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The evaluation of these modal
shapes and frequencies,
according to the static
coefficients becomes more
coriplicated ald unmanageable
for structures with many
degiees of freedom t1].
How6ver, the analysis becomes
relatively simple if for each
segment of the structure the
properties are expressed in
terms of dyDamic coeffi cients.

The dynamic stiffness
coefricients relate displace-
ments to forces at the nodal
coordinates of element. The
difference between the dynamic
and static coefficieofs is that the
d)mamic coefficients refer to
nodal forces and displacements
that vary harmonically with
time [2]. Moreover, in the
d],namic stiffness analysis the
stiffness coefficients ,tre
functions of the ftequency of
the motion [3]. The dynamic
matrix method enables exact
sinusoidally forced or free
vibration results to be obtained

t41.

In.the case of a mndom
excitation, it is necessary first
of all to oonsider frge vibration
analysis in order to find a set of
natural fiequencies and their
associated modes. The d),namic
stiffness matrix [D] h a

transcendental function of the
natural circular fiequency ofthe
structure. Accordingly, the

solution of the eigenproblem
can be obtained by trial-aad-
error procedure to find the
correct frequencies and the
corresponding modal shapes

15l.

The present paper ses

exact expressions for the
d),namic stiffness of a member
which is optionally embedded
in linearly elastic medium.
From these d,,namic stiffnesses
the overall dynarnic stiffness
matrix [Dj of the frame can be

assembled. The no.mal and
tangentiai soil reactions are
takiflg into account and
iepresented by Winkler model.
The paper is concentrated on
finding the natuml frequeneies,
modal shapes and the d),namic
i€sponse of the soil-structure
systems under hansient loading.

2- THE FINNE ELEMENT
MODELING

The part of the llame
embedded in the Winkler
elastic foundation is
r€prcsented by Iinear elastic ?-
node beam finite element of
uniform cross-section suppoded
by continuous elastic Winkler
foundation having normal and
tangential moduli of subgrade
rgactions. Three degrees of
freedom are considered at each
[ode; axial displacement,
vertical displacement and
rotation. The forces and
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moments at the nodes of each

element are exprcssed in terms

of the displacemefts and

rotations at the nodes. Basically
this cafl be achieved in tlro
ways, eith$ bY solviog lhe
exact dynamic equilib.ium
equation of motion or bY an

approximate method such as the

use of static equilib.ium
equation in Performing the
stiffoess matrix. The Irext two
seotions give details of these

two methods in which beam

elements may be considered
without damping.

o: Skttic stiffness ,nethol
According to the static

equilibrium equatiors for the
beam element. the deflected
shape in the flexuml case may

be written as [6]:

{x) =at cosh)x.co x
+ a,. cosh)x. sin )x

+ a1-sinh )x.cos Xa (l l
+ a).si h Lx.sin ).x

and fot axial extension:

bt-cosh lr + br.rinh ttx
{2)

where ai & bi are constants altd
the pafltmeters

1= (K, t4EI)0'?5 and

p=(LtE4a5.
The constants ai and b,

may be detemined in terms of
the end displacements of the

element. Using the result.d
deflection, ihe potential al1d

kinetic energies may be writtefl.
These eneagies are then

differentiated with respect to
each oflhe nodal displacoments
to give the static stiffness
coefficients ofthe element The
resulted stiflness equation and

the expressions for their
stiflness coefficients arc given
in the appendix.

The continuous mass oI
the beam finite element is

modeled using the improved
consistent mass malrix. The
expressions for the coefficients
of the matrix are given in
reference [7]. The stiffness and

mass matrices of the structure
arc assembled from the stiffness
and mass mat ices of the
elements after caiYing out the
necessary transformation.

b. Dynamic stiffness ,nerhod
The diffe.ential equations

from considering the dynamic
equilibrium equations of
motion of an infinitesimal
element are, respectively, for
flexural and axial vibmtions,

eiven by [5]:

dav K m Azv.-._+-!J = ._ (J)
El EI dr'

t1-,.t l\- tll O U_ 1.u=-.- \4)dx' EA EA At
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ia which K", K
aespectively, the normal
tangential soil reactions.

When the separation of
variables is used in the solution
of each ofthe above equations,
the time independent part of
flexural and a"rial vibrations are
givorL respectively, as:

d4v
- -)'.V=0 (s)

cDt

--'- + /' U =0 (6)
tlx'

where

ta = ((no, * K,)/EI)
and. p2 = ((mat'? - K,)/EA).

The solution of equations
(5) and (6) are depend on the

sign of parameters land p']

rcspectively. Ior I >0and
p"o;
l/ (x) = e, s6s j,x + a2 sin ),x
+ al cosh 1r + a a sinh ).x

U(x) = b,-cos 1.x + b,sit p
(8)

For 2! < 0 and p'?< 0;

Y(x) = a t. coshlt. coslx

+ a r. coshfu. sintrx

+ a,. sinh.Xx-cosfu
19)

+ a!-sinhh.sinh

U (x) = 4 cosh px + bz sir,h px
( l0)
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in which 7a = - .l' A *l p'

por the case of 2a = /2 =
0, the solutions reduced to their
standard forms in siatic
analysis. The d),namic stiffness
coefl'icients for each of tle
above cases are given in the
appetrdix.

J DYI{AMIC ANALYS]S
a. According to the static
stiffness matrix

When the static matrices
are used to simulate the
stuctuml propefiies, the
d),namic equilibdu& equation
becomes;
pzl{r}+ [r]{r}= {r} 1r iy
Wlen the force vector {P} be
equal to zero, an important
mathematical problem LTown
as itn eigenproblem is
produced;

[u]{r}+ [r]{r}= {o} 1rz;
The solution to eq. (12) can be
postulated to be ofthe form:

lr} = {$\sincoqt t"1 f rl
wtrere fu) is a vector of the
amplitudes of molion. The
substitution ofeq. (13) into eq.
(12) eives;

a'[M]b]sino(t t,,)

and

+lKlllls inar t -4) = l0\
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Since the sine term is arbitrary
and may be omitled, tbe above
equation reduced to the forml

[r]-,'[az]ltp]= lo] t r+i
According to the

Cramer's rule, the solution of
this set of simDltatreous

equalions is ofthc fonn;

r,) tol\v'=1n4ii4 'r,
Hence a nontrivial solution is
possible only when the
denominator deteminant
var shes. In other words, finite-
amplitude liee vibrations are

possible only when;

llx) ,'lul=o (16)

In geneml, eq- (i6)
results in a polynomial equation

of degree n in ro'?which should

be satrsfieil for n values of rz2 .

This polynomial is known as

the characteristic equation of
the system [81. For each of
these values of ra? satisfoing
the chamcleristic equation, iie
noamal modes which represent

the amplitude of deformations
of that mode are produced.

Accordingly, the complete
solution of the eigenproblem
requircs the evaluaiion of
eigenvalres and the
corresponding eigenvectors. In
this work, subroutine Jacobi is

used for this purpose l1l:

b. According to the dYnamic
stiffn€ss matrir

The dlalamic stiffness
coefficient Sij is defined as the
harmonic lbrce of frequency
r, at nodal coordinate i due to a

harmonic displacement ofa unit
amplitude and of the sarne

frequency at nodal coordinate j .

Accordingiy, the end forces aad

moments are related to the end

displacements by a single
matrix 4amed the d,.namic
stifthess matrix;

Dl{r}= ir}
where {r}*a {r} ".4
respectively, veotors of the
amplitudes of nodal
displacements and modal
forces. [n the absence of the
externally applied dynamic
forces, the sfl uctue vibmte
freoly. Thus, the equation of
free vibmtion of the structure

can be written as follows;

trl{v}= lo} ( 18)

Similarly, the nontrivial
solution of eq. (18) is possible
only when:

l[ol=p<,'>=o (1e)

in which p(@'?) is the

characteristic equation of the
system. The above
eigenproblem can be solved

only by iteratjve method,
because the stiffness
coefficients are functions ofthe
unknown frequency. There are

(.17)
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many numerical ,nethods rsed
in solving eq. (19). One
commonly used and simple
iechnique is the sccant nrethod.
in which a linear intcrpolatio
is employed:

o,
p(q')

fhe dvnamic a.allsis of

(20)
,.)

here -' ls the eipenvrlrre fnr
ith iterate- The 

-eigenvalues

from static stiffless method are
used as a first approximation in
eq. (20) to get a s€cond, the
second to get the third, and so
or1. Accordingly the
eigenvalues and the stiffness
coemcients are adjusted
iteratively during the solution.
In the prcsent paper, a computer
Progmfi was developcd iD
solving the eigenFoblem-

The forced random
vibration of a structure is
determined by modal analysis

[?&9]. The response analysis by
mode superposition requires,
fi$l the solution of the
eigenvalues and eigenvecto.s
then the solution of d1e

decoupled equilibrium
equations and flmally, the
superposition ofthe response in
each eigenvector 18].

4 NUMERICAI f, )L{,]I,IPLES

partially
elastic

foundations are investigated.
Both the free and the forced
vibmtions are carried out fo.
the selected case studies. The
eigenvalues and the
eigenvecto$ computed by the
dynamic matrix method are
compared with those found
when the static matrix method
is used-

Example 1
The d)'namic behavior of

pile group supporting a
vibrating shucture is
considered. Plane section of the
system is shown in Fig.(1)
which consists of three piles,
embedded in elastic media,
with a cap. The normal and
tangential soil reactions are
taken into account and
neglecting the end bearing
resistance. System pioperties
are collected in two ways. In
the first the static stiffness and
mass matrices are used while in
the second the d),namic
stiflness matrix is considered.

The main variables
considered in this problem.are
the soil reactions. The variation
of the natural circular
fr€quencies corresponds to the
first four modes are plotted
versus the varialion of the soil
modulus K" as shown in

plane frames
embedded il

p@,' ) Pkt'.-t)
lo, -o, t)
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Fig.(3). The tangential soil
reaction Kr is taken as one-half
the llormal. The simi-]og plot
shows that, for low values of
I(, the curves for all values

ofa cluster together, and begin

to diverge beyond a cefiain
value ofKn. The variation ofthe
first four natural circular
frequoncies, computed by static

and dynamio stillness methods,

with the variation of soil
modulus are given in table (1).
It is shown that the difference
in values of ,) between the hvo
methods are increased for
higher modes. Morcover, the

differences are also ircreased
when the soil modulus is

increased.
Table (2) gives the

normalized modal shap€s

coresponding to the first three
modes with two values of soil
modulus. The values computed

acoording to the dynamic
matrix method represent the
exact values. The table indicate
a quite difference between the
iwo methods.

Example 2
Plane vibration of two'

story two-bay rcinforced
concrete building frame will be

considered. The liame is

supported on piles embedded in
elastic soil. Both normal and

tangedial soil rcactions are

taken into account. These

reactions arc assumed to be

ooDsiarts along the dePth of
soil. Geomet ic properties of
the iiame are shown in Fig.(2-
a). It is assumed that the liame
has been subjected to the blast
toading as shown in Fig.(2-b).
The dynamic analysis using
dynamic stiffness is caried oul
to find the eigenYalues,

eigenvectors and the structural
rcsponse to the blast loading.
The varialions of the
eigenvalues for diffeaent values

of soil modulus are Siven in
table (3). The eigenvecto$ for
the first three modes arc given
in table (4) for ihe two methods
of analysis. The variations in
magflitude of the first four
natural frequencies bY the
variation of soil modulus are
given ir Fig. (4).

The horizontal displace-
ments with time in nodes I and

7 are plotted in Figs. (5 and 6)
rcspectively. Three values of
soil modulus are considered as

shown in the figures. It is

shown that the response of the
nodes above the ground are

much less affected by the
variation of soii reactions than
the deflections in the node

embedded in the soil.

5 CONCLUSION
This paper gives th€

exact dynamic stiffnesses for a

beam €Iement with axial force
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embedded in an elastic
medium. These stiffnesses

enable exact, siousoidally
forced or free vibratioE results

to be obtained,
The validity of the

equations Present€d has been

confimed by compa.ing the
eigenvalues and eigenvectors

with those obtained from the
static stiffness method. It is

found that the elrols involved
in natural frequencies, when the
static matrices arc used. are

small for different values of soil
roactions. However', there is a

quite difference in the modal
shapes for the two methods of
analysis-

The effect of the soil
modulus on natural frequencies

is also studied. It is corctuded
that the values of natural

frequencies cluster together for
lov,/ values of soil modulus.
Finally, it is shown that the

response of the Parts above the
groirnd are much less affected

by the variaiion of soii
reactions than thal in the Parts
embedded itr the soil.
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NOTATIONS

a,. b,

B,D
E
Fi
Hi
I
K.
K1

L
p (o')
m
M,

S,J

u (x)

IJ

v(x)

t

lol
[r]
[.v]
{r}
{r}
ld\
e,

Cross sectional area

Constanls.
Constants.
Modulus ofelajlicitY.
Veftical lorco at node i.

lhrizonta] lorce at node i

l\1onlent of ineriia
Normal soil reaciion
Tangenlial soil r.action.
Lelr$h oflhe elenlent.

Characteristic equation oi the syslcn

\4ass per unit lcnglh
NfomeDt at node i
Number of degrces of frcedom'

Dvnamic stiifu ess coeffi cient'

Displecement lLrnclions in axiai cise

Horizontal displacetrcnt at node I

Time iidePeDdent part of displ' Fun$ion ill

flexurai case.

Di,olaccnlent {ulictlon irl flerural crsc

Ve;icaldisplacemenl at node i

l ime indepenrtelll part of displacenient finrotion

in axial case.

Time.
Dynamic stitTness malrix.

Sialic slillness matrir.

Mass malrix

DispLacement vector.

Vector of the amplitlrdes ofmolion

Rotation at node i.

Parametcrs gilen in the aPpendix-
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I Modal shapes.

2i,,; Parameters-

,, Natural liequency
Table (1) Variation of the first four [atural circular freq[eacies

by soil modulus (Example 1).

@, :Natural frequencies according to the dynamic stiffness method.

a, : Nahral frequencies according ro lhe staric sliffness merhod.

Table (2) Normalized modal shapes correspotrdirg to the lirst
three modes with difr€rent values ofsoil modulus (Example 1).

a- Soil modulus; K,, = 1E2., Kr:0.5 K,.

Soil

{Normal)
(N/n1)

Natural frequencies

1L2 016 0.17 0.21 t62 0.59 8.r6 ti.,1.l
lEl U,5? 0.56 0.66 t.80 i lt5 855 8.?5
tE4 I 9',1 1.79 2.09 2.09 5.54 5.51 l0 35 I1.48
lE5 5.45 5.63 6.51 6.53 125,4 12.56 :0 10 26-|a
IE6 t5.47 17.04 24.20 ?0.21 29.83 31.15 56.27 ?8 8,1

1t:7 41.29 ,19.l3 57.19 58.53 3r.03 84.73 ll5 6l 1.10 67

lE8 88.?8 133.29 L.,1.8.1 t50.29 189.31 194.10 29\.12 295.86
tE9 178.82 299 68 2t ) .21 339 69 117.49 432 26 571.86 564.8?

tL l0 19129 773.t4 62.t.i, E99.45 69i 78 1075.45 1141.11 rl05.l0

Node D.O.F. Normalized modal shapes

a,'I o:, S), . o,',
0 00484 0.00529 -0.00I66 -0 0003] -0.0002i 0.00120

z 0 00240 0.00:97 0.00488 0 00518 -0 006i r -0.00578
l -0.00011 -0.00066 0.00004 0.00001 0.u0lJ8 0.00145

2
4 0.00419 -0 00r30 -0.00145 0.00001 0.0r557 0.0156,r

5 0.00?53 0.00428 0.00483 0.0051I -0.00867
6 -0.00066 0.00001 0 00003 0.00158 0.00t44

b- Soil modulus; Kn - 1E6, K - 0.5 K.
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No.maliz.rl mod*l shaPts
D.O.F.

o o'l 4,1

00

-0.0002?

0 00061 -0!0115
I I -0.00554 -0.00548

,000812 "0.00824
1 -rt 00!9ll -0 00176

-r) 00!24 a.oo184 a.oo182
,] 0.00026

-0.00095

-anorl

-0 00i79 :rlroo229

2

-0 0001.1 -0.000110

-0.00419 -0-00757 -0.00748

5 -0.00196 "0.002r0

0.00001 0.0 0.00077
6 -ar 00001 ,0.00662 0.Lr

Oi;; Normalized modal shapes according to the dynarnic stiffiess

mefiod ' "_^ ') rhe static sliffness
Cl'il Normalized modal shapes accorontg r'

method.

rabre (3) variationir th*fJ,l:,&*$t ;l:ur,r 
{requencies

A;"tt -G"q,'""tt"*"cording 
to the d)'namic stittne ss memr

ro,' , t tut*nl t"qu"n"i"s according to the static stiffness method'

NalSoil

(Nl.')
'-':.f-

6.3 r 6.56
0.54 0.89 0.81 1.10 r98

lEl 517 8.78 10.00
2.81 280 566

tE4 2.12 19.68

5159

25 8li
8.86 8.E5 12.15 l2llJ

] t-,1tE5

v-s:

4.79
55.71

a92 21 53 21.56 Ir.7i
,t.'6IE6

l11
'79.42 97.,16 99.10

14.0,1 14.54 tl.ll 51.t6

58.10 158.19

iar::

t63.07
lE8

'iEe

16.93 1910

165.19 188.89 191.01

18.84 2t.47 51.84

6t 06 165 19 r55 50 t97.10 i9.l.5u

I El0 20.0i 21.80
stiffness metho d.
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Tahl€ l4) Noroalized modal shap€r correspoodidg to the firsl
rhree mod;s with soil modulus K* = I84. K, - 0 5 K" (Erample 2l'

O,r;Normalized rnodal shrpcs accordirg to lhc dynamic *ifhress

method.
Oi,r; NormalizeLl modal shapes according to dre statio slifi'ness

method.

APPENDIx----- tf,ii.n,b.' 
"q 

ra 'lorrr,ere'r'1el'merr\\il ra\idl lo-(' La1

be wriiten as

H\

F,,L

Ml
H2

F,.L

L

(21)

L

'lhc coefficients {-q yt.e.6.a. and p are given in the tables

(s&6).

E

L

; o o -4 o

olvo€
ovtlo1,
tloo-to
o -e -6 o Y

o 6 B o -v

o )i, ,1

r l, /
FlJer
t, ut.A

-v v.-ll
o )l-e, r

D.O.F. Normalized modal shapes

o_, o,'z o;t

I

1 -0.0r01+ ,0 010:lri 0 00715 0.0u629 0.001,18 0.000,1,

2 -0 0014J -0.00441 -0 00 tl8 -0.00093 0.0086,1 0.00?82

3 0.00074 0.00074 -0.00066 -0.00073 -0.00r.r4 -0 0013u

2

l0 -0.00714 ,0.00739 0.00312 -0 00.125 -0 00,168

u -0.00415 -0.00,141 ,0 00n8 0 00r.11 0.00864 0.00782

l2 0 00075 0.000r4 -0 00066 -0.00058 -0 00110 -0 00126

7

19 -0.00419 -0_04426 0.00214 0 00?19 ,0.00791 "0.0080.1

20 -0.00145 -0.004,11 -0.0013|i ,0.00125 0 00854 0.00r82

2l 0.00009 0.00081 0.00051 -0.0004,1 -0.00052 -0.00048

l0

28 0.00005 0.0020J -0.0005? -0.00062 0.00855 ,0.00968

29 -0.00445 -0 00441 -0.00]]3 -0.001?1 0.00861 0.00782

30 0 00037 0.00077 ,0.0002? -0 0001.1 0.i10019 -0 0!0r l
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Table (5} StiffDess cocfl'icienls for beam element trilh:
'i?"i,7. i-- "".t,2,s - ",iv':99-""'1'rlynamistiftess cocrfi ticnts

t; a.sc * s'c' 1v,'D(SC' + S'C)4vl : r(.sc + s'C' )
2vlD(S 

I + 5'r)
2'lr(.S ? + s'? )

2D(S'C' - SC)D(.!C' - s'c)2D(S'C' - SC)

4vlrD(sc' + s'C)rl,'p(s + s')+,y'olsc'+s'c1

yz i(S'r - S'?)
't/ 

t(l-CC' )V//(s': -,S'z)

Table l6l Slifftress coemcienrs for srial elemenl $ ithl
' -il-'"i, r ,'irl *. ". r,:+lY:

--"*r"-r'Jj.ff"-lfftre$ 

!E
-' - --t-o'-*t

L
C'B ctl

B I
ry B li

B

v
vlS" v/S vlS"

L.lt, /tA f ' , .r:m'K,l,EA)' L(Krm@'?)E4f

468

C.B 1



Er&&l!shEb8]- y aLL4'lqai'?l]0t

:'Ei1)

+b+t-+itsbr

!1ei.is .l er.-P:e (l)

1,{(,) i..
ii,i\.

ii+i#;iiii:;:"i.
ffiffi:l'r'":x'"'tu;:;; *-1t:..r2-* : -.'

.ri'. { - l

.d.ilrue':': 'f ' 
_r''e /:l

"ls:.uc'!.. 
fr.me

469



Ens.& Technolow. Vol.24. No 5.2005

,,."t ""..".,

;1
ij
!

i,c.lJ: .orcl.. or'1€ 'c:Lt' 'i'!LcrrrstJ.n.ies bY s.L n..JL:s

i

470



Ens.& Tedrnoloqv. Vol.24. No.5. 2005

o: c. !: .t .' .!

-! is)

c.008 -
: c'.

^ ll cor

: o o':
i D1:o -j "-
i: 0.c0i -.

" (o:
o la6

-0.003 -
- o.all 

- 
- _ i--_-l- rr ;s r; oL o.: r: r.o

:is lE) ,rc.ija.ic iis. c.ere:i .' ..ae :

4',71,




