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Abstract  

A free vibration analysis of isotropic thin circular plate with various edge conditions have been studied 

in the present work. This study involves the obtaining of natural frequencies by solving the 

mathematical model that governs the vibration behavior of the plate using finite difference method. The 

numerical results of  natural frequencies of circular plate are presented for different cases such as 

aspect ratio, curvature effect, grid size and boundary conditions. A good results was obtained from 

finite difference procedure compared with that obtained from the finite element analysis using Abaqus 

Package program. 
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 اشتقاق جديد بطريقة الفروقات المحددة لحساب التردد الحر للصفائح الحديدية المنحنية

 

 الخلاصة

ملت الدراسة اشت. النحيفة الدائرية الصفائح تحليل في المحددة الفروقات طريقة حساب الاهتزاز الحر باستخدام دراسة البحث هذا في تم

النتائج المتحصلة من  .الفروقاتطريقة على ايجاد الاهتزاز الحر من خلال حل المعادلات الرياضية الخاصة للصفائح المقوسة باستخدام 

, درجة التقوس , حجم التقسيم العرض الى الطول نسبةالتحليل باستخدام طريقة الفرقات المحدةة لهذه الصفائح ولحالات مختلفة مثل 

 العناصر طريقة من المتحصلة النتائج مع جيدا توافقا المحددة الفروقات طريقة من المتحصلة النتائج أعطت  . وع المساندللصفيحة و ن

 .الدراسة هذه ضمن المأخوذة المتغيرات أنواع ولكافة ABAQUS برنامج وباستخدام المحددة

 

  .الفروقات المحددة ,التحليل العددي طريقة، الألواح النحيفة ،  التردد الحرالألواح المقوسة ، كلمات البحث: 

 

1. Introduction 
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Plates, as structural elements, are extensively used in many fields of engineering including aerospace, 

civil structures, hydraulic structures, containers, ships, instruments, and machine parts. When in 

service, they are subjected to dynamic loadings the effect of which is very critical. Much research has 

been conducted into plate behavior, using a wide range of methods. An excellent monograph of the 

early literature relating to vibration analysis of plates was published by Leissa 
[1]

. 

The small thickness makes the plate susceptible to various types of effective such as buckling modes 

and vibration modes. In engineering application, however, plate problems often involve consideration 

of dynamic disturbances, produced by time-dependent external forces or displacements. Dynamic loads 

may be created by moving vehicles, wind gusts, unbalanced machines, etc. 

Most researchers 
[1][2][3]

, have used classical thin plate theory in their formulations to study the plate 

response; where the flexural vibration of the thin plate is characterized by a fourth-order partial 

differential equation. A direct solution of such equation might be difficult and most of the reported 

solutions are based on numerical methods such as finite difference method 
[4,9]

, and finite element 

method 
[4], [5]

. 

A number of approaches were proposed by different researchers to solve the differential equation of 

plats. Finite Element and Finite Difference methods are the well-known approaches to be the most 

widely used numerical procedures to find the solution of the mentioned differential equation. Finite 

Element method advantageous is that it is very suitable for practical engineering problems of complex 

geometries. However, the computational complexity involved in this method constitutes the main 

disadvantage of this technique, especially in real-time application. On the other hand, the method is 

fast enough to analyze, relatively easy to program, and also seems to be more convenient for uniform 

structures such as plate system. The main serious impediment of this method is that it is not suitable for 

problems with complex and irregular. Moreover, since the finite difference method is difficult to vary 

the size of the difference in particular regions, it is not suitable for problems with rapidly changing 

variables such as stress concentration problems. However, because of the geometry uniformity of the 

thin plates, finite difference method seems to be more applicable and faster to calculate deformations, 

forces, stresses and strains and natural frequencies. 

The objective of the present study is to develop an accurate and efficient method for determining the 

natural frequencies of isotropic curved thin plate with different boundary conditions, aspect ratios, 

curvature and grid size.  

 

2. Description of The Problem 

The curved plate considered in this study is an isotropic plate with constant thickness (h) and has an 

inner radius Rin and outer radius Rout as shown in Fig. (1). The circular plate divided by a polar mesh. 

The interval of mesh in the direction of the radius is (β), while (φ) is the angle of each interval of mesh 

in the direction of central angle, the interval  between the nodes in the perpendicular direction on the 

radius is denoted as (γ i-1 , γ i ,     γ i+1). 

 

3. Governing Equations and Finite Difference Formulation and Solution 

The governing equation of motion in polar coordinate for a curved isotropic plate of uniform thickness 

and without in plane load is
 [7]

: 
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where: 

  q=  is distributed load applied on the plate surface 

  ρ=  density of the material 

  h= thickness of the plate 

  D= flexural rigidity 

   

These variables could be expressed as follows: 

 

 

 

 

 

 

 

therefore, the final governing equation of motion of isotropic circular plate will be as follows: 

   

 

 

The solution of equation ( 4 ) may be accomplish by finite difference method, as shown in Fig. ( 2 )  : 

where: 

λ = ω
2
. ρ.h 
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 By applying the finite difference scheme at the interior nodes of the divided plate, the following 

system of simultaneous linear equations in matrices will be obtained
[ 6 ]

 

 

 

 

Where{w} is column matrix whose elements, ωi, represent the amplitude of the free vibration, [ K] is a 

square matrix obtained from the finite difference expression of the biharmonic operator , while[B] is 

a diagonal matrix representing the constants in the term of Eq. (7), and λ= ω2.ρ. Notice that Eq (7) is 

an Eigen-value problem. For a given thickness (h) and plate–aspect ratio a b (b= radius* substantial 

angle(rad)), the Eigen-value (ω) can be determined numerically by using any relevant technique. The 

smallest Eigen-value gives the most (fundamental) free vibration factor. 

 

4. The Eigen-value Problem Solution 

The Eigen-value problem may be solved by various numerical or analytical techniques. Numerical 

methods for nonlinear problems usually depend on iterative procedure. The procedure of the adopted 

numerical method that is used in this study is outlined, as follows
(8)

: 

1. Compute the stiffness matrix [K] from applying the coefficient patterns for finite difference 

operators Fig.(3) at the interior nodes of the plate. 

2. Compute the geometry matrix [B] from applying the coefficient patterns for finite difference 

operators Fig.(3) at the interior nodes of the plate. 

3. Compute the inverse matrix for the stiffness matrix [K] (by Gauss-Jordan or other suitable 

technique) 

4. Make [C] matrix by multiplying the inverse matrix [K]
-1

 by the geometry matrix, as follows: 

 

[C]=[K]
-1

 [B]  
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[C]{w}=λ
*
[I] {w}  

 

(C-λ
*
[I]){w}=0    

 

where 

λ* =   =  

 

where the largest Eigen-value ( ) of the matrix [K]-1is the reciprocal of the smallest value of the 

Eigen-value(λ) of the matrix [K]. 

By applying the following steps (a-d) to Eq. (10), the minimum Eigen-value can be obtained: 

a- Assume initial trial vector  which may be taken equal to 1.0 

b- Substitute the vector  at Eq.(10) 

c- Approximate value of ( ) is obtained by dividing the first element of the column matrix[C]  

by w1, 

( ) = First row of [C]  / w1 

where w1 is the first element of the matrix   

d- The second approximate value of the characteristic vector is obtained by: 

 

These steps can be continued until the errors become sufficiently small where the used error criteria is 

the average of the sum of the absolute differences: 

 

Thus; the natural frequency of isotropic curved thin plate with constant thickness will be: 

 

 

5. Boundary Conditions 

The situation of the boundary condition of the circular plate should be characterized to find the 

solution. Thus the boundary conditions of a circular plate with a radius (r) may be defined as: 

1. Fixed edge (clamped edge) : 
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2. Simply supported edge: 

  

 

6. Numerical Results 

The derived numerical schemes for determining the natural frequency (w) were programmed in order 

to analyze different cases for an isotropic curved plate. Results of the numerical analysis for the present 

investigation was compared with those obtained from the finite element analysis program Abaqus. 

Abaqus provides both triangular and quadrilateral shell elements with linear interpolation and user-

choice of larger- and small-strains formulations. For most of applications large-strain shell elements 

(S4R, S3R, and SAX1) are appropriate with these considerations. In the following study the S4R (4 

node shell element)  is used in the analysis. 

 The present study was performed for a steel plate with the following properties: 

- Inner radius = 1 m and outer radius = 2 m. 

- modulus of elasticity E = 200 GPa. 

- poisons ratio υ = 0.3 . 

- thickness t = 10 mm . 

Several parameters were concerned in this study. These parameters are : 

1. Mesh Size  

2. Aspect Ratio and boundary conditions 

3. Curvature effect 

 

 Mesh size 

In order to investigate the effect of mesh used in the presented finite difference method, a curved plate 

of angle 38.197
○
 and with the previous properties was analyzed with different mesh sizes and for two 

types of boundary conditions, simply support and Clamped support. The results of convergence as a 

function of mesh size for both types of boundary conditions were shown in table(1) and table (2). Also 

Fig. (3) and (4) show the convergence of the calculated natural frequency with those of Abaqus F.E. 

Program, and Fig. (5) shows a sample of the deflection values of SSSS plate for both finite difference 

and finite element results.  It can be noticed that the natural frequency value obtained from both finite 

difference and finite element methods goes to a value of approximately 19.81 and 35.84 for both 

simply and Clamped supports, also, the (15×15) mesh gives a difference of about 0.35% and 0.93% of 

final predicted values of  both two types of supports. However, a mesh of 10×10 is very useful to be 

used in the analysis procedure because its saving time and it has a difference around 1% of predicted 

values of  natural frequencies.  
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 Aspect Ratio and boundary conditions 

The effect of both aspect ratio and boundary condition was investigated. The aspect ratio for the curved 

plate was taken as (a/b) where a represent the length of the plate in radial direction and b represents the 

average width of the plate which can be obtained by multiplying the average radius by the radian value 

of the substantial angle. The studied aspect ratios were starts from (0.5 to 3) and for four types of 

boundary conditions surrounding the plate. These boundary conditions are : 

1- SSSS ( simply supported all around) 

2- CCCC ( all edges are Clamped) 

3- SCSC (both bottom and top edges are simple and both left and right edges are Clamped) 

4- CSCS (both bottom and top edges are Clamped and both left and right edges are simple) 

Table (3) and Fig. (6) show the natural frequencies results of the present finite difference procedure 

with different types of support conditions and aspect ratios. Note that S and C symbols represent  

simple and Clamped support.  

From these results it can be seen that values of the natural frequency of a plate of boundary conditions 

(SCSC) are closed to a plate of Clamped supports in lower values of aspect ratios and they are closed 

to a simply support plate in a higher values of  aspect ratios. While , a plate of boundaries (CSCS) has 

an adverse behavior within the used range of aspects ratios.  

 

 Curvature effect 

The curvature effect was studied by increasing the average radius of the plate (i.e radius at the center of 

the plate) from 1 to ∞ so that the aspect ratio was kept to be equal to 1 with a length of 1m. So when R 

goes to ∞, the plate will be like a rectangular plate of dimensions (1x1)m . Also two types of boundary 

conditions was taken into account in studying the curvature effect, simply and Clamped supports. The 

results of curvature effect on both types of boundary conditions are listed in table (4). While Fig. (7) 

shows these results on a logarithmic x-axis represents the radius value and natural frequencies value 

represented on  the y-axis. From the results shown below it can be seen clearly that when R goes to ∞, 

the plate will behave as a square plat of dimensions 1x1m which has a natural frequency of 19.739 and 

35.841for both simple and Clamped supports respectively. In the current finite difference scheme the 

calculated  natural frequency has a difference of  round 0.7% from the analytical values of square plate. 

 

5. Conclusions 

The free vibration of thin curved circular isotropic plate was investigated herein. A finite difference 

approach was presented to analyze the plate. The validity of the adopted approach was compared with 

finite element approach which was done by using software package (ABAQUS). The investigation was 

carried out to simulate the natural frequency of thin curved plate with different types of boundary 

conditions, aspect ratios, curvature and different mesh size. The following are the main points 

concluded after studying the results obtained from the present study: 

1. The results of the adopted finite difference approach of analysis showed good agreement with 

those obtained by finite element analysis (ABAQUS). 
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2. The schemes of finite difference approach which were derived in the present study can be used 

to analyze curved circular thin plate with a good agreement results. 

3. The present study shows the validity of the derived finite difference schemes with a very small 

error and  for any suitable mesh size if compared with finite element analysis program package 

results 

4. Finite Difference Method is more efficient for such problems than Finite Elements Method 

(software package), since F.D.M gives good agreement of results with less time of calculations. 

5. The finite difference method gives an under estimations value for natural frequency which it is 

more safe than finite element method which give an over estimation values for such structures .    
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Table (1): Finite difference and F.E. Results for a simply supported curved plate 

 

Mesh Size ω (F.D) (rad/sec) ω (F.E) (rad/sec) 

4x4 18.693 21.087 

5x5 19.067 20.655 

6x6 19.277 20.416 

7x7 19.408 20.271 

8x8 19.497 20.178 

9x9 19.560 20.113 

10x10 19.607 20.066 

11x11 19.644 20.031 

12x12 19.674 20.003 

13x13 19.699 19.981 

14x14 19.721 19.964 

15x15 19.739 19.950 

 

 

 

Table (2): Finite difference and F.E. Results for a Clamped supported curved plate 

 

Mesh Size ω (F.D) (rad/sec) ω (F.E) (rad/sec) 

4x4 28.949 42.198 

5x5 31.019 39.822 

6x6 32.341 38.684 

7x7 33.230 38.035 

8x8 33.853 37.628 

9x9 34.306 37.354 

10x10 34.644 37.162 

11x11 34.903 37.021 

12x12 35.106 36.915 

13x13 35.268 36.833 

14x14 35.399 36.768 

15x15 35.507 36.716 
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Table (3): Finite difference natural frequencies in terms of  of curved plate with different boundary  

conditions and aspect ratios 

Support Type SSSS CCCC SCSC CSCS 

Aspect Ratio ω (rad/sec) ω (rad/sec) ω (rad/sec) ω (rad/sec) 

0.5 47.45008 88.66515 81.68419 53.33016 

0.75 27.08775 48.76832 42.69226 34.12574 

1 19.60723 34.64397 27.87902 27.88447 

1.25 16.08721 28.66401 20.82557 25.24501 

1.5 14.16622 25.79708 17.04361 23.91319 

1.75 13.00771 24.27092 14.84224 23.1532 

2 12.25685 23.38445 13.47623 22.67953 

2.25 11.74301 22.83161 12.58302 22.36439 

2.5 11.37613 22.46648 11.97287 22.14402 

2.75 11.10513 22.21385 11.54042 21.98377 

3 10.89932 22.03229 11.22416 21.86353 

 

 

Table (4): Finite difference natural frequencies in terms of  of curved plate with different boundary 

conditions and different radiuses 

 

 

 

 

 

 

 

R(m) Theta (deg) 
CCCC SSSS  

ω (rad/sec) ω (rad/sec) 

1 57.29578 35.06038 19.99886 

1.5 38.19719 34.64397 19.73921 

2.5 22.91831 34.45288 19.66049 

3.5 16.37022 34.40288 19.64656 

4.5 12.7324 34.38265 19.6421 

5.5 10.41741 34.37249 19.6402 

10.5 5.456741 34.35769 19.63795 

15.5 3.696502 34.35468 19.6376 

20.5 2.794916 34.35359 19.63749 

30.5 1.87855 34.35279 19.63742 

50.5 1.13457 34.35237 19.63738 

100.5 0.570107 34.35219 19.63737 

∞ 0.057267 34.35213 19.63736 
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Figure (1): Geometry of the curved plate and node distribution 

λ Wi 

  

+ 
 

Wi =  0  

Figure (2): Finite difference scheme of curved plate differential equation 
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Figure(3): Finite difference versus Finite Element Results for a simply supported curved plate 

 

 

 

 
 

Figure(4): Finite difference versus Finite Element Results for a Clamped supported curved plate 
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Figure (5): Deflection values for first mode of SSSS plate for finite difference and finite element 

 

 
Figure (6): Finite difference natural frequencies of curved plate with different boundary conditions and 

aspect ratios 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure (7): Finite difference natural frequencies of curved plate with different boundary conditions and 

different radiuses 


