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H I G H L I G H T S   A B S T R A C T  
• Eigenfunctions of thin beam vibrations used 

as kernel functions  
• Generalized integral transform method 

converts governing equations to integral and 
then algebraic equations 

• Exact solutions obtained for an infinite 
spectrum of natural frequencies of beams on 
Winkler foundations 

• Method provides accurate solutions 
compared to previous approaches 

 The determination of free vibration frequencies of thin beams on Winkler 
foundations is important in their design to avoid resonant failures when the 
excitation frequency equals the least natural frequency. This article presents the 
determination of natural transverse vibration frequencies of Euler-Bernoulli beams 
on Winkler foundations using the Generalized Integral Transform Method 
(GITM). The problem is governed by a fourth-order partial differential equation 
(PDE) and boundary conditions dependent on the end restraints. The governing 
PDE is transformed into an algebraic eigenvalue problem for harmonic vibrations 
and harmonic response. Analytical solutions of the governing equations are 
difficult and complex. Hence, other solution methods are needed. The main merit 
of the GITM is the apriori selection of kernel functions as orthogonal functions of 
vibrating thin beams with equivalent boundary conditions. This prior selection of 
the kernel functions and their orthogonality properties simplify the resulting 
integral equation formulation to an algebraic problem in the GITM space. 
Eigenfunctions of freely vibrating thin beams with identical restraints are used in 
the GITM to construct the displacement function as infinite series in terms of 
unknown parameters. The solution of the algebraic equation yielded exact 
solutions to the candidate problem. Exact solutions for frequency parameters are 
obtained for the four cases of boundary conditions for the various values of 
foundation parameters considered. The effectiveness of the GITM in obtaining a 
simplification of the governing PDE and reducing the problem to an algebraic 
problem is illustrated. 
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1. Introduction 
The natural vibration frequencies of Euler-Bernoulli (EB) beams resting on Winkler foundations is an important dynamic 

characteristic of vibrating thin beams necessary to design such structures to avoid resonant failures. Resonant failures occur in 
dynamic structures when the excitation frequencies due to applied loads from dynamic machines coincide with the system's 
natural frequencies. Various theories have been presented to describe beams under flexure, vibration, and buckling. They include 
the Euler-Bernoulli beam theory (EBBT) [1]. Timoshenko beam theory (TBT) [2]. Reddy beam theory, Levinson beam theory 
[3], Krisha Murty [4] beam theory, and shear deformation beam theories proposed by Ghugal [5], sayyad and Ghugal [6], other 
researchers. EBBT also called the classical thin beam theory, is constructed for beams with span to-depth ratio greater than 20, 
based on the hypothesis that plane cross-sections that are originally orthogonal to the middle surface of the beam before 
deformation would remain plane and orthogonal to the middle surface after deformation. The orthogonality hypothesis implies 
that transverse shear deformation is neglected in formulating the governing equation. Consequently, this limits the applicability 
to thin beams with insignificant transverse shear deformation effects. 

TBT and other shear deformation beam theories consider transverse shear deformation in constructing the governing field 
equations by modifying the orthogonality hypothesis in the EBBT. This renders them suitable for moderately thick and thick 
beams with a span-to-depth ratio of less than 20. However, this paper considers thin beams and uses EBBT. Elastic foundation 
models have been developed using discrete parameter models and continuum parameter models. Winkler, Pasternak, Filonenko-
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Borodich, Vlasov, and Hetenyi proposed discrete parameter foundation models. The most common discrete parameter foundation 
model was proposed by Winkler as a bed of independent, linear elastic springs which cannot interact with adjoining springs and 
whose reaction is directly proportional to the deflection, w, of the beam. In the Winkler model, one parameter – the Winkler 
constant, k, is used to express the soil reaction ps at a point as [1,2]. 

 sp kw=   (1) 

The Winkler model is thus a one-parameter model, widely used due to its simplicity. The main issue of the Winkler model 
is its inability to consider shear interaction. This has prompted the development of other models to account for shear interaction. 

Vlasov, Hetenyi, Pasternak, and Filonenko-Borodich's discrete parameter models consider shear interaction by introducing 
the springs' coupling. This results in the two-parameter representation of the soil reaction in terms of k1, and k2, where k1 is a 
parameter analogous to the Winkler soil constant, and k2 is the second foundation parameter representing the coupling interaction 
of the springs. The soil reaction ps for two parameter discrete foundations becomes the more complex equation given by Mama 
et al., [7]. 

 

2

1 2 2s
d wp k w k
dx

= −
  (2) 

This paper, however, considers EB beams resting on Winkler foundations. 
Euler-Bernoulli beam theory accurately describes thin beams where transverse shear deformation effects are disregarded. 

Timoshenko beam theories and other shear deformable beam theories developed variously by Reddy, Levinson, and other 
scholars properly model moderately thick and thick beams where transverse shear deformation effects are accounted for. Elastic 
foundation models for the effect of the elastic foundation include models proposed by Winkler, Vlasov, Pasternak, and Hetenyi, 
simplified elastic continuum models, and elastic continuum models. 

This article studies the vibration of the EB beam resting on the Winkler foundation using the Generalised Integral Transform 
Method (GITM). The governing equation for the problem is a partial differential equation (PDE) of the fourth order. Generally, 
the problem has been solved in the literature using analytical and numerical methods for solving boundary value problems 
(BVPs). 

Adair et al. [8], have used the Variational Iteration Method to solve the free transverse vibration problems of Timoshenko 
beams resting on Pasternak foundations. Balkaya et al. [9], and Agboola and Gbadeyan [10], have used the Differential Transform 
Method (DTM) to study the vibrations of elastic beams resting on an elastic foundation. The DTM was found as an amenable 
transformation tool based on Taylor series expansions, resulting in acceptable accuracy. 

Kacar et al. [11], have studied the natural transverse vibration problems of thin beams resting on variable one-parameter 
foundations using the Differential Transform Method (DTM). Their formulation assumed constant linear and parabolic variations 
along the major axis of the Winkler foundation parameter. They considered both ends simply supported (SS) or clamped (CC) 
and found solutions for the cantilever beam on an elastic foundation.  

Boudaa et al. [12], have used the Spectral Element Method to study the eigenfrequency problems of beams on elastic 
foundations. Khnaijar and Benamar [13], have studied the discrete physical model for nonlinear foundation beam problems for 
various elastic foundation models. Yayli et al. [14], have presented analytical solutions to the vibration problem of a beam on an 
elastic foundation with elastically restrained ends. Al-Azzawi and Daud [15], have studied the natural transverse vibrations of 
non-prismatic beams resting on nonhomogeneous elastic one-parameter foundations. 

Motaghian et al. [16], have presented a new solution based on the Fourier Series theory for solving natural, free transverse 
flexural vibration problems of non-uniform beams on variable elastic foundations. Soltani and Asgarian [17], have presented a 
new hybrid method for natural transverse vibration analysis of functionally graded Euler-Bernoulli beams with non-prismatic 
cross-sections resting on a two-parameter elastic foundation. Coskun [18], presented a study on the response of a finite beam on 
a tensionless two-parameter (Pasternak) foundation subjected to a sinusoidal loading. 

Chen [19], investigated the vibration of the prismatic beam on an elastic foundation using the Differential Quadrature 
Element Method (DQEM) and obtained accurate solutions for the eigenfrequencies for various boundary conditions. Mutman 
and Coskun [20] have solved the natural vibration problems of non-uniform thin beams on elastic foundations using Homotopy 
Perturbation Method (HPM) and obtained satisfactory results for the natural frequencies of transverse vibrations for different 
boundary conditions considered. 

Franciosi and Masi [21], have studied the natural transverse vibrations of beams resting on two-parameter elastic 
foundations. Rahbar-Ranji and Shahbaztabar [22], have also presented studies of free vibration problems of beams resting on 
Pasternak foundations using Legendre polynomials interpolating functions and the Rayleigh-Ritz method. Zhou [23], presented 
a general solution to the transverse free vibrations of beams resting on variable Winkler elastic foundations. 

Ike [24], used the Fourier sine transform method to solve the natural vibration problem of thin beams on a one-parameter 
foundation and obtained closed-form solutions for Dirichlet boundary conditions. Ike [25], used the Sumudu transform method 
to solve the free transverse vibration problems for thin beams and obtained closed-form solutions for the eigenfrequencies for 
various boundary conditions. 

The literature review reveals that GITM has not been used to study the free vibration problems of EB beams resting on 
Winkler foundations. Thus, This paper aims to use the GITM to determine the free vibration frequencies of thin beams on 
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Winkler foundations for various boundary conditions. The research is motivated by the successful applications of the GITM by 
Ike et al. [26], and Ike [27], to the bending and buckling analysis of thin plates and the flexural analysis of clamped rectangular 
thin plates, respectively. 

GITM is adopted in this research because it does not require pre-selection of the basis functions but uses the eigenfunctions 
of vibrating thin beams with equivalent boundaries as the kernel functions, thus rendering the problems as integral equations, 
which further simplify to algebraic equations in the transformed space. The orthogonality properties of the kernel functions are 
also useful properties that aid in further simplification of the resulting calculus issues involved in the GITM. 

The innovative aspect of the paper is the first principle, a systematic presentation of the GITM for solving free vibration 
problems of EB beams resting on Winkler foundations for various boundary conditions. 

2. Theory 
The governing equation of the vibrating Euler-Bernoulli beam on the Winkler foundation is the inhomogeneous partial 

differential equation (PDE) given as Equation 1 by [10]. 

4

4 ( , ) ( , )wEI x t kw x t
x

∂
+ +

∂

2

2
( , ) ( , );w x tA q x t
t

ρ
∂

=
∂        

0 x l≤ ≤
 

In Equation (3) ( , )w x t  is the transverse deflection, x is the longitudinal axial coordinate of the beam, t is time, l is the 
length of the beam, A is the cross-sectional area of the beam, ρ is the mass density of the beam, k is the Winkler modulus or 
Winkler constant, E is Young’s modulus of elasticity, I is the moment of inertia, ( , )q x t  is the applied dynamic load. 

For free harmonic vibrations, 0( , )q x t =  and the governing equation simplifies to the homogeneous PDE expressed in 
Equation 4. 

 

4 2

4 2 0
w wEI kw A

x t
ρ

∂ ∂
+ + =

∂ ∂   (4) 

For harmonic vibrations, the dynamic displacement ( , )w x t  is expected to be harmonic. Hence, let 

 ( , ) ( )exp( )nw x t W x i tω=   (5) 

where i is the imaginary number, 

 1i = −   (6) 

ωn is the natural frequency 
 is the displacement shape function. 

Using Equation (5), Equation (4) becomes Equation (7) 

 

4
2

4 0( ) ( ) expn n
d WEI k A W x i t
dx

ρ ω ω
 

+ − = 
    (7) 

Hence, 

 

4
2

4 0
( ) ( ) ( )n

d W xEI k A W x
dx

ρ ω+ − =
  (8) 

Dividing Equation (8) by EI gives Equation (9) 

 

24

4 0
( ) ( )nk Ad W x W x

EIdx
ρ ω −

+ = 
    (9) 

Alternatively, Equation (9) can be expressed as Equation (10). 

 

24
4

4 4 0
( ) ( )nAd W x W x

EIdx
ρ ω

β
 

+ − = 
    (10) 

( )W x

(3) 
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where  
44

k
EI

β =
  (11) 

Let  

2 2
4n nA m

EI EI
ρ ω ω

Ω= =
  (12) 

where 4β4 is the beam on the Winkler foundation parameter, Ω4 is the frequency parameter;  is the mass per unit length 
of the beam. Then, 

 

4
4 4

4 4 0
( ) ( ) ( )d W x W x

dx
β Ω+ − =

  (13) 

3. Formulation With GITM 
In the Generalized Integral Transform Method (GITM)  is expressed using linear combinations of the eigenfunctions 

fn(x) of a vibrating EB beam on the Winkler foundation with identical end restraints. This is usually constructed as infinite series 
of the general form given by Equation (14). 

 1
( ) ( )n n

n
W x c f x

∞

=

= ∑
  (14) 

where cn are the unknown parameters of the function  The generalized integral transform of the governing equation 
becomes: 

 

4
4 4

4
1 10

04 ( )( ) ( ) ( )
l

mn n n n
n n

d f x dxc f x c f x
dx

β Ω
∞ ∞

= =

 
=+ − 

 
∑ ∑∫

  (15) 

Simplifying, Equation (15) yields Equation (16). 

 

4 4

1 0

4 0( ( ) ( ) ( ) ( ) ( ))
l

iv
n n m n m

n
c f x f x f x f x dxβ Ω

∞

=

+ − =∑ ∫
  (16) 

Further simplification yields Equation (17): 

 

4 4 4

1 0

4 0( ( ) ( ) ( ) ( ) ( ))
l

n n n m n m
n

c f x f x f x f x dxα β Ω
∞

=

+ − =∑ ∫
  (17) 

The orthogonality considerations are given by Equation (18): 

 ∫ 𝑓𝑓𝑛𝑛 
1
0 (𝑥𝑥) 𝑓𝑓𝑚𝑚 (𝑥𝑥) 𝑑𝑑𝑥𝑥 = 0  if 𝑛𝑛 ≠ 𝑚𝑚  

 ∫ 𝑓𝑓𝑛𝑛 
∞
0 (𝑥𝑥) 𝑓𝑓𝑚𝑚 (𝑥𝑥) 𝑑𝑑𝑥𝑥 ≠ 0  if 𝑛𝑛 = 𝑚𝑚  (18) 

From orthogonality considerations, Equation (17) simplifies further to Equation (19): 

  

4 2 4 4 2

1 0

4 0( ) ( ) ( )
l l

n n n n
n o

c f x dx f x dxα β Ω
∞

=

 
 + − = 
 

∑ ∫ ∫
 (19) 

Let  

2

0

( )
l

n nf x dx I=∫
  (20) 

m

( )W x

( ).W x
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 ( )4 4 4

1
4 0( )n n n n

n
c I Iα β Ω

∞

=

+ − =∑   (21) 

For nontrivial solutions, 

 
4 4 44 0( )nα β Ω+ − =   (22) 

 
2

4 4 44 n
n n

m
EI
ω

Ω α β= + =   (23) 

 4 4 24( )n n n
EI EI
m A

ω α β λ
ρ

= + =   (24) 

 where 
2 4 44( )n nλ α β= +   (25) 

4. Results 

4.1 Case 1 
Euler-Bernoulli (EB) beams with both ends 0,x =  x l= clamped (CC), as shown in Figure 1 is considered. The boundary 

conditions are: 0 0( , ) ( , )w x t w x l t= = = =   

 
0 0( , ) ( , )w wx t x l t

x x
∂ ∂

= = = =
∂ ∂   (26) 

fn(x), which satisfies the boundary conditions, is the eigenfunction for EB on the Winkler foundation with clamped edges at 
x=0, and x=l, fn of x is given by [23]: 

 cos cosh (sin sinh )n n n n n nf x x x xα α β α α= − − −  
 (27)  

where  

 

cos cosh
sin sinh

n n
n

n n

l l
l l

α α
β

α α
−

=
−  (28) 

αn is the nth root of the transcendental Equation: 

1cos coshl lα α =   (29) 
Solving using Mathematica software, the roots of Equation (29) are given by Equation (30): 

 1 4 73004.lα =   
 2 7 85321.lα =   
 3 10 9956.lα =   
 4 14 13717.lα =   
 5 17 27876.lα =   

 
( )1

2nl nα = π +
 (30) 

Using Equation (25), the natural frequency parameters of clamped-clamped EB beams resting on the Winkler foundation 

are presented in Table 1 for various values of K0 ranging from 0 1,K =  0 10,K =  0 100,K =  0 1000K =  and 
0 10 000, .K =   

The natural fequnecy parameters for the first four modes are shown in Table 2 alongside previous solutions obtained using 
HPM, DTM, ADM, and DQEM. 
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Figure 1: Euler-Bernoulli beam on Winkler foundation with clamped ends 

Table 1: Natural frequency parameters λn of clamped-clamped EB beam on Winkler foundation (first four modes of vibration) 

K0 = 4β4l4 λ1 
Present study GITM 

λ1 
(Balkaya et al. [9]) 

λ2 
Present study GITM 

λ2 
(Balkaya et al. [9]) 

1 4.7324 4.7324 7.8537261 7.85372 
Exact (1) 4.730042  7.853203  
10 4.7534886 4.75349 7.858366685 7.85836 
100 4.9503938 4.95039 7.9043264 7.90432 
1000 6.223914255 6.22391 8.325120385 8.32512 
10,000 10.12285818  10.8392112  
K0 = 4β4l4 λ3 

Present study GITM 
λ3 
(Balkaya et al. [9]) 

λ4 
Present study GITM 

λ4 
(Balkaya et al. [9]) 

1 10.995788 10.9958 14.13725848 14.1373 
Exact (1) 10.99559    
10 10.99748 10.9975 14.13805473 14.13805 
100 11.01435738 10.0144 14.14600986 14.14601 
1000 11.17901383 11.179 14.22483276 14.2248 
10,000 12.52597028  14.94928785 14.9493 

 

Table 2: ωn for clamped-clamped EB beam resting on Winkler foundation for 1,A I E l= = = =  
4 4

0 4 1,K lβ= =   

             
2

n nω λ=  
Method ω1 ω2 ω3 ω4 
Present method 22.395615 61.681014 120.907355 199.86208 
HPM (Mutman and Coskun [13])  22.3956  61 .6809 120.908 199.862 
DTM (Balkaya et al. [9])  22.3733  61.6728 120.903 199.859 
ADM  (Mutman and Coskun [13])  22.3956  61.6809 120.908 199.862 
DQEM (Chen [12])  22.3956  61.6811 120.910 199.885 

  

4.2 Case 2 
Euler-Bernoulli beam on Winkler foundation simply supported at 0,x =  clamped at .x l=  The case of simply supported-

clamped EB beam on Winkler foundation shown in Figure 2 is considered. 
The boundary conditions are: 

0 0( , )w x t= =  
0( , )w x l t= =  

                                                                      0 0( , )w x t′′ = =  
0( , )w x l t′ = =  

                                                               
(31) 

where the prime over w(x,t) denotes the partial derivative with respect to x coordinate. 
fn(x) which satisfies the boundary conditions, is the eigenfunction of SC thin beam on Winkler foundation at the nth 

eigenvalue: 

 ( ) sin sinhn n n nf x x xα β α= −   (32) 

where  

 

sin
sinh

n
n

n

l
l

α
β

α
=

  (33) 
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αn are the roots of the transcendental Equation 

 tanh tann nl lα α=   (34) 

The exact solutions for αnl are: 

1 3 92660246314.lα =  
2 7 068582745629.lα =  
3 10 21076122813.lα =  

                                                   (35) 

The solutions for the natural frequency parameters of SC thin beams are presented in Table 3 for the first four modes and 
various values of 4β4l4. 

 
Figure 2: Simply supported-clamped (SC) EB resting on Winkler foundation 

Table 3: Natural frequency parameters of SC thin beams on Winkler foundation 

4β4l4 λ1 
GITM 
Present study 

HPM 
(Coskun [11]; Mutman 
and Coskun, [13]) 

λ2 
GITM 
Present study 

HPM 
(Coskun  [11]; Mutman and 
Coskun, [13]) 

1 3.930723 3.930776 7.0693077 7.0693 
10 3.967258  7.0756679  
100 4.2868606  7.1383457  
1000 5.9313786  7.689689  
4β4l4 λ3 

GITM 
Present study 

HPM 
(Coskun [11]; Mutman 
and Coskun, [13]) 

λ4 
GITM 
Present study 

HPM 
(Coskun [11]; Mutman and 
Coskun, [13]) 

1 10.210435 10.210436 13.351905 13.35189 
10 10.212548  13.35285  
100 10.233607  13.36229  
1000 10.43738  13.455615  

4.3 Case 3 
Cantilever beam on Winkler foundation 
The natural vibration characteristics of a cantilever beam on the Winkler foundation shown in Figure 3 are considered. The 

boundary conditions are: 
At the clamped end, x = 0, 

 0 0( , )w x t= =    (36a) 

 0 0 0( , ) ( , )x t w x tθ ′= = = =   (36b) 
At the free end, x = l 

 

2

2 0( , ) ( , )d wM x l t EI x l t
dx

= = − = =
  (36c) 

 Hence, 0( , )w x l t′′ = =   (36d) 

 

3

3 0( , ) ( , )d wQ x l t EI x l t
dx

= = − = =
  (36e) 

 Hence, 0( , )w x l t′′′ = =   (36f) 
 

( )nf x  given by Equation (37) satisfies the boundary conditions of the clamped-free beam, since 
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 0 0 0( ) ( ) ( ) ( )n n n nf x f x f x l f x l′ ′′ ′′′= = = = = = = =   (36g) 

Where Equation (36g) follows from Equations (36a), (36b), (36d), and (36f)  
 
The eigenfunction for the cantilever beam on Winkler foundation is: 

 ( ) (cosh cos ) (sinh sin )n n n n n nf x x x x xα α β α α= − − −   (37) 

 

cosh cos
sinh sin

n n
n

n n

l l
l l

α α
β

α α
+ =  +    (38) 

where αn are the roots of  

 1cosh cosn nl lα α = −   (39) 

The eigenvalues found using computer software tools Mathcad, Wolfram Mathematica, and iterative methods for solving 
transcendental Equations are: 

 1 1 87510.lα =   

 2 4 69409.lα =   

 3 7 85476.lα =   

 4 10 99554.lα =  (40) 

 2 1
2

( )
n

nl π
α

−
=  for 5n ≥   

The frequency parameter for the first four vibration modes and various values of non-dimensional foundation parameters 
are presented in Table 4. 

 
Figure 3: Cantilever beam on Winkler foundation 

 

Table 4: Frequency parameters for the natural vibrations of cantilever beams resting on Winkler foundation 

4β4l4 λ1 
Present 
study 

λ1 
(Kacar 
et al. 
[4]) 

λ2 
Present 
study 

λ2 
(Kacar et 
al. [4]) 

λ3 
Present 
study 

λ3 
(Kacar   
et al. [4]) 

λ4 
Present 
study 

λ4 
(Kacar et 
al. [4]) 

1 1.91192 1.91192 4.696505 4.69651 7.855276 7.85527 10.995728 10.995728 
10 2.174598 2.1746 4.718076 4.71808 7.859914 7.85991 10.99742 10.99742 
100 3.25578 3.25578 4.919094 4.91910 7.9058466 7.90584 11.0142977 11.0142977 
1000 5.64071 5.64071 6.208254 6.20825 8.3264215 8.32642 11.178957 11.178957 

4.4 Case 4 
Simply supported (at 0,x =  and )x l=  EB beam on Winkler foundation.The simply supported thin beam on the Winkler 

foundation shown in Figure 4 is considered. The simply supported boundary conditions are : 

 0 0( , ) ( , )w x t w x l t= = = =   (41a) 
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 0 0( , ) ( , )w x t w x l t′′ ′′= = = =   (41b) 

 
Hence 

 0 0 0( ) ( )n nf x f x′′= = = =   (41c) 

 0( ) ( )n nf x l f x l′′= = = =   (41d) 
The eigenfunctions for the simply supported thin beam on the Winkler foundation problem is 

   (42) 

 where    (42a) 

The frequency parameters for the simply supported thin beam on the Winkler foundation are presented in Table 5. 

 
Figure 4: Simply supported thin beam on Winkler foundation 

Table 5: Frequency parameters λn for the free vibration of simply supported Euler-Bernoulli beam on Winkler foundation 

Foundation 
parameter 
4β4l4 

Present study 
λ1 

(Rahbar-Ranji and 
Shahbaztabar [15]) λ1 

(Zhou 
[16]) λ1 

Present 
study 
λ2 

(Rahbar-Ranji 
and 
Shahbaztabar 
[15]) λ2 

(Zhou 
[16]) 
λ2 

1 3.149624682 3.1496  6.284192925 6.28426  
10 3.219291184 3.2193 3.220 6.293239752 6.2932 6.293 
100 3.74836425 3.7484 3.748 6.381633293 6.3816 6.382 
1000 5.755620336 5.7556 5.755 7.11210704 7.1121 7.112 
10,000 10.02426382 10.0243  10.36873551 10.3687  

Foundation 
parameter 
4β4l4 

The present 
study (GITM) 
λ3 

(Rahbar-Ranji and 
Shahbaztabar [15]) 
λ3 

(Zhou, 
[16]) λ3 

The present 
study(GITM) 
λ4 

(Rahbar-Ranji 
and 
Shahbaztabar 
[15]) λ4 

(Zhou, 
[16]) λ4 

1 9.425076572 9.4251  12.5664966 12.5665  
10 9.427762796 9.4277 9.427 12.56763024 12.5676 12.568 
100 9.454499103 9.4545 9.454 12.57894997 12.5790 12.579 
1000 9.710176091 9.7102 9.710 12.69050177 12.6905 12.690 
10,000 11.56520706 11.5652  13.67163814 13.6716  
Foundation 
parameter 
4β4l4 

The present 
study (GITM) 
λ5 

(Rahbar-Ranji and 
Shahbaztabar [15]) 
λ5 

(Zhou 
[16]) λ5 

1 15.70802772 15.7080  
10 15.70860826 15.7086 15.709 
100 15.71440961 15.7144 15.715 
1000 15.77207279 15.7721  
10,000 16.31668659 16.3167  

5. Discussion 
The fourth-order linear PDE governing the free transverse harmonic vibrations of EB beams resting on Winkler foundations 

has been solved in this work using the GITM. The assumption of harmonic response simplified the governing PDE to a fourth-
order Ordinary Differential Equation (ODE) shown in Equation (13) in terms of the displacement shape function  Using 
the GITM and linear combinations of eigenfunctions of EB beams with identical boundary conditions,  is constructed as 
the infinite series given in Equation (14). The GITM formulation of the problem results in the integral equation presented in 
Equation (15). Simplifying the problem using the orthogonality of the eigenfunctions used in formulating  gives the algebraic 

( ) sinn nf x x= α

,n
n
l
π

α = 1, 2,3, 4...n =

( ).W x
( )W x
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eigenvalue problem in Equation (19). Solving the eigenvalue problem gives the general solution for the natural frequency 
parameter λn for any n mode of vibration as Equation (25). Eigenfunctions of EB beams with clamped ends are employed in the 
general solution to obtain the natural frequency parameters λn presented in Table 1 for the first four modes of vibration and for 
various values of the foundation parameter 4β4l4 ranging from  to  Table 1 shows that the vibration 
frequencies increase as the foundation parameter 4βl4 increases. 

Table 1 shows that values obtained in the present study for λn for  are identical with results obtained by Balkaya 
et al., [9]. Table 2 further confirms the agreement of the GITM with solutions using other methods. 

A similar procedure was used to obtain λn for for thin beams with SC boundaries, and the results shown in Table 
3 agree with results obtained by Coskun [18] and Mutman and Coskun [20] for   

The eigenfunction for the cantilever beam on the Winkler foundation was used to obtain λn for various values of the 
foundation parameter and for the first four vibration modes, as given in Table 4. Table 4 also shows identical results from Kacar 
et al., [11]. 

The GITM solution for simply supported thin beam on the Winkler foundation is presented in Table 5 for various values of 
the foundation parameter 4β4l4 and for the first five modes. The results agree with the solutions presented by Rahbar-Ranji and 
Shahbaztabar [22], and Zhou [23]. Tables 1 – 5 show that as the foundation parameter increases, the natural frequencies of 
vibration increase. 

6. Conclusion 
In conclusion, this paper has studied the free vibration frequency analysis of Euler-Bernoulli beams resting on Winkler 

foundations using the Generalized Integral Transform Method (GITM). Unlike other methods of solving BVPs, GITM does not 
require a pre-selection of the basis functions as the eigenfunctions of vibrating thin beams with equivalent boundary conditions 
are selected as the kernel functions, thus converting the BVPs to integral equations and ultimately to algebraic equations. 

 GITM transforms the problem of free transverse vibrations of the EB beam on the Winkler foundation to an algebraic 
eigenvalue problem. 

 The method uses the eigenfunctions of vibrating EB beams on the Winkler foundation with identical boundary 
conditions. Thus the boundary conditions are aproiri satisfied by the resulting algebraic problem. 

 The solution can give all the vibrating frequencies for all the possible vibration modes and hence gives closed-form 
solutions for λn for   

 The present solutions for the natural frequency parameters λn are exact and agree with previously obtained solutions 
that used the Homotopy Perturbation Method, (HPM), Adomian Decomposition Method (ADM), Differential 
Transform Method (DTM) and Differential Quadrature Element Method (QQEM). 

 The natural frequencies increase as the foundation parameter 4βl4 increases for all the cases of boundary conditions 
studied. 

Notations 
E   Young’s modulus of elasticity 
I   moment of inertia 
x  longitudinal coordinate variable 
t   time 
A   cross-sectional area of the beam 
w(x, t)   transverse deflection 
k   Winkler modulus or Winkler constant 
q(x, t)   applied dynamic load 
i  imaginary number 

    displacement shape function 
ωn   natural frequency 
4β4   beam on Winkler foundation parameter 
Ω4   frequency parameter 

    mass per unit length of the beam 
cn   unknown parameters of the function   
fn   eigenfunction of a vibrating Euler-Bernoulli beam resting on the Winkler foundation for the nth mode. 
n   vibration mode 
αn   nth root of transcendental characteristic vibration equation 
βn   parameter defined in terms of αn 
K0   dimensionless foundation beam parameter defined as 4β4l4 
λn   Natural frequency parameter for the nth vibration mode 
∑   summation 
≤   less than or equal to 

4 44 1lβ = 4 44 10, 000.lβ =

1, 2,3, 4n =

1, 2,3, 4n =
4 44 1.lβ =

1, 2,3, 4...n =

( )W x

m
( )W x
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≥    greater than or equal to 

      nth ordinary derivative with respect to x 

∫      integral 
GITM      Generalized Integral Transform Method 
PDE(s)     Partial Differential Equation(s) 
ODE(s)    Ordinary Differential Equation(s) 
DQEM     Differential Quadrature Element Method 
ADM      Adomian Decomposition Method 
HPM      Homotopy Perturbation Method 
BVP(s)     Boundary Value Problem(s) 
EB      Euler-Bernoulli 
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