Research Article

BASRAH JOURNAL OF VETERINARY RESEARCH, 2024, 23(1): 18-28 https://bjvr.uobasrah.edu.iq/

Molecular serotyping of Escherichia coli in broiler farms in Sulaymaniyah province/Iraq

Bahar Saeed Mohammed¹, Nahla Mohammed Saeed², Sadat Abdulla Aziz^{3,4}

1-Department of Laboratory, Microbiology, Veterinary Directorate, Sulaimani, Kurdistan/Iraq.

2-Department of Microbiology, College of Veterinary Medicine, University of Sulaimani, Al-Sulaimaniyah City, Iraq.

3-Department of Anesthesia, College of health Sciences, Cihan University-Sulaimaniya, Kurdistan/Iraq.

4 Department of Basic Sciences, College of Veterinary Medicine, University of Sulaimani, As-Sulaimaniyah City, Iraq.

Corresponding Author Email Address: <u>sadat.aziz@univsul.edu.iq</u> ORCID ID: <u>https://orcid.org/0000-0001-9455-2639</u> DOI: <u>https://doi.org/10.23975/bjvetr.2024.145094.1051</u> Received: 11 December 2023 Accepted: 3 January 2024.

Abstract

Escherichia coli (E. coli) is a gram-negative bacterium that has economic and public health importance. E. coli strains have been classified into pathogenic and non-pathogenic strains. The pathogenic strains of E. coli can cause colibacillosis, which is a common bacterial disease in the poultry industry and the poultry farms in the region. The objective of the study was to investigate the prevalence of E. coli, its serotypes (O1, O2, O18 and O78) and their antimicrobial susceptibility in the colibacillosis cases in Sulaymaniyah province using culture, antimicrobial susceptibility and molecular approaches. A total of 86 broiler farms were investigated from November 2021 to June 2022. From each farm, samples (liver and heart) were taken from 3-5 broilers colibacillosis cases. The results showed that the colonies that had metallic-green sheen morphologies were positive for E. coli (62/86; 72.1%), in which only 23/62 (37.1%) of the isolates were positive for O2 (7/62; 11.3%), O18 (14/62; 22.6%), and O78 (2/62; 3.2%). While O1 was undetectable in the investigated colibacillosis cases. O18 was predominantly (7/86; 8.1%) detected among 20-30 days-old chickens and followed by O2 (4/86; 4.7%) in 10-20 days-old chickens. The results showed that the majorities of the detected E. coli in colibacillosis cases were isolated from the imported chicks from Iran (30; 34.9%) and Netherlands (28; 32.6%). In conclusion, the results showed that the majorites of the colibacillosis cases in the region were caused by E. coli. The E. coli and its serotypes (O2, O18 and O78) had high prevalence in the region.

Keywords: E. coli, Sulaymaniyah, broiler farms.

Introduction

Escherichia coli (E. coli) is a Gram-negative bacterium that has economic and public health importance. E. coli strains have been classified into pathogenic and non-pathogenic strains depending on their pathogenicity and clinical symptoms. Pathogenic strains of E. coli are divided into several subspecies, including avian pathogenic E. coli (APEC), which is common in broiler chicken (1) and it is one of the major causes of morbidity and mortality in birds (2),particularly they induce colibacillosis (3, 4).

E.coli is characterized by having some serotypes some serotypes, especially O1, O2, O18 and O78, are commonly detected in broiler chickens and they seem to be associated with bird colisepticemia and colibacillosis, severe respiratory tract infection, particularly in young birds.[5, 6]

O1, O2, O18 and O78 are recognized as the common avian pathogenic *E. coli* serotypes that cause high economic loses in poultry industry [7]. However, there was not any scientific data about those serotypes in the region, especially in Sulaymaniyah province/Iraq. Therefore, the focus of the study was to isolate and identify *E. coli* and its serotypes in the region.

Material and Methods

Sample Collection

The sample was collected from November 2021 to June 2022 in Sulaymaniyah province. A total of 86 broiler farms were investigated. From each farm, 3-5 chickens, which had typical signs of colibacillosis, were selected. Samples (liver and heart) were aseptically collected and transported to the higher education laboratory of the College of Veterinary Medicine at the University of Sulaimani in cold boxes. The collected samples were prepared for standard microbiological examination.

Isolation and Identification of E. coli

Samples were aseptically inoculated into nutrient broth (Lioflechm, Italy), incubated at 37°C for 24 hrs. Then after, each inoculum was sub-cultured on MacConkey agar at 37°C/18-24 hrs (Lioflechm, Italy). Welldefined colonies, which had typical pinkcolor, were subcultured on Eosine-methylene blue (EMB) agar (Liofilchem-Italy). Typical colonies were selected and inoculated into nutrient broth (Neogen-UK) and incubated at 37°C [8, 9].

DNA extraction

The boiling technique was used to extract DNA from the isolates. From each sample about one ml of the grown bacteria in nutrient broth was centrifuged (13,000 rpm for 10 min) to pellet the bacteria, then washed in 50-100 μ l of ultra-pure water in an Eppendorf tube. After being centrifuged at 13,000 rpm for 10 min, the pellet was resuspended in 100 µl of ultrapure water by a pulsatile vortexing. The sample was icubated at 100°C for 15 min, then after, the sample was kept on ice. After centrifugation, the supernatant, which contained the DNA, was transferred into a new Eppendorf tube and stored at -20 °C to be used as a template for PCR [10].

Molecular Detection of E.coli

E. coli general primer (phoA gene) was used to detect *E. coli* then four serotypes specific primers (Table-1) were used to detect O1, O2, O18 and O78 serotypes by targetting rfbo1, rfbo2, rfbo18, and rfbo78 genes using PCR (Table 1). Briefly, 20µL of PCR reaction mix was prepared by mixing 10µL of Taq master mix, 1µL for each forward and reverse primers and 2µL of DNA template, the volume was compeleted using nuclease-free water. The mixture was subjected to PCR amplification program started with an initial denaturation step at 94°C/10 minutes, proceeded through 36 cycles of denaturation at 95°C/35 seconds, annealing at $57-60^{\circ}C/30$ seconds, and extension at 72°C/30 seconds. A final extension step at 72°C/5 minutes, and held at 4°C. Then the amplicons were run on 1.5% and visualised agarose gel using gel documentation system (Figure-1)

Statistical Analysis

Cross-tabulation (SPSS) was used to analyze all data. Chi-square was used to find an association between the variables. P-Value less than 0.05 was considered statistically significant.

Results

The results showed that 67/86(77.9%) of the isolates had bright-pink colonies morphology on MacConkey agar, in which 62/86(72.1%) revealed metallic-green sheen morphology, and there was a highly significant (P=0.001) association between morphology of the colonies on MacConkey agar and EMB agar. The isolates that had no metallic-green sheen morphology were negative (24/86; 27.9%) for E. coli. While all the isolates (62/86; 72.1%), which were positive for E. coli, had metallicgreen sheen colony morphology. All detected (23/86; 26.7%) serotypes (O2, O18 and O78) were characterised by having metallic-green sheen colony morphology. The results also showed that there was a highly significant (P=0.001) association between morphology of the grown E. coli colonies and serotyping (Table 2).

The results revealed that 62/86(72.1%) of the isolates were positive for *E. coli*, in which 23/86(26.7%) or 23/62(37.1%) of the isolates were posative for O2(8.1%), O18(16.3%) and O78(2.3%). O18 (14/23; 60.9%) serotype was found to have higher incidence compared to O2 (7/23; 30.4%) and O78 (2/23; 8.7%). While 24/86(27.9%) of the isolates were negative for all *E. coli* serotypes. The results also showed that there was a highly significant associations (*P*=0.001) between colibacillosis and *E. coli* (Table 3).

Highest rate (32/86; 37.2%) of colibacillosis was found among 20-30 days-old chickens if compared to 10-20 days-old 30(34.9%) and over 30 days-old 24(27.9%) chickens. O18 was predominantly (7/86; 8.1%) detected among 20-30 days-old chickens, which was followed by O2 (4/86; 4.7%) in 10-20 daysold chickens. Highest rate of infection by the isolates was reported among 10-20 days-old chickens (10; 11.7%) and almost all serotypes were detected at this age range. Meanwhile the lowest rate (4; 4.7%) of infection was reported among over 30 days-old chickens. The results showed that there were not any significant (P=0.336) associations between colibacillosis and age of the chickens (Table 4).

The results showed that the majorities of the detected *E. coli* in colibacillosis cases were isolated from the imported chicks from Iran (30; 34.9%) and Netherlands (28; 32.6%). O18 was although predominantly isolated from Netherlands (7; 8.1%) and Iran (4; 4.7%) oriented chicks. The chi square analysis revealed no significant (P=0.515) association between *E. coli* and the sources of the chickens (Table 5).

				C	Colibacillosis VS	Sources of the	chickens				
	Colibacill	osis	Hawler	Netherlands	Iran	Sources Portugal	Belgium	Turkey	Jordan	Total	P-Value
	Negative	Count	5(20.8%)	8(33.3%)	8(33.3%)	2(8.3%)	1(4.2%)	0(0.0%)	0(0.0%)	24(100%)	
		Total%	5.8%	9.3%	9.3%	2.3%	1.2%	0.0%	0.0%	27.9%	
	02	Count	2(28.6%)	2(28.6%)	2(28.6%)	0(0.0%)	1(14.3%)	0(0.0%)	0(0.0%)	7(100%)	
	02	Total%	2.3%	2.3%	2.3%	0.0%	1.2%	0.0%	0.0%	8.1%	
П	O18	Count	0(0.0%)	2.3% 7(50.0%) *	4(28.6%) ⁽²⁾	0(0.0%)	2(14.3%)	· · ·	0(0.0%)	14(100%)	
5 -1	010	Total%	5 %0.0	8.1%	4.7% °	0.0% Ξ	2.3%	1.2% Ξ	0.0%	16.3%	0.515
4	078	Count	0(0.0%)	0(0.0%)	1(50.0%)	1(50%)	0(0.0%)	0(0.0%)	0(0.0%)	2(100%)	
	0/8	Total%	0.0%	0.0%	1.2%	1.2%	0.0%	0.0%	0.0%	2.3%	
	Other	Count	2(5.1%)	11(28.2%)	15(38.5%)	3(7.7%)	6(15.4%)	1(2.6%)	1(2.6%)	39(100%)	
	Serotypes	Total%	2.3%	12.8%	17.4%	3.5%	7.0%	1.2%	1.2%	45.3%	
	Tota	1	9(10.5%)	28(32.6%)	30(34.9%)	6(7.0%)	10(11.6%)	2(2.3%)	1(1.2%)	86(100%)	

Table 5: Colibacillosis and *E. coli* serotypes rate of detection according to the source of the chickens.

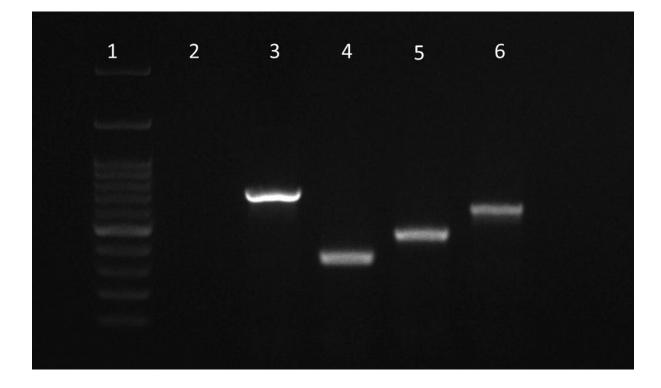


Figure 1: Gel electrophoresis image of *E.coli* and *E. coli* serotypes. Lane-1; DNA ladder-100, lane-2; *rfbO1* (255 bp), lane-3; *phoA E.* coli general (720 bp), lane-4; *rfbO2* (335 bp), lane-5; *rfbO18* (459 bp), lane-6; *rfbO78* (623 bp).

Table 1: Primers used to detect E. coli and O1, O2, O18, and O78 serotypes .

Names	Primers	Genes	Sizes	References
E. coli Universal	CGATTCTGGAAATGGCAAAAG	phoA	720	Kaspersen, <i>et al</i>
primers	CGTGATCAGCGGTGACTATGAC			[26]
Serotype O1	CGATGTTGAGCGCAAGGTTG	rfbO1	255	Hu, Tu [27]
	CATTAGGTGTCTCTGGCACG			
Serotype O2	CGATGTTGAGCGCAAGGTTG	rfbO2	335	Wang, Meng [28]
	GATAAGGAATGCACATCGCC			
Serotype O18	CGATGTTGAGCGCAAGGTTG	rfbO18	459	
	AGAAGCATTGAGCTGTGGAC			
Serotype O78	CGATGTTGAGCGCAAGGTTG	rfbO78	623	
	TAGGTATTCCTGTTGCGGAG			

			EN	1B		
С	olibacillosis		Metalic-green	Nonmetalic-	Total	P-value
			sheen	green Sheen		
	Bright-pink	Count	62(92.5%)	5(7.5%)	67(100%)	
MacConkey	colony	Total%	72.1%	5.8%	77.9%	
agar	Yellow	Count	0(0.0%)	19(100%)	19(100%)	0.001
	Colony	Total%	0.0%	22.1%	22.1%	
	Total		62(72.1%)	24(27.9%)	86(100%)	
	Negative	Count	0(0.0%)	24(100.0%)	24(100%)	
		Total%	0.0%	27.9%	27.9%	
	01	Count	7(100.0%)	0(0.0%)	7(100%)	
	02	Total%	8.1%	0.0%	8.1%	%
PCR	O18	Count	8.1% 14(100%) 16.3% 83(2) 83(2	0(0.0%) 0.0%	14(100%)	23(26.7%) 0.001
		Total%	16.3% ^{Cl}	0.0%	16.3%	1000000000000000000000000000000000000
-	O78	Count	2(100%)	0(0.0%)	2(100%)	0
		Total%	2.3%	0.0%	2.3%	
	Other	Count	39(100%)	0(0.0%)	39(100%)	
	Serotypes	Total%	45.3%	0.0%	45.3%	
	Total%		62(72.1%)	24(27.9%)	86(100%)	

Table 2: Colibacillosis isolation and identification using MacConkey agar, EMB agar and PCR.

Table 3: E. coli and E. coli serotypes distribution according to the colibacillosis cases.

		Colibacillosis							
	PCR		Other Serotypes	01	02	O18	078	Total	P-Value
		Count	39(62.9%)	0(0%)	7(11.3%)	14(22.6%)	2(3.2%)	62(100%)	
	Positive		00(02:070)		23	(37.1%)			
E.coli		Total%	45.3%	(0%)	8.1%	16.3%	2.3%	72.1%	
Ш.	Negative	Count	24(100%)	0(0%)	0(0.0%)	0(0.0%)	0(0.0%)	24(100%)	0.001
	Negative	Total%	27.9%	(0%)	0.0%	0.0%	0.0%	27.9%	
	Tot	al	63(73.3%)	0%	7(8.1%)	14(16.3%)	2(2.3%)	86(100%)	
		-	()			26.7%		()	
	S	erotypes		0(0%)	7(30.4%)	14(60.9%)	2(8.7%)	23(100%)	

			Age-ranges			
Colibacillosis		10-20 days old	20-30 days old	Over 30 days old	Total	P-Value
	Count	6(25%)	8(33.3%)	10(41.7%)	24(100%) 27.9%	
Negat	ive Total %	7.0%	9.3%	11.6%		
02	Count	4(57.1%)	2(28.6%)	1(14.3%)	7(100%)	
02	Total %	4.7%	2.3%	1.2%	8.1%	
018	Count	4(28.6%) (e	7(50.0%)	3(21.4%)	14(100%)	
Uld	Total %	4(28.6%) (%) (%) (11)01	9(10.4%) (3.5% (%L.47%)	16.3%	0.336
078	Count	2(100.0 %)	0(0.0%)	0(0.0%)	2(100%)	0.330
076	Total %	2.3%	0.0%	0.0%	2.3%	
Othe	Count	14(35.9%)	15(38.5%)	10(25.6%)	39(100.0 %)	
seroty	pes Total %	16.3%	17.4%	11.6%	45.3%	
					86(100.0	
Total		30(34.9%)	32(37.2%)	24(27.9%)	%)	

Table 4: Colibacillosis and *E. coli* serotypes rate of detection according to the age ranges in broiler chickens.

Discussion

Avian pathogenic E.coli was isolated from colibacilosis cases in broiler farms in Sulaymaniyah province. The results of our study revealed that 72.1% of colibacillosis cases in the broiler farms in the region were caused by E. coli. The same pattern of infection by E. coli in colibacilossis cases was also reported by other researchers (11, 13). 88.6% of APEC isolates were classified into E. coli serotypes in Korea. The proportion of E. coli serotypes isolates from chicken cloaca was 71.05% in Vietnam (7). In Poland, 23% of colibacillosis cases in broiler chickens were positive to E.coli (14). The incidence of E. coli in broiler chickens in the winter was 15.7% in healthy, 37.1% in sick and 55% in freshly dead chickens. However, it was 15.8%, 17.5% and 18.7% in healthy, diseased and freshly dead chicken in the Summer (15). High prevalence of E. coli infections in broiler chickens might be related to accumulation of E.coli aerosols in the atmosphere of chicken barns, which increase the chance of infection through inhalation (12, 16. 17).

The prevalence of the serotypes among E. coli positive samples were 37.1% (O2; 11.3%, O18; 22.6%, O78; 3.2%). A study in poland revealed that the prevalence of E. coli serotypes was 4%(O1), 1%(O2), 8%(O18) and 8%(O78) in broiler chickens (14). It was 23.79%(O78), 14.89%(O2), 12.63%(O1) in Jordan (18), 20.3%(O78) and 8.9% (O2) in Korea (19), 28.7%(O2) and 14.7%(O78) in Germany (20), and it was 10.56%(O18), 9.44%(O2), 7.79% (O1), and 6.56% (O78) in Southern Vietnam. The serotype O18 was mostly isolated from the wild animals, especially in geckos (7). While O78 was reported as a dominant serotype in Poland (14). A study in Iran showed that O1 (21.25%) and O78 (37.5%) were the most prevalent serotypes if compared to O2 (17.5%), O18(10%) and other serotypes (13.75%) (21).

The age of the broiler chickens also appears to have an effect on the type of the isolated serotypes, as Our results showed that almost all serotypes, especially O78, were isolated from 10-20 days-old chickens, and 50% of O18 serotypes were isolated from 20-30 daysold chickens. Previous studies determined that age might have an effect on getting an infection with a specific serotype (22).. Even an outbreak and mortality by colibacillosis appears to be affected by the age of the birds [23], the mortality rate by colibacillosis was higher (93%) among 11-15 days old chicks if compared to 6-10 days-old (83.33%) and 1-5 days-old chicks (21.42%) (24). A study in Bangladesh revealed that the prevalence of colibacillosis in broiler chickens was higher (1%) in 25-30 days-old chickens if compared to 31-35 days-old chickens (0.5%) (25).

In conclusion, the results showed that the majorities of the colibacillosis cases in the region were caused by *E. coli*. The *E. coli* serotypes, including O2, O18 and O78, had high prevalence in the region. The isolates, especially O78, were mostly isolated from 10-20 days-old chickens.

Acknowledgements

We would like to thank the College of Veterinary Medicine and University of Sulaimani for their Supports.

References

1.Sora, V.M., G. Meroni, P.A. Martino, A. Soggiu, L. Bonizzi, and A. Zecconi (2021). Extraintestinal pathogenic Escherichia coli: Virulence factors and antibiotic resistance. *Pathogens, 10*, 1355. 2.Sen, K., V. Shepherd, T. Berglund, A. Quintana, S. Puim, R. Tadmori, R. J. Turner, L. Khalil, and M.A. Soares (2020). American crows as carriers of extra intestinal pathogenic E. coli and avian pathogenic-like E. coli and their potential impact on a constructed wetland. *Microorganisms*, *8*, 1595.

3.Ramos, S., V. Silva, M.d.L.E. Dapkevicius, M. Caniça, M.T. Tejedor-Junco, G. Igrejas, and P. Poeta (2020). Escherichia coli as commensal and pathogenic bacteria among food-producing animals: Health implications of extended spectrum β -lactamase (ESBL) production. *Animals*, 10, 2239.

4.Swelum, A.A., A.R. Elbestawy, M.T. El-Saadony, E.O. Hussein, R. Alhotan, G.M. Suliman, A.E. Taha, H. Ba-Awadh, K.A. El-Tarabily, and M.E. Abd El-Hack (2021). Ways to minimize bacterial infections, with special reference to Escherichia coli, to cope with the first-week mortality in chicks: an updated overview. *Poult. Sci.*, *100*, 101039.

5.Mehat, J.W., A.H. van Vliet, and R.M. La Ragione (2021). The Avian Pathogenic Escherichia coli (APEC) pathotype is comprised of multiple distinct, independent genotypes. *Avian Pathol.*, *50*, 402-416.

6.Kathayat, D., D. Lokesh, S. Ranjit, and G. Rajashekara (2021). Avian pathogenic Escherichia coli (APEC): an overview of virulence and pathogenesis factors, zoonotic potential, and control strategies. *Pathogens*, *10*, 467.

7.Nguyen, L.T., N.K. Thuan, N.T. Tam, C.T. Huyen Trang, N.P. Khanh, T.N. Bich, T. Taniguchi, H. Hayashidani, and L.T. Lien Khai (2021). Prevalence and Genetic Relationship of Predominant Escherichia coli Serotypes Isolated from Poultry, Wild Animals, and Environment in the Mekong Delta, Vietnam. *Vet. Med. Int.*, 1-12.

8. Thomrongsuwannakij, T., P.J. Blackall, S.P. Djordjevic, M.L. Cummins, and N. Chansiripornchai (2020). A comparison of virulence genes, antimicrobial resistance profiles

and genetic diversity of avian pathogenic Escherichia coli (APEC) isolates from broilers and broiler breeders in Thailand and Australia. *Avian Pathol., 49*, 457-466.

9.Sedeek, D., M. Rady, H. Fedawy, and N. Rabie (2020). Molecular epidemiology and sequencing of avian pathogenic Escherichia coli APEC in Egypt. *Adv. Anim. Vet. Sci, 8*, 499.

10.Amin, S.Q., S. Aziz, and N.R. Abdulrahman (2019). Isolation and Genotyping Study of Clostridium Perfringens From Broiler Farms Infected with Necrotic Enteritis in Sulaimania Province. *AJVS*, 12.

11.Thapa, D. and A. Chapagain (2020). Antibiogram of Escherichia coli isolated from avian colibacillosis in Chitwan district of Nepal. *IJASBT*, *8*, 52-60.

12.Goudarztalejerdi, A., A. Mohammadzadeh, S.V. Najafi, F. Nargesi, and S. Joudari (2020). Serogrouping, phylotyping, and virulence genotyping of commensal and avian pathogenic Escherichia coli isolated from broilers in Hamedan, Iran. *Comp. Immunol. Microbiol. Infect. Dis.*, 73, 101558.

13.Abdel-Rahman, M.A., E.A. Hamed, M.F. Abdelaty, H.K. Sorour, H. Badr, W.M. Hassan, A.G. Shalaby, A.A.-E. Mohamed, M.A. Soliman, and H. Roshdy (2023). Distribution pattern of antibiotic resistance genes in Escherichia coli isolated from colibacillosis cases in broiler farms of Egypt. *Vet. World, 16*, 1.

14.Wilczyński, J., D. Stępień-Pyśniak, D. Wystalska, and A. Wernicki (2022). Molecular and Serological Characteristics of Avian Pathogenic Escherichia coli Isolated from Various Clinical Cases of Poultry Colibacillosis in Poland. *Animals*, *12*.

15.Abd El Tawab, A.A., S.A. Abd El Aal, E.M. mazied, and D.A. EL. Morsy (2015). Prevalence of E. coli in broiler chickens in winter and summer

seasons by application of PCR with its antibiogram pattern. *BVMJ*, *29*, 119-128.

16.Habak, M.A., S.A. Khalil, and H.F. Ellakany (2020). Virulence Genes of E. Coli Isolated from Chickens and Their Resistance to Antibiotics. *AJVS*, 65.

17.Awad, A.M., N.A. El-Shall, D.S. Khalil, M.E.A. El-Hack, A.A. Swelum, A.H. Mahmoud, H. Ebaid, A. Komany, R.H. Sammour, and M.E. Sedeik (2020). Incidence, pathotyping, and antibiotic susceptibility of avian pathogenic Escherichia coli among diseased broiler chicks. *Pathogens*, *9*, 114.

18.Ibrahim, R.A., T.L. Cryer, S.Q. Lafi, E.-A. Basha, L. Good, and Y.H. Tarazi (2019). Identification of Escherichia coli from broiler chickens in Jordan, their antimicrobial resistance, gene characterization and the associated risk factors. *BMC Vet. Res.*, *15*, 1-16.

19.Kim, Y.B., M.Y. Yoon, J.S. Ha, K.W. Seo, E.B. Noh, S.H. Son, and Y.J. Lee (2020). Molecular characterization of avian pathogenic Escherichia coli from broiler chickens with colibacillosis. *Poult. Sci.*, *99*, 1088-1095.

20.Ewers, C., T. Janssen, S. Kiessling, H.C. Philipp, and L.H. Wieler (2004). Molecular epidemiology of avian pathogenic Escherichia coli (APEC) isolated from colisepticemia in poultry. *Vet Microbiol, 104*, 91-101.

21.Seifi, S., R. Khoshbakht, and A. Atabak (2015). Antibiotic susceptibility, serotyping and pathogenicity evaluation of avian Escherichia coli isolated from broilers in northern Iran. *Bulg. J. Vet. Med., 18.*

22.Enany, M.E., A.M. Algammal, S.A. Nasef, S.A. Abo-Eillil, M. Bin-Jumah, A.E. Taha, and A.A. Allam (2019). The occurrence of the multidrug resistance (MDR) and the prevalence of virulence genes and QACs resistance genes in E. coli isolated from environmental and avian sources. *AMB Express*, *9*, 1-9.

23.Adil, S. (2020). Prevalence and isolation of avian pathogenic Escherichia coli from colibacillosis affected broiler chicken in Kashmir Valley. *LSL*, *125*, 06-13.

24. Tahir A, Khan MA, Bibi K, Bibi S, Rauf F, and A. F (2021). Prevalence of Colibacillosis in Young Broiler Chicks and Antibiogram of Escherichia coli in Different Areas of Hazara Region. *Adv. Life Sci.*, 8, 238-240.

25.Matin, M.A., M.A. Islam, and M.M. Khatun (2017). Prevalence of colibacillosis in chickens in greater Mymensingh district of Bangladesh. *Vet World, 10*, 29-33.

26.Kravik, I.H., H. Kaspersen, S.K. Sjurseth, M. Jonsson, B. David, M. Aspholm, and C. Sekse (2022). High sequence similarity between avian pathogenic E. coli isolates from individual birds and within broiler chicken flocks during colibacillosis outbreaks. *Vet. Microbiol.*, *267*, 109378.

27.Hu, Q., J. Tu, X. Han, Y. Zhu, C. Ding, and S. Yu (2011). Development of multiplex PCR assay for rapid detection of Riemerella anatipestifer, Escherichia coli, and Salmonella enterica simultaneously from ducks. *J. Microbiol. Methods*, *87*, 64-69.

28.Wang, S., Q. Meng, J. Dai, X. Han, Y. Han, C. Ding, H. Liu, and S. Yu (2014). Development of an allele-specific PCR assay for simultaneous sero-typing of avian pathogenic Escherichia coli predominant O1, O2, O18 and O78 strains. *PLoS One*, 9, e96904.

التنميط المصلي الجزيئي لبكتيريا Escherichia coli في مزارع الدجاج اللاحم في محافظة

السليمانية/العراق

بهار سعيد محمد¹, نهلة محمد سعيد² سادات عبد الله عزيز ^{3,4}

أ- قسم مختبر الأحياء الدقيقة البيطرية بمديرية السليمانية في إقليم كر دستان/العراق.
2 - قسم الأحياء الدقيقة-كلية الطب البيطري، جامعة السليمانية، السليمانية، العراق.
3 - قسم التخدير -كلية العلوم الصحية جامعة جيهان-السليمانية في إقليم كر دستان/العراق.
4 - قسم العلوم الأساسية-كلية الطب البيطري، جامعة السليمانية، السليمانية المدينة، العراق.

الخلاصة

الإشريكية القولونية (E. coli) هي بكتيريا سالبة الجرام لها أهمية اقتصادية وصحية عامة. تم تصنيف سلالات الإشريكية القولونية المسببة للأمراض داء القولونية إلى سلالات مسببة للأمراض وغير ممرضة. يمكن أن تسبب سلالات الإشريكية القولونية المسببة للأمراض داء العصيات القولونية، وهو مرض بكتيري شائع في صناعة ومزارع الدواجن في المنطقة. كان الهدف من هذه الدراسة هو در اسة مدى انتشار بكتيريا الإشريكية القولونية وأنماطها المصلية (OD و OD و 810 و 080) وقابليتها لمضادات الحياتية في حالات مدى انتشار بكتيريا الإشريكية القولونية وأنماطها المصلية (OD و OD و 810 و 070) وقابليتها لمضادات الحياتية في حالات داء العصيات القولونية في محافظة السليمانية باستخدام الزراعة وفحص الحساسية لمضادات الميكروبات والأساليب الجزيئية. تم فحص 86 مزرعة دجاج فروج في الفترة من نوفمبر 2021 إلى يونيو 2022. من كل مزرعة، تم أخذ عينات (كبد وقلب) تم فحص 86 مزرعة دجاج فروج في الفترة من نوفمبر 2021 إلى يونيو 2022. من كل مزرعة، تم أخذ عينات (كبد وقلب) من من 3-5 حالات داء العصيات القولونية في دجاج اللاحم. أظهرت النتائج أن المستعمرات التي تحتوي على مورفولوجيات معان معان معدني أخضر كان الماليك الجزيئية. المعان معدني أخضر كانت إيجابية بالنسبة للإشريكية القولونية (200 و 8/0)، 2002. من كل مزرعة، تم أخذ عينات (كبد وقلب) المعان معدني أخضر كانت إيجابية بالنسبة للإشريكية القولونية (2008)، 2002)، حيث كانت 22/30 فقط (3.7%)، من من 3-5 حالات داء العصيات القولونية القولونية (2068)، 20/31)، 20/31)، مين عادى كانت 22/30، يوما كان المعان معدني أخضر كانت إيجابية بالنسبة للإشريكية القولونية (2008)، 20/31)، ميث 20.5%)، حيث كانت 22/30 فقط (3.7%)، معان معدني أخضر كانت إيجابية بالنسبة الإشريكية القولونية (2068)، 2002)، 2003)، و20/30، و20/30، و3.7%)، و3.7%، و3.7%)، و3.7%، وي المالي المالي المالي المالي من الكوليكيني ويما وي الفير وي 3.5%، يبنا كان المعنيات القولونية تم عزلها من الكنكوت المستورد من إيران (30، 4.6%) وولادية تم عاديق فيها. تم التحقيق فيها. تم اكتشوا قال في الفيرا (30، 4.6%)، 20.5%)، و3.7%)، و3.5%، و3.5%)، وي 300 كان في عالي الحويات القولونية تم عارك ما ما الكنكوت المستورد من إيران (3.6% 4.6%) وولا 4.6%) معن الحام بعمر 20-50 يومالي الفولونية تم عزلها من الكنكوت المستورد من إيران (

الكلمات المفتاحية: الاشريكية القولونية, السليمانية, مزارع الدجاج اللاحم.