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H I G H L I G H T S   A B S T R A C T  
• A Finite Element Analysis, of an Aircraft 

model in a wind tunnel using ANSYS Fluent 
and Structural Analysis, is presented 

• Artificial Intelligence-based machine 
learning models are presented, namely SVM 
and kNN regression models 

• The stress distribution on the aircraft front 
wing is predicted by Machine Learning 
models, and RMSE  compared their accuracy 

 Wind tunnels are essential for examining aircraft model aerodynamics, accurately 
simulating real-world conditions, and enhancing design and performance 
evaluations. This study introduces a novel technique to improve the time and 
accuracy of stress distribution forecasts in wind tunnel simulations. This method 
combines Finite Element Analysis (FEA) with two regression models: Support 
Vector Machine (SVM) and k-Nearest Neighbors (kNN). The investigation begins 
with a thorough analysis of ANSYS fluent flow data, which reveals intricate fluid 
dynamics details within the wind tunnel. A comparative analysis of stress 
projections, supplemented by Root Mean Square Error (RMSE) metric, 
demonstrates the proposed methodology’s viability. High accuracy is noted in the 
SVM-based model, as evidenced by its 2.1% RMSE, which surpasses the kNN 
model's 5.6% RMSE. Notably, the stress distribution calculation took almost 2 
hours in ANSYS.In contrast, it required only 10 seconds in SVM and 3 seconds in 
kNN, showcasing the time-efficient attributes of these models where they solely 
depend on the trained data. Moreover, the computational efficacy of the SVM and 
kNN models is highlighted, emphasizing their flexibility in stress analysis. This 
integrative approach introduces a promising potential in engineering simulations, 
yielding precise stress distribution forecasts that have the potential to advance 
aircraft design methodologies and wind tunnel evaluations. 
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1. Introduction 
The field of aeronautics consistently aims for innovation and progress to enhance the safety, effectiveness, and overall 

performance of aircraft Al-Haddadet al. [1], Al-Haddadet al., [2]. Comprehending how tension is distributed across a model 
during wind tunnel tests holds significant importance for aircraft design and operations Cui et al. [3], Westin et al., [4]. The field 
of aerospace engineering continues to depend heavily on wind tunnel testing as a means to conduct comprehensive examinations 
of aerodynamics and structural performance inside controlled environments Smolka et al. [5], Chen et al., [6]. In this context, 
precise examination of stress distribution plays a pivotal role in guaranteeing the structural robustness and optimal functionality 
of aircraft Li et al., [7].    

This research aims to explore a unified approach that combines Finite Element Analysis (FEA) with Artificial Intelligence 
(AI) to enhance the precision of stress distribution forecasts for aircraft models within wind tunnel simulations. In this context, 
machine learning-based models Al-Haddad and Jaber [8], namely support vector machine and k nearest neighbor, will be adopted 
instead of time-consuming simulations. For decades, FEA has been a foundational tool across engineering disciplines, enabling 
engineers to replicate complex structural behaviors by breaking them down into manageable elements Al-Haddad and Jaber [9], 
Shijer [10], Dubaish and Jaber [11], Yassa et al., [12]. Nevertheless, with the escalating complexity of designs and analyses, 
there arises a necessity to explore supplementary methodologies that ensure precise predictions and, notably, curtail simulation 
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durations. In recent times, the emergence of Artificial Neural Networks (ANNs) has brought about a transformative shift in 
tackling intricate challenges Al-Haddad et al., [13]. The capacity of machine learning-driven models to assimilate intricate 
associations from data renders them highly suitable for tasks involving pattern recognition and predictive capabilities Casabianca 
and Zhang [14], Xiaoqian [15], Moussafir et al., [16]. The convergence of FEA and machine learning engenders an avenue to 
amplify predictions encompassing stress distribution and geometry deformation, capitalizing on the distinctive strengths of both 
methodologies. 

 This study aims to showcase how the fusion of FEA with regression models can yield a more precise stress distribution 
model for aircraft models subjected to wind tunnel assessments with an extremely shorter amount of time. The initial phase of 
FEA pertains to fluid flow simulations executed within ANSYS Fluent. In contrast, the subsequent phase involves static structural 
analysis for stress computations facilitated by incorporating regression models. This approach underscores the latent benefits of 
integrating artificial intelligence to enhance traditional engineering evaluations. 

2. Finite element analysis 
FEA stands as a foundational methodology in the arsenal of engineers, particularly in the realm of structural engineering and 

simulation. It serves as a pivotal approach for dissecting and forecasting intricate behaviors exhibited by intricate structures when 
subjected to a myriad of loading conditions Ogaili et al., [17] Flaieh et al., [18]. The significance of FEA derives from its capacity 
to provide a systematic and computationally efficient framework for comprehending essential mechanical traits such as stress 
distribution and deformation. Through the dissection of intricate systems into discrete components, a comprehensive 
understanding of localized behaviors is attained, thereby fostering optimization of designs and enhancement of structural 
integrity. This section immerses into the fundamental underpinnings of FEA and its application in the context of aircraft models 
within wind tunnel simulations. The procedure encompassing the generation of finite element models, specification of material 
attributes, and imposition of boundary conditions to mimic real-world scenarios is delineated step by step. Moreover, an in-depth 
exploration of the advantages and limitations of FEA is undertaken, paving the way for a profound grasp of its role as the bedrock 
of the integrated methodology. 

2.1 Computer-aided design 
The use of computer-aided design (CAD) has significantly revolutionized the field of engineering by enabling the creation, 

alteration, and evaluation of intricate designs inside a simulated environment Chang [19]. CAD is pivotal in wind tunnel 
simulations as it generates meticulous geometric representations of the wind tunnel and the aircraft prototype model. The wind 
tunnel exhibits a length of 3 meters and a cross-sectional dimension of 0.8 meters by 0.8 meters, as illustrated in Figure 1a. This 
configuration constructs a controlled testing milieu that facilitates precise scrutiny of airflow dynamics and structural responses. 
Figure 1b elucidates the precise measurements of the aircraft prototype model in millimeters, which will be subjected to ANSYS 
simulations. These dimensions furnish the groundwork for subsequent finite element investigations and stress distribution 
prognostications, pivotal for validating the model's performance and ensuring its safety within the wind tunnel. Additionally, it's 
imperative to underline that the inlet is subjected to a boundary condition of 5m/s² while a pressure outlet is elected. 

 
(a) 

 
(b) 

Figure 1: Geometrical approach: (a) Geometry of wind tunnel, (b) Geometry of aircraft model 

2.2 Computer-aided engineering 
The landscape of engineering analysis has been revolutionized by Computer-Aided Engineering (CAE), equipping engineers 

with robust tools to realistically simulate and assess intricate systems. Within this context, ANSYS software emerges as a 
cornerstone of CAE methodologies, enabling the seamless amalgamation of fluid dynamics and structural analysis to 
comprehensively explore the intricate interplay between aerodynamics and structural integrity. As depicted in Figure 2, the 
simulation process epitomizes a harmonious collaboration between ANSYS Fluent, specializing in fluid flow analysis, and 
ANSYS Mechanical, adept at static structural analysis. This conjunction facilitates an all-encompassing scrutiny of the intricate 
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nexus between aerodynamic forces and the consequential stress distribution on the aircraft prototype model. Through this 
symbiotic simulation strategy, a heightened comprehension of how fluid flow impacts the structural behavior of the model is 
achieved, thus paving the way for enhanced accuracy in stress prediction. 

 
Figure 2: ANSYS program widgets 

3. Machine learning models 

3.1 Support vector machine 
SVM, an abbreviation for Support Vector Machine, constitutes a machine learning framework operating within a statistical 

learning paradigm, catering to classification and regression undertakings. The architecture of this aforesaid entity is rooted in 
establishing hyperplanes within a space characterized by high or infinite dimensions, thereby facilitating a heightened level of 
generality. As depicted in Figure 3, the fundamental tenet of SVM revolves around identifying an optimal hyperplane within the 
feature space to demarcate datasets effectively. In the illustration, the classification boundary is represented as H, accompanied 
by two parallel lines denoted H1 and H2, which traverse the data points nearest to H from the respective data types. These data 
points find expression as support vectors, while the gap between H1 or H2 and H signifies the geometric separation. Consequently, 
the primary objective of SVM training hinges on maximizing this geometric margin. 

 
Figure 3: SVM algorithm illustration [20]  

                                                                   
The optimization function integrates a regularization parameter to counteract overfitting concerns. Furthermore, utilizing a 

convex function is instrumental in circumventing the potential stumbling block of encountering local minima facilitated by 
proficient methodologies. Within the ambit of support vector regression, the Kernel function assumes a pivotal role, and it can 
manifest in three distinct types: linear, polynomial, or radial basis function (RBF) Al-Mukhtar [21]. The RBF is expressed by 
Equation 1 below Al-Mukhtar [22]. Here, x and y represent different dosage measurements of arbitrary inputs. Determining the 
value of g is achievable via cross-validation, a process that duly magnifies its influence, and this value is automatically 
established. 

𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾 = 𝑒𝑒−𝑔𝑔|𝑥𝑥−𝑦𝑦|2                      (1) 

 Kernel function: Denoted as 𝐾𝐾(𝑥𝑥,𝑦𝑦), similarity or dissimilarity between two data points, x, and y, is measured by it. 
 𝑒𝑒: The base of the natural logarithm, approximately equal to 2.71828, is used; it's a mathematical constant. 
 𝑔𝑔 (𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔): A parameter in the Gaussian RBF kernel controls the shape of the kernel function. A positive constant 

determines the width and complexity of the curve. 
Now, let's explain the function's operation: 

 When the kernel function is applied to two data points, x and y, the Euclidean distance between them, |𝑥𝑥 − 𝑦𝑦|, is 
computed. 
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 This distance is squared, yielding. |𝑥𝑥 − 𝑦𝑦|2. 
 The presence of the negative sign in front of gamma (-g) implies that the resulting value will decrease exponentially as 

the distance between x and y increases. Consequently, the kernel function assigns a high value to data points that are close 
(i.e., similar) and a low value to those that are far apart (i.e., dissimilar). 

 The exponential term 𝑒𝑒−𝑔𝑔|𝑥𝑥−𝑦𝑦|2 further amplifies this behavior, making the measure of similarity/dissimilarity highly 
sensitive to the spatial separation between data points. This heightened sensitivity, facilitated by the Gaussian RBF kernel, 
effectively captures intricate data relationships. 

The essence of SVM's operation involves mapping data into a high-dimensional subspace, enabling the classification of 
data points that might otherwise lack differentiation. A separator is unveiled between the distinct categories, and the data undergo 
manipulation to facilitate the depiction of this separator as a hyperplane. The parameters of the proposed model are outlined in 
Table 1. 

Table 1: Parameters of the proposed SVM classification model 

Data Value 
Cost 1.02 
Regression loss epsilon 0.09 
Kernal RBF 
Iteration limit 200 

   
The important parameters of the proposed SVM classification model are shown in Table 1. These parameters are critical in 

determining how the SVM algorithm works and how well it executes the classification job. Let us go through each parameter: 

 Cost: In SVM, the cost parameter (C) specifies the trade-off between increasing the margin (distance between decision 
border and support vectors) and reducing classification errors. The value of C is set to 1.02 in this situation. A higher C 
value causes the model to prioritize correct training data point categorization, possibly resulting in a tighter margin. In 
comparison, a lower C value prioritizes a broader margin, tolerating some misclassification. 

 Regression Loss Epsilon: In SVM regression tasks, this parameter, designated as epsilon, is employed. It specifies a 
tolerance range within which no penalty is imposed for mistakes. The epsilon value in this classification model is set at 
0.09. This indicates that any classification mistake within this margin is accepted, and only errors outside this limit are 
punished. 

 The kernel function controls the data transformation, enabling SVM to locate non-linear decision boundaries in a higher-
dimensional feature space. The Radial Basis Function (RBF) kernel was chosen in this scenario because of its efficacy 
in capturing complicated correlations in data. 

 Iteration Limit: The iteration limit determines the maximum number of iterations or optimization steps the SVM 
algorithm performs during training. The iteration limit in this model is set to 200, which means that the algorithm will 
cease optimizing after this number of iterations. 

These parameters determine the SVM classification model's behavior and performance as a whole. The values for these 
parameters are determined depending on the issue's features, and they may be fine-tuned via experimentation to produce the best 
classification results for the current dataset and job 

3.2 K nearest neighbor 
The k-nearest neighbors (kNN) method is a straightforward and intuitive technique in supervised machine learning. It is 

proficient at handling classification and regression tasks. The setup procedure is characterized by its simplicity and ease of 
understanding. Nevertheless, one notable limitation of this methodology is its decreased velocity when the quantity of employed 
data expands. The methodology produces positive results regarding visual and numerical classification precision. Figure 4 
illustrates the procedural steps involved in the k-nearest neighbors (kNN) method, while Table 2 presents the specific parameters 
used in the model suggested. The primary goal is to maximize efficiency while decreasing the time required for completion. 

Table 1: Specifications of the kNN model 

Data Value 
Number of Neighbors 6 
Metric Manhattan 
Weight Distance 
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Figure 4: kNN algorithm illustration [23]  

 
As previously indicated in Table 2, the kNN algorithm employs diverse distance calculation approaches, encompassing 

Euclidean and Manhattan distances, to gauge the likeness or nearness between two data points. Among these methodologies, the 
Euclidean distance enjoys broad application and can be articulated mathematically through the ensuing Equation 2: 

 

 𝐷𝐷(𝑋𝑋,𝑌𝑌) = �∑ (𝑥𝑥𝑖𝑖 − 𝑦𝑦𝑖𝑖)2𝑛𝑛
𝑖𝑖=1        (2) 

 

The expression representations: 

 𝐷𝐷(𝑋𝑋,𝑌𝑌): This represents the Euclidean distance between two vectors, 𝑋𝑋 and 𝑌𝑌. 
 𝑋𝑋 =  (x₁, x₂, x₃, . . . , xₙ): X is an n-dimensional vector with n components or features. 
 𝑌𝑌 =  (y₁, y₂, y₃, . . . , yₙ): Y is another n-dimensional vector with the same number of components. 

Now, to explain the formula: 

 (𝑥𝑥𝑖𝑖 − 𝑦𝑦𝑖𝑖): This calculates the difference between the corresponding components of X and Y for each i from 1 to n. 
 ∑ (𝑥𝑥𝑖𝑖 − 𝑦𝑦𝑖𝑖)2𝑛𝑛

𝑖𝑖=1 : This squares each of these differences. 
 ∑(xᵢ - yᵢ)²: This symbol (∑) represents the summation, which means adding up all these squared differences for i from 

1 to n. 
 �∑ (𝑥𝑥𝑖𝑖 − 𝑦𝑦𝑖𝑖)2𝑛𝑛

𝑖𝑖=1 Finally, the square root of the sum of these squared differences is taken. 

3.3 Assessment Methodology 
Predictive models' accuracy and dependability are critical in determining their feasibility for real-world applications. A 

quantitative assessment of the correctness of predicted data becomes necessary in the field of stress distribution prediction to 
examine the robustness of the suggested technique. This assessment is aided by using the Root Mean Square Error (RMSE), a 
well-known statistic that provides a thorough insight into the model's prediction capabilities. As shown in the equation below, 
the RMSE quantifies the average size of deviations between predicted and actual values, producing a single result that 
incorporates the model's overall accuracy. The RMSE is calculated by taking the square root of the mean of squared errors as 
stated in Equation 3, which provides information on the amount and spread of mistakes throughout the dataset. This statistic, in 
addition to capturing trends and patterns, identifies occasions when forecasts deviate significantly from actual results. The 
practical relevance of RMSE is highlighted in assessing the accuracy of stress distribution estimates derived from the combined 
method, including FEA and ML-driven models, as discussed in the next section of this inquiry. The goal is to create a quantitative 
benchmark that captures the congruence between planned and actual stress distribution data while leveraging the effectiveness 
of RMSE. The results of this evaluative measure are critical in evaluating the usefulness of the proposed technique and offering 
insight into its potential to improve stress prediction accuracy in wind tunnel simulations. 

 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =  �1
𝑚𝑚
∑𝑖𝑖=1𝑚𝑚  (𝑥𝑥𝑖𝑖 − 𝑦𝑦𝑖𝑖)2 × 100          (3) 

4. Results and Discussion 

4.1 FEA utilizing fluid flow fluent and static structural 
A comprehensive study was conducted to delve into the pressure and velocity distribution experienced by the aircraft 

prototype model within the wind tunnel, aiming to understand the intricate fluid dynamics showcased by the ANSYS Fluent 
simulations. As depicted in Figure 5, these findings provide a visual glimpse into the complex interplay of airflow. Notably, 
despite the initially low input velocity, the results reveal a delicate tapestry of varying velocity magnitudes enveloping the surface 
of the prototype model within the wind tunnel's confines in Figure 5 a. This velocity pattern exhibits a range from 1 to 12m/s² as 
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depicted in Figure 5 b, showing the profound influence of the intricate turbulence dynamics that unfold throughout the 3-meter 
wind tunnel. This nuanced range underscores the intricate nature of the aerodynamic environment, capable of generating dynamic 
flow characteristics even when set in motion by modest initial velocities. Furthermore, the visualization of flow pressure 
distribution during the wind tunnel simulation presents a pressure spectrum ranging from 0.2 Pa to 5 Pa. These quantified pressure 
variations are tangible evidence of the dynamic aerodynamic forces in the simulation setup. These fluctuating pressure gradients 
confirm the significance of fluid flow dynamics on the aircraft prototype model and underscore the necessity of considering these 
intricate interactions when evaluating stress distribution. The ANSYS Fluent simulations unveil a captivating dance between 
velocity and pressure distributions, emphasizing the intricate nature of the aerodynamic surroundings within the wind tunnel. 
This array of results underscores the vital importance of in-depth fluid flow analyses when unraveling the mechanical behavior 
of the aircraft prototype model during the testing phase. 

 
(a) 

 
(b) 

 

Figure 5: Fluid flow fluent simulation: (a) Static pressure, (b) velocity magnitude 

Furthermore, the stress, measured in Pa, and the corresponding deformation in mm of the prototype's structure under static 
structural analysis are illustrated in Figure 6. The observed deformation in Figure 6b varies from 0.006 mm in the midsections 
to 0.012 mm in the front and back sections. On the other hand, stress in Figure 6a ranges from 1000 Pa in the front and back 
sections to 5000 Pa in the midsection. These findings lay the groundwork for the subsequent discussion, which delves into 
integrating the fluid flow data into the comprehensive framework of FEA and ML-driven models, with the overarching aim of 
refining stress distribution predictions. 

                    
(a) 

 
(b) 

  
Figure 6: Static structural: (a) Stress distribution; (b) Deformation 

4.2 ML-driven based models utilizing SVM and kNN 
Table 3 compares real stress levels to stress predictions produced from the SVM and kNN regression models. Where the 

models solely depend on the trained values of FEA of a signal run, and the rest is forecasted depending on the ML-based models. 
These forecasts are derived using an integrated approach that blends FEA with machine learning methods to improve stress 
distribution projections for the aircraft model's front wing during wind tunnel simulations. The processing time needed for these 
predictions is a significant feature of this comparison. Compared to standard FEA computations, the SVM and kNN models 
perform well. Notably, the FEA study took roughly 2 hours to calculate the stress distribution for the provided aircraft span 
values. On the other hand, the SVM model finished the stress prediction procedure in only 10 seconds, while the kNN model 
was even quicker, taking just 3 seconds. This large difference in computing time highlights ML-driven models' computational 
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edge, giving them a more time-efficient choice for stress distribution forecasts. Returning to the stress predictions, the actual 
stress levels vary from 1022 Pa to 4899 Pa across various span values, representing variances in the stress encountered by the 
aircraft model's front wing inside the wind tunnel. We see a remarkable agreement with the real stress levels when we examine 
the SVM-predicted stress levels. For instance, for a span of 0.1 m, the actual stress is 3035 Pa, which is quite similar to the SVM-
predicted stress of 3025.84 Pa. This degree of concordance demonstrates the SVM model's ability to effectively capture stress 
patterns. The kNN forecasts, on the other hand, show minimal differences from the actual stress levels. The real stress is 2050 
Pa at a span value of 0.05 m, whereas the kNN-predicted stress is 2132.35 Pa. These little differences show the complexities of 
stress prediction using kNN and the difficulty in capturing subtle stress fluctuations. Adding numbers for Root Mean Square 
Error (RMSE) offers a quantitative measure of prediction accuracy. The RMSE of the SVM model is 2.1%, suggesting an average 
variation of around 2.1% from real stress levels. In contrast, the RMSE of the kNN model is 5.6%, showing a significantly greater 
margin of error. These RMSE figures verify the SVM model's improved accuracy in stress prediction for the aircraft's front wing. 

In conclusion, Table 3 highlights the promise of the combined FEA-SVM and FEA-kNN techniques in stress prediction and 
the efficiency of machine learning-driven models. The substantial decrease in computing time, with SVM and kNN models 
completing predictions in seconds, demonstrates these models' computational superiority over conventional FEA approaches. 
This demonstrates the effectiveness of integrating Finite Element Analysis and machine learning approaches to improve stress 
distribution estimates while greatly shortening the prediction process. 

Table 2: Stress distribution and predictions 

Aircraft span value (m) Stress (Pa) SVM Predicted Stress (Pa) kNN Predicted Stress (Pa) 
0 1022 1003.73 968.51 
0.05 2050 2058.49 2132.35 
0.1 3035 3025.84 3199.29 
0.2 4233 4252.62 3981.52 
0.25 4899 4893.76 5137.23 
0.3 4230 4218.11 4409.94 
0.4 3032 3034.76 3225.61 
0.45 2052 2049.66 2134.79 
0.5 1025 1030.55 1028.56 

 
Figure 7 visually represents the results reported in the previous table, visually explaining stress distribution patterns 

throughout the aircraft model. Figure 7 a depicts stress lines crossing the model's span in three dimensions. In contrast, Figure 7 
b illustrates a front-view projection of this three-dimensional viewpoint, allowing for a more in-depth investigation of the stress 
distribution. A strong alignment is shown in the graphical depiction between the blue line indicating real stress levels determined 
from FEA-based analysis and the orange line showing SVM-based stress predictions. This remarkable concordance strengthens 
the SVM regression model's accuracy, which is especially attractive given its capacity to produce quick forecasts in seconds. 
The SVM model's temporal efficiency becomes a notable benefit, proving its dependability and applicability. Furthermore, the 
kNN regression model performs well, with stress predictions that nearly match the actual stress levels. Although somewhat less 
accurate than the SVM model, the kNN predictions maintain a noteworthy accuracy. Notably, the kNN model's appropriateness 
for improving static structural analysis of wind tunnel-affected airfoil models is still apparent, bolstering its prospective 
contributions to engineering simulations. 

 
(a) 

 
(b) 

Figure 7: Machine learning-based models’ assessment: (a) 3D View of the actual and two prediction models;  
                         (b) 2D front view of the actual and two prediction models 



Luttfi A. Al-Haddad et al. Engineering and Technology Journal 42 (01) (2024) 135 - 143 
 

142 
 

 

5. Conclusion 
This study introduced an extensive methodology to enhance stress distribution predictions in wind tunnel computational 

simulations for aircraft models. The approach entails the integration of FEA with SVM and kNN regression models, yielding 
accurate and efficient forecasts. The investigation meticulously examines ANSYS Fluent findings, unveiling intricate fluid 
dynamics within the wind tunnel. Subsequently, the SVM and kNN regression models are introduced, showcasing their 
proficiency in stress distribution forecasting by deciphering complex data patterns. The comparative analysis of stress 
projections, accompanied by the RMSE, underlines the proposed methodology's efficacy. Notably, the SVM model demonstrated 
exceptional accuracy, reflecting its 2.1% RMSE, surpassing the kNN model with a 5.6% RMSE. Importantly, the stress 
distribution calculations using FEA took approximately 2 hours, whereas SVM and kNN required only 10 seconds and 3 seconds, 
respectively, underscoring the significant time-saving attributes of these models. Overall, the computational efficiency of SVM 
and kNN is highlighted, emphasizing their adaptability in stress analysis. This comprehensive approach ushers in a promising 
trajectory in engineering simulations, enabling precise stress distribution forecasts essential for advancing aircraft design 
methodologies and refining wind tunnel evaluations.  
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