $R_{\max }$ and $D_{\max }$ were 10,50 and 100 and for $P_{\max }$ were 10 and 50 .

A depth-first branching strategy was used for the branch-and-bound procedure with the offspring nodes generated in order of the machine's processing time. This branching strategy was used because of its minimal storage requirements and it consistently outperformed other branching strategies (e.g. breadth-first and smallest lower bound). We stopped the branch-and-bound procedure after $1,000,000$ nodes were evaluated so that many experiments could be performed. For each scenario, 30 experiments were run. The Branch and bound algorithm was test by coding it in Microsoft Fortran power station and runs on a Pentium IV at $3.33 \mathrm{GHz}, 512 \mathrm{MB}$ computer. To gain insight and understand the relationship between the various problem parameters, we first held the number of jobs fixed to a small number, $n=10$, and varied the other parameters of the model. Then, we tested the sensitivity of the results for larger values of the number of

Table (1). Number of runs and optimal solution is reached out of 30 runs, with $n=10$, for branch-and-bound and heuristic procedures Heuristics

m	$p_{\text {max }}$	$R_{\text {max }}$	$D_{\text {max }}$	Branch and bound No. opt. averg. nodes ax. nods			Heuristics No. of times opt.			
							FAMR	FA		LSPTF
2	10	10	10	30	5.5	75	5	16	28	27
2	10	10	50	30	23.3	261	10	20	21	28
2	10	10	100	30	14.6	201	13	23	23	29
2	10	50	10	30	8.9	93	26	26	30	21
2	10	50	50	30	42.2	661	24	24	26	25
2	10	50	100	30	14.8	177	24	24	26	26
2	10	100	10	30	62.0	1031	27	27	30	22
2	10	100	50	30	91.9	983	28	28	29	25
2	10	100	100	30	38.8	907	27	27	29	26
2	50	10	10	30	1.6	1	1	13	26	28
2	50	10	50	30	32.1	664	0	10	23	20
2	50	10	100	30	62.2	403	0	10	15	19
2	50	50	10	30	4.7	95	2	7	17	22
2	50	50	50	30	19.5	185	0	9	19	20
2	50	50	100	30	26.6	225	2	8	11	21
2	50	100	10	30	4.9	33	13	16	21	14
2	50	100	50	30	13.1	235	9	14	19	15
2	50	100	100	30	26.6	315	6	8	18	16
3	10	10	10	30	435.9	8509	6	13	22	26
3	10	10	50	30	738.2	11527	11	15	19	28
3	10	10	100	30	1101.0	20887	16	19	19	30
3	10	50	10	30	2703.2	55696	27	27	29	22
3	10	50	50	30	2907.9	49957	27	27	28	27
3	10	50	100	30	634.8	15529	28	28	28	29
3	10	100	10	30	3553.3	55810	30	30	30	25
3	10	100	50	30	2335.1	50749	30	30	30	28
3	10	100	100	30	20679	44542	30	30	30	29
3	50	10	10	30	346.4	4490	1	8	22	23
3	50	10	50	30	306.8	2632	1	7	17	19
3	50	10	100	30	1234.5	8137	2	4	8	13
3	50	50	10	30	20.2	334	5	12	20	19
3	50	50	50	30	626.5	7495	5	9	15	13
3	50	50	100	30	1473.9	26590	8	11	11	13
3	50	100	10	30	723.2	11149	12	13	25	11
3	50	100	50	30	1527.2	18388	15	16	23	11
3	50	100	100	30	3233.2	5338.3	15	15	22	8
5	10	10	10	28	3706.6	73836	19	21	26	25
5	10	10	50	27	1532.1	19531	25	24	27	26
5	10	10	100	27	1417.9	19531	26	27	27	26
5	10	50	10	26	4373.9	96591	24	24	26	23
5	10	50	50	27	1679.9	21658	26	27	27	24
5	10	50	100	29	1233.5	19631	29	29	28	29
5	10	100	10	24	4928.0	97654	23	23	23	22
5	10	100	50	26	1635.6	19531	26	26	26	23
5	10	100	100	27	1628.2	19531	27	27	27	27
5	50	10	10	30	1236.0	29141	0	0	23	16
5	50	10	50	28	2350.8	14436	1	2	9	12
5	50	10	100	27	3442.4	22176	2	3	7	19
5	50	50	10	29	1009.1	15651	8	8	19	19
5	50	50	50	26	1445.7	12896	6	6	14	13
5	50	50	100	25	1065.8	17601	8	10	14	16
5	50	100	10	28	4327.8	68671	16	16	23	13
5	50	100	50	28	3273.9	41401	19	19	21	16
5	50	100	100	25	1698.3	24511	21	21	18	16

Journal of Kerbala University , Vol. 8 No. 1 Scientific . 2010

Table (1) shows the results of the branch-and-bound procedure. For each scenario, Table (1) lists the number of times an optimal solution was found out of the 30 runs and the average and the maximum number of nodes evaluated in the branch-and-bound procedure to find an optimal solution. Table (1) also lists the number of times each heuristic gave the optimal solution out of the 30 runs. Table(2) reports for each heuristic the average departure from optimality measured by the maximum earliness given by the heuristic sequence minus the optimal maximum earliness. The general findings of these experiments are summarized as follows:
(1) Comparing the heuristics: As Tables (1) and (2) show, the most myopic of the heuristic rules, FAMR, is consistently outperformed by some other heuristic in all the experiments. The two best performing heuristics were ECTS and LSPTF. Heuristic ECTS performed best on average when $R_{\max }$ is greater than $D_{\max }$ while Latest start time finish times (LSTF) performed best on average when $D_{\max }$ is greater than $R_{\max }$. These results suggest a forwarding sequencing heuristic based on ready times be used

Table (2). Average deviation from the optimal solution for the various heuristics with $n=10$

m	R_{m}	R_{m}	R_{m}	Average deviation from the optimality			
				FAMR	FAMS	ECTS	LSTF
2	10	10	10	2.967	0.933	0.067	0.100
2	10	10	50	5.367	1.000	0.700	0.100
2	10	10	100	4.100	0.733	0.700	0.033
2	10	50	10	0.500	0.500	0.000	0.367
2	10	50	50	0.367	0.367	0.200	0.567
2	10	50	100	0.433	0.433	0.200	0.367
2	10	100	10	0.300	0.300	0.000	0.367
2	10	100	50	0.133	0.133	0.033	0.600
2	10	100	100	0.233	0.233	0.033	0.400
2	50	10	10	5.533	3.600	0.167	0.368
2	50	10	50	20.500	6.833	1.100	0.200
2	50	10	100	37.100	8.067	3.933	1.000
2	50	50	10	7.500	5.957	1.733	1.867
2	50	50	50	17.400	6.300	1.800	1.067
2	50	50	100	27.667	5.300	2.433	1.233
2	50	100	10	5-967	4.933	1.033	1.606
2	50	100	50	11.933	5.633	1.333	2.833
2	50	100	100	15.500	5.667	2.300	2.000
3	10	10	10	3.033	1.400	0.367	2.300
3	10	10	50	2.867	1.200	0.633	0.333
3	10	10	100	2.300	0.933	0.633	0.100
3	10	50	10	0.267	0.267	0.033	0.000
3	10	50	50	0.233	0.233	0.100	0.433
3	10	50	100	0.233	0.233	0.167	0.233
3	10	100	10	0.000	0.000	0.000	0.367
3	10	100	50	0.000	0.000	0.000	0.233
3	10	100	100	0.000	0.000	0.000	0.033
3	50	10	10	8.100	6.033	0.533	0.400
3	50	10	50	20.733	8.600	2.700	1.667
3	50	10	100	30.633	10.933	6.944	2.700
3	50	50	10	7.000	5.800	0.747	1.000
3	50	50	50	15.600	8.400	3.200	2.567
3	50	50	100	19.400	7.533	4.200	3.236
3	50	100	10	6.933	6.467	0.433	3.633
3	50	100	50	9.167	6.833	1.600	3.400
3	50	100	100	10.033	7.167	2.700	4.100
5	10	10	10	0.867	0.675	0.067	0.133
5	10	10	50	0.300	0.167	0.000	0.076
5	10	10	100	0.133	0.033	0.033	0.033
5	10	50	10	0.133	0.133	0.000	0.233
5	10	50	50	0.000	0.000	0.000	0.133
5	10	50	100	0.000	0.000	0.000	0.033
5	10	100	10	0.033	0.033	0.033	0.033
5	10	100	50	0.000	0.000	0.000	0.033
5	10	100	100	0.000	0.000	0.000	0.033
5	50	10	10	0.033	0.033	0.033	1.500
5	50	10	50	0.000	0.000	0.000	3.267
5	50	10	100	0.000	0.000	0.000	1.033
5	50	50	10	11.033	10.533	1.667	3.000
5	50	50	50	12.567	10.767	1.733	2.700
5	50	50	100	11.633	9.167	2.033	1.067
5	50	100	10	3.400	3.400	0.233	4.000
5	50	100	50	2.700	2.700	0.667	2.600
5	50	100	100	2.433	2.433	1.133	1.333

when the variability in ready times is the greatest and a backward sequencing heuristic based on due dates be used when the variability in due dates is the greatest.
(2) Sensitivity to $R_{\max }$ and $D_{\max }$: The average time to compute an optimal solution in most of the scenarios is greater for the case when $R_{\max }>D_{\max }$ than for the case when $R_{\max }<D_{\max }$. For example, the average number of nodes evaluated is 1101.0 when $m=3, P_{\max }=10, R_{\max }=10$ and $D_{\max }=100$ while it increases to 3553.3 when $R_{\max }$ and $D_{\max }$ are reversed. These findings are not surprising since the proposed branch-and-bound procedure is a forward sequencing procedure and as $R_{\max }$ increases the lower bounds in the procedure become less tight. These results suggest that a backward sequencing branch-and-bound procedure be used when $R_{\max }>D_{\max }$.
(3) Sensitivity to m: Since the number of feasible sequences increases exponentially with m, the time it takes to find an optimal solution also increases as m increases. As Table (1) shows, the branch-and-bound procedure consistently found the optimal solution when there were 3 or less uniform parallel machines. For $m=5$, the branch-and-bound procedure was stopped before finding an optimal solution in some of the scenarios. For example, with $P_{\max }=50, R_{\max }=50$ and $D_{\max }=50$, the procedure was able to find the optimal solution in 26 out of the 30 runs. For this scenario, a heuristic may be required to approximate the optimal solution. Fortunately, as m increases the heuristics on average provided a better approximation in terms of the absolute deviation from optimality. The heuristics performed better when m increases while n is constant because with more machines it is less likely that any interchange in the job sequence on a particular machine given by the best single heuristic will improve the earliness criteria since there are fewer jobs scheduled on each machine.
(4) Sensitivity to $P_{\max }$: It takes a little longer on average to find an optimal solution when $P_{\max }=10$ than when $P_{\max }=50$ because with a smaller processing time and the same $R_{\max }$ the more likely there is idle time on a machine between two adjacent jobs in the sequence, thereby reducing the quality of the lower bound in the branch-and-bound procedure. However, as Table(1) shows the heuristics provide a near-optimal approximation with a small $P_{\max }$.
(5) Sensitivity to n : We now focus on testing the sensitivity of the results for larger values of n . Because of the symmetry of the problem, we considered only the cases when $R_{\max } \leq D_{\max }$ since similar conclusions may be drawn when $R_{\max } \geq D_{\max }$. These experiments evaluated the performance of the branch-and-bound procedure as n increases as well as the performance of heuristic

Table (3). Performance of branch-and-bound procedure and heuristic LSTF for $P_{\max }=50$

m	n	R_{m}	D_{m}	Branch and bound No. opt. aver. nodes. max. nodes			LSPTNo. opt. devia. opt.	
2	20	50	50	30	129	3835	23	0.500
2	20	50	100	30	135	2097	19	1.133
2	40	50	50	30	0.01	1	30	0.000
2	40	50	100	30	0.01	1	27	0.233
2	80	50	50	30	0.01	1	29	0.033
2	80	50	100	30	0.01	1	27	0.133
3	20	50	50	30	1.152	23272	24	0.533
3	20	50	100	30	4.065	81346	16	1.333
3	40	50	50	30	0.01	1	25	0.300
3	40	50	100	30	03.4	488	18	1.033
3	80	50	50	30	0.01	1	26	0.200
3	80	50	100	30	0.01	1	21	0.600
5	20	50	50	20	1.124	33016	12	1.567
5	20	50	100	17	119	1801	7	2.367
5	40	50	50	28	0.01	1	20	0.833
5	40	50	100	22	01.2	336	15	1.100
5	80	50	50	30	0.01	1	25	0.200
5	80	50	100	29	0.01	1	15	0.833

Table (4). Summary of experimental findings

Range on parameters	Suggested procedure
$m \leq 3$ and $R_{\max }<D_{\max }$	forward sequencing branch-and-bound algorithm
$m \leq 3$ and $D_{\max }<R_{\max }$	backward sequencing branch-and-bound algorithm
$m>3$ and $D_{\max }<R_{\max }$	heuristic ECTS
$m>3$ and $R_{\max }<D_{\max }$	heuristic LSTF

6 CONCLUSIONS

This paper develops a branch-and-bound enumerative procedure that optimally solves the problem of scheduling n identical jobs with unequal ready times on m parallel uniform machines to minimize the maximum earliness. The branch-and-bound procedure searches over the assignment of jobs to machines. Given the assignment, each machine's job sequence is determined using Simon's [10] single-machine sequencing algorithm. The number of nodes evaluated in the branch-and-bound procedure increases as the number of parallel machines increases. However, as the number of jobs increases for a fixed number of machines the problem becomes easier to solve optimally because the presented lower and upper bounds give tighter bounds due to reduced machine idle time. For a large number of parallel machines, heuristics may be necessary to find approximate optimal solutions.

Table (4) summarizes our findings from the experimental analysis. The purpose of analyzing the heuristics is to identify which ones provide the closest approximation to the optimal solution under different ranges of the ready times, processing times, and due dates. The worst performing heuristic is FAMR. The better performing heuristics are the ones with a look ahead capabilityon the completion time of the machines. The forward sequencing procedure ECTS performed the best when the variability in the ready times is greater than the variability in the due dates while the backward sequencing procedure LSTF performed the best when the variability on the due dates is larger.

REFERENCES

[1] T. C. E. Cheng and C. C. S. Sin. A state-of-the-art review of parallel-machine scheduling research. European Journal of Operational Research. 47: 271-292, 1990.
[2] R. L. Graham, E. L. Lawler, J. K. Lenstra, and A. H. G. Rinnooy Kan. Optimization and approximation in determining sequencing and scheduling: A survey. Annals of Discrete Mathematics. 5:287-326, 1979.
[3] K. Jansen and L. Porkolab. Improved approximation schemes for Scheduling unrelated parallel machines. Mathematics of Operation research. 26:324-338, 2001.
[4] G. Martin ,M. Bark and W. Andreas. A faster combinatorial approximation algorithm for scheduling unrelated parallel machines. Theoretical Computer Science. 380: 87-99, 2007.
[5] E. Mokotoff and P. Chretienne. A cutting plane algorithm for the unrelated parallel machine scheduling problem. European Journal of operational Research. 141:515-325, 2002.
[6] M. Omar. On the solution of the problem of scheduling unrelated parallel machines with machines eligibility restrictions under Fuzziness. Trendsin Applied Sciences Research 2(5):404 -411, 2007.
[7] Lu. Pinyan and Yu. Changyuan. An improved randomized truthful mechanism for scheduling unrelated machines. Symposium of Theoretical Aspects of Computer Science. 21:527-538, 2008.
[8] E.V. Shchepin ,N Vakhania. An optimal rounding gives a better approximation for scheduling unrelated machines. Operation Research Letters. 33:127-133, 2005.
[9] B. Simons. A fast algorithm for single processor scheduling. Proceedings of the Nineteenth Annual Symposium on Foundations of Computer Science. 246-252, 1978.
[10] F. Sourd. Scheduling tasks on unrelated machines; large neighborhood improvement procedures. Journal of Heuristics. 7:519-521, 2005.
[11] V. Suresh and D. Chaudhuri. Minimizing maximum tardiness for unrelated parallel machines. International Journal of Production Economics, 34:223-229, 1994.
[12] V. Suresh and D. Chaudhuri. Bicriteria scheduling problem for unrelated parallel machines. Computers and Industrial Engineering. 30:77-82, 1996.

