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Abstract:

In this research dealing with pollution in multivariate data used in the
analysis path through the purification by an algorithm proposed based on
multivariate wavelets (Daubechies, bior and rbio) and soft thresholding and
estimate of level in a way (Minimax) and then compare them with the
results path analysis before dealing with pollution through the practical
application of analyzing the causes of a problem water pollution in the
Kurdistan region, concluded research on the proposed algorithm is efficient
compared with the classical method depending on the MATLAB language
and program (SPSS) with (Amos).

Keywords: De-noise, multivariate Wavelets, Path analysis, thresholding.
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1. Introduction:

Sewall Wright (1918-1934) developed a method of estimating causal
path coefficients by decomposing the correlations among a set of variables.
He articulated a set of rules for examining a path diagram that would allow
this mathematical decomposition. [Alwin & Hauser, (1975)] The
correlation of any two variables in a path diagram can be expressed as the
sum of coefficients that connect the two variables. The connection between
one variable and another variable, then, can often be made through more
than one route.De noising becomes an indispensable step prior to analysis
data. Multivariate wavelet shrinkage techniques are particularly well suited
for such de noising tasks because they can yield a sparse representation of
the data. There are several good reasons why multivariate wavelet
shrinkage can be used for function estimation. The main reasons are that
wavelet shrinkage estimators are: nearly minimax for a wide range of loss
functions and for general function classes; simple, practical and fast;

adaptable to spatial and frequency in homogeneities; readily extendable to
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high dimensions; applicable to various other problems such as density
estimation and inverse problems. A review of these reasons and
justification for them appears in Donoho and Johnstone (1995a). And
which can be used to treat noise in the data.The practical side data applied
for different environmental impacts which have influences on the water
pollution [Simeonov and et. el., (2003)] which can be defined in many
ways usually, it means one or more substances have built up in water to
such an extent that they because problems could affect the health of all the
humans, animals, and plants. Measurements like those are known
as chemical parameter refer to any minerals, salts, metals, or anions
dissolved in water.

2. Methodology
2.1. Path analysis

Path diagrams are useful enough as simple descriptive devices, but
they can be much more than that. [Loehlin & Beaujean, (2017)] Starting
from empirical data, one can solve for a numerical value of each curved
and straight arrow in a diagram to indicate the relative strength of that
correlation or causal influence. Numerical values, of course, imply scales
on which they are measured. For most of this research we assume that all
variables in the path diagram are expressed in standard score form, that is,
with mean zero and standard deviation one. Covariances and correlations
are thus identical. This simplifies matters of presentation, and is a useful
way of proceeding in many practical situations. Later, we see how the
procedures can be applied to data in original raw score units, and consider
some of the situations in which this approach is preferred.

Because path analysis is an application of multiple linear regression,
the same assumptions apply. In addition, it is more important than in MLR
to have multivariate normal distribution of all the variables. This
assumption is particularly important for the more general version of path
analysis: structural equation modeling [Rex, (2004)].

1. Path analysis will require as many multiple linear regression analyses as
the number of endogenous variables in the diagram.

2. Linearity. Check with partial regression scatter plots. Transform as
necessary.

3. Multivariate normality. Check univariate distributions for normality
with Kolmogorov-Smirnov or other test. Use y? test of Mahalanobis

distances for multivariate normality. Use transformations as necessary.
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4. Outliers. Examine scatter plots. Use Mahalanobis distance. Eliminate
outliers, with precautions.
Path coefficient: A standardized regression coefficient (beta), showing
the direct effect of an independent variable on a dependent variable in the
path model. In continuous variables the following Model is assumed:

xk=§ﬁixi+gk (k=2.3,...K) - @)

Where the variables X, re standardized and ¢, is error term independent
of explanatory variables X,. In this case the direct effect of X,on X, is
defined by:

ed(xi_xk):ﬂi (2)
And determination of coefficient of X, on X, is defined by:

Rz(xi_xk):ﬂiz (3)
Where p;; are the correlation coefficient between X;and X;. In this case

the interpretation of the effects is easy, and the indirect effect of X,on X,
is defined by:

ens %= X)= 38,0, - (4)

j=i+l

2.2. Multivariate Wavelets

General multivariate periodic wavelets are an efficient tool for the
approximation of multidimensional functions, which feature dominant
directions of the periodicity. One-dimensional shift invariant spaces and
tensor-product wavelets are generalized to multivariate shift invariant
spaces on non-tensor-product patterns. [Wang and Rose, (2006)]
particular, the algebraic properties of the auto-orphism group are
investigated. Possible patterns are classified. By divisibility considerations,
decompositions of shift invariant spaces are given. The results are applied
to construct multivariate orthogonal Dirichlet kernels and the respective
wavelets.

Over years, significant research interests have focused on using the
wavelet de-noising techniques in the univariate case, but much less
attentions on the de-noising of multivariate time series data. The basic
procedure of multivariate wavelet de-noising technique is as follows:
[Kaijian and et. el., (2012)].
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1. It firstly projects the original data series into different scales using
wavelet transform. The resulting coefficients would include
approximation coefficients as well as horizontal, vertical and diagonal
directions.

2. For approximation and direction coefficients at each direction, the
threshold is chosen specifically at different scales for different
directions and the wavelet coefficients are processed by either
suppression or shrinkage.

3. Using the de-noised wavelet coefficients and the scale chosen, the
processed wavelet coefficients are reconstructed into the unified de-
noised data series using wavelet synthesis.

In the multivariate setting, given the multivariate variables X, the de-
noising algorithm assumes that it consists of both deterministic data D and
undesirable stochastic noises o in a linearly fashion. Applying the
multivariate wavelet analysis, this relationship is defined as in (5).

O=vX=vD+vw - (5)

Where v is an N x N orthonormal matrix, O is the N dimensional vector of
wavelet transform coefficients O, :1=0,---,N -1

The soft thresholding focus on the signal smoothing [Donoho and
Johnstone, (1995)]. It suppresses the wavelet coefficients below the set
threshold value and subtracts the threshold value from the remaining
wavelet coefficients. Compared with the hard thresholding, the data
processing following soft threshold selection rules are smoother but lost the
abrupt changes in the original data. It filters the signal as in (6):

o =sign(0, 0,|-5). - (6)
Where
+1 if O,>0
sign(0,)=40 if O, =0 o (7)
-1 if O,<0
And

©.~{o & ile - ®

if x<0O
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Minimax threshold is one of the commonly used thresholds. The
Minimax threshold is defined as threshold & which minimizes the
expression:

inf su
)

REETI

Where R,(8)=E(1,(0)-68)", O~N(81)

On the other hand it will be explained wavelets used in the search, as
follows:

Daubechies wavelets have a support of minimum size for any given
number N of vanishing moments. [Andreas, (2006)] Daubechies wavelet of
class D-2N is a function w=,¥ < L?(R)defined by:

2N-1

W(X) =2 ;(_ 1)k h2N—1—k¢(2X - k) " (10)

Where h,,---,h,,, eRare the constant filter coefficients satisfying the
conditions:

=z

N-1 1 -1

Z h2k = == h2k+1

ﬁ
=~
]
o

=~

As well as, fori=01,---,N -1

2N-1+2! 1 if 1=0
Z hkhk—zl = .
= 0 if 1#0

And where ¢=, ¢:R — R is the (Daubechies) scaling function (sometimes

also “scale” or “father wavelet”), given by the recursion equation

2N-1

olx)=V22 hpl2x-k) - (1)

Bior-3.3 (Biorthogonal Wavelets) it is well known that bases that
span a space do not have to be orthogonal. In order to gain greater
flexibility in the construction of wavelet bases, the orthogonality condition
is relaxed allowing semi-orthogonal, biorthogonal or non-orthogonal
wavelet bases. Biorthogonal Wavelets are families of compactly supported
symmetric wavelets. The symmetry of the filter coefficients is often
desirable since it results in linear phase of the transfer function. In the
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biorthogonal case, rather than having one scaling and wavelet function,
there are two scaling functions gan d gthat may generate different
multiresolution analysis, and accordingly two different wavelet functions
w and y is used in the analysis and ¥ is used in the synthesis. And rbio
wavelet is reverse biorthogonal has the Properties: symmetric, not
orthogonal, biorthogonal.

2-3: Proposed Method:

The data will be contamination treatment (all the independent
variables and the dependent variable together) before the path analysis
through purification depending on three multivariate wavelets (Daubechies
from 8-order, bior-3.3 and rbio-3.7) and get the multivariate (DWT) then
involve the thresholding and estimation level of using Minimax threshold
to obtain a modified multivariate (DWT), and taking its inverse we get on
de-noise data, the following diagram shows the proposed method:

e MDWT

'

DE-NOISING by
Minimax threshold

l

NMMDWT

.

denoise-Data

'

Path analysis

Multivariate db-8,
bicr-3.3 and rbio-3.7

Figure (1)
Proposed method for path analysis
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3: Practical side

The present study deals with the assessment of chemical
characteristics of Dokan, Derbendikhan and Duhok three lakes in
Kurdistan. chemical characteristics of these lakes have been studied and
analyzed for a year, during January- April-July and October 2009. Various
parameters including water pollution decomposition of TDS, as a
dependent variable (Y), and independent variables including calcium (Ca),
magnesium (Mg), sulfate (SO,4), bicarbonate (HCO3) and nitrite (NO3)
have been analyzed. The research depends on collecting and analyzing 20
samples of water from selected areas.

With path analysis, multiple regression is used in conjunction with a
causal theory, with the aim of describing the entire structure of linkages
between dependent and independent variables posited from that theory,
based on theoretical considerations of the Y (see Appendix table (A)), the
researcher has constructed the path model presented in Figure (1) to
represent the hypothesized structural relationships between the five
variables Ca, HCO3, SO4, NO3 and Mg.

Figure (2)

the hypothesized structural relationships

The model specifies an “ordering” among the variables that reflects a
hypothesized structure of cause-effect linkages. Multiple regression
technique can be used to determine the magnitude of direct and indirect
influences that each variable has on other variables that follow it in the
presumed causal order (as indicated by the directional arrows). Each arrow
in the model represents a presumed causal linkage or path of causal
influence. Through regression techniques, the strength of each separate
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path can be estimated. This analysis actually involves four regression
equations because Model (1) the response variable (Y) is a dependent
variable on the five independent variables, Model (2) SO4 variable is a
dependent variable for one variable of Mg, Model (3) the Mg variable is a
dependent variable for two variables of Ca and HCO3, and Model (4) the
HCO3 variable is a dependent variable for two variables of NO3 and SO4.

3-1: Classical Method

Check univariate distributions for normality with One-Sample
Kolmogorov-Smirnov test and summarizes the most important results
through the following table:

Table (1)
Kolmogorov-Smirnov Test (Original data)
Y Mg SO4 HCO3
Kolmogorov-Smirnov Z .861 1.008 712 .809
Asymp. Sig. (2-tailed) 448 261 691 529

The results show that all p-values are greater than 0.05 which means
that all the variables (dependent variables for four models) have a
univariate normal distribution.

Using a x> test was all values of Mahalanobis distances (for

multivariate normality) less than tabulated x> under the significant level of
1% and 4 degrees of freedom equal to (13.28) which means that the four
variables (dependent variables for four models) have a multivariate normal
distribution.

The Classical method for path analysis has been used multiple linear
regression for model (1) and multiple linear regression (Foreword) for three
other models and summarizes the most important results through the
following table:
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Table (2)
Linear Regression Analysis (Classical Method)
Unstandardized  Stand. Indirect Direct Std. F Sig.
Coefficients Coef. effect  effect Error
Model Beta  Sig. Beta R?
1 Constant -800.52 0.030 270.53 9.417 0.000
Y Ca -1.281 0.093 -0.383 0.771

Mg 8.903 0.016 0.648 0.1437 0.4199
SO4 3.240 0.034 0509 0.2358 0.2591
HCO3 -0.467 0.742 -0.094

NO3 5.608 0.215 0.273

2 Constant  -2.304  0.956 54423 19.21 0.000
SO4 Mg 1.550 0.000 0.719 0.516
3 Constant  49.587 0.002 20.569 19.48 0.000
Mg Ca 0.126 0.006  0.518 0.248 0.2683 0.696

HCO3 0.150 0.024 0.414 0.310 0.1714

4 Constant -76.359 0.132 49.747 27.79 0.000
HCO3 NO3 2450 0.000 0595 0.1668 0.3540 0.766

SO4 590  0.002 0462 0.2148 0.2134

- Results and Interpretation

The path model depicted in Figure (1) Supposed, the direction of the
arrows depicts the hypothesized direct and indirect paths. To estimate the
magnitude of these paths, a series of regression analyses were carried out as
the follows:

1. The path coefficients between (Y) and the five independent variables
were obtained by regression is significant. The results from the table (1)
generated from regression analysis show that Mg and SO4 entered the
prediction equation (i.e., Mg and SO4 only are significant predictors).
The Beta values presented in the Standardized Coefficients column

represent the standardized regression coefficients between Y and Mg
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equal to (0.648) as direct effect, (0.1437) as indirect effect, and SO4
equal to (0.509) as direct effect, (0.2358) as indirect effect. Mg explain
41.99% of the variation for Y, and SO4 explain 25.91% of the variation
for Y, and the remainder 9.2% is explained by other variables and
interactions between them.

2. The path coefficients between the SO4 and the other four independent
variables were obtained by regression is significant. The results from the
Coefficients table generated from foreword regression analysis show
that Mg only is significant predictors and standardized regression
coefficients equal to (0.719).

3. The path coefficients between the Mg and the other four independent
variables were obtained by regression is significant. The results from the
Coefficients table generated from foreword regression analysis show
that Ca and HCO4 are significant predictors and standardized regression
coefficients equal to (0.518) as direct effect and (0.248) as indirect
effect, and (0.414) as direct effect and (0.31) as indirect effect
respectively. Ca explain 26.83% of the variation for Y, and HCO3
explain 17.14% of the variation for Y, and the remainder 25.63% is
explained by other variables and interactions between them.

4. The path coefficients between the HCO3 and the other four independent
variables were obtained by regression is significant. The results from the
Coefficients table generated from foreword regression analysis show
that NO3 and SO4 only are significant predictors and standardized
regression coefficients equal to (0.595) as direct effect and (0.1668) as
indirect effect, and (0.462) as direct effect and (0.2148) as indirect
effect respectively. NO3 explain 35.4% of the variation for Y, and SO4
explain 21.48% of the variation for Y, and the remainder 19.86% is
explained by other variables and interactions between them.

Figure (3) presents the path model together with the estimated
regression coefficients (Beta values) associated with the hypothesized
paths. It can be concluded that Mg and SO4 have direct influences on
the Y. The direction of the regression coefficients indicates that (1) Mg,
and (2) SO4. The results also show that at least part of these influences
iIs indirect, Where Mg affect the SO4, which in turn affect the Y, as well
as our Ca and HCO3 affect the Mg, which in turn affect the Y, Finally
NO3 and SO4 affect the HCO3, which in turn affect the Mg, and then
affect the Y, and the following figure (Using Amos program) shows
that:
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Figure (3)
The path model with the Standardized regression Coefficients by using
classical method.

The correlation matrix calculation between the variables of the study
(Data original) was also in the Appendix (Table-E)

3-2: Multivariate Wavelet Method:

The use of the language of MATLAB in de-noises and re-path
analysis by the proposed method in Figure (1) for three multivariate
wavelets as follows:
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1- Multivariate Daubechies Wavelet:
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de-noise by use Multivariate Daubechies Wavelet.

Check univariate distributions for normality with Kolmogorov-
Smirnov test for de-noise data (see Appendix table (B)) and summarizes

the most important results through the following table:

Table (3)
Kolmogorov-Smirnov Test (de-noise data-Mdb-8)
Y Mg SO4 HCO3
Kolmogorov-Smirnov Z 660 781 681 624
Asymp. Sig. (2-tailed) 776 575 742 .832

The results show that all p-values are greater than 0.05 (which are
greater than p-values for original data) which means that all the variables

have a univariate normal distribution.
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Using a y*> test was all values of Mahalanobis distances (for

multivariate normality) less than tabulated y° under the significant level of

1% and 4 degrees of freedom equal to (13.28) which means that the four
variables (dependent variables for four models) have a multivariate normal

distribution.

De-noise data were used in the re supposed path analysis in Figure
(1) and the results summarized in the following table:

Table (4)
Linear Regression Analysis (Multivariate db Wavelet Method)

Unstandardized  Stand. Indirect Direct Std. F Sig.
Coefficients Coef. effect  effect Error
Model Beta  Sig.  Beta R®
1 Constant -417.730 0.001 32.609 784.9 0.000
Y Ca 2163 0.000 0.532 0.4482 0.283  0.996
Mg 1.054 0.056 0.098
SO4 .647 0569 0.111
HCO3 2.137 0.087 0.280
NO3 1.734 0265 0.044
2 Constant -19.863 0.448 39.420 61.12 0.000
SO4 Mg 1.627 0.000 0.879 0.773
3 Constant  74.993 0.007 17.653 49.09  0.000
Mg Ca 416 0.000 1.107 -0.1892 1.2254 0.852
HCO3 -153  0.279 -0.216 0.9697 0.0467
4 Constant 19.313 0.211 8.285 5141 0.000
HCO3 NO3 1334 0.000 0.259 0.2380 0.0671 0.984
S04 .680 0.000 0.891 0.0692 0.7939

Figure (5) presents the path model together with the estimated
regression coefficients (Beta values) associated with the hypothesized
paths. It can be concluded that Ca has direct effect (0.532) and indirect
(0.4482) on the Y. The results also show that at least part of these
influences is indirect, Where Mg affect the SO4, which in turn affect the Y,
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as well as our Ca affect the Mg, which in turn affect the Y, Finally NO3
and SO4 affect the HCO3, which in turn affect the Mg, and then affect the
Y, and the following figure (Using Amos program) shows that:

Figure (5)
The path model with the Standardized regression Coefficients by using de-
noise data (Multivariate Daubechies Wavelet)

The correlation matrix calculation between the variables of the study
(De-noise Data) was also in the Appendix (Table-F).
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2- Multivariate bior-3.3 Wavelet:

Signals t (20¢6)
Wavelet bior v 33 v
DWT Extension Made asymw e
Level 4 .
[ Decompose and Diagonalize ]
© Original Basis ) Noise Adapted Basis

— Select Denoising Parameters —

l llore on Noise Adapted Basis ]

Selectthresholding method
Minimax v

© soft ) hard

PCA

I More on Principal Components

(riginal Basis
Signals Coeficients Denoised Signals
M 2000
1500 04 i
1 03 ' i 1000
1000 Vi ' T 7
SUU I I 1 D1 I 0 I I 1
§ 10 14 2 § 10 14 2 10 14 2
M - 500
i) o )
il o, + 1
L . o1} L 3 500 L .
§ 10 1A 20 § 10 1A 2 10 1A 2
180 200
16 M .
140 04 !
3120 D3 100
100 02f, 1 T
80 01 .
50 & 5 | | ¥ 1 | ] U ! ! 1
§ 10 1A 20 § 10 1A 2 10 1A 2
400
i) Si :
4200 D3 ' i 0
150
02 i L] T T
100 ]l ‘ ;
5 10 19 20 5 10 19 20 10 19 20
M - 40
400 D4 ¥
5 D3 ! f 0
D2 [ ] T A
2017575 ‘ . RN ; ‘ ,
5 10 19 20 5 10 19 20 10 19 20
180 200
180 M !
140 04 : t
5120 03 ’ 100
(i o T
i N L SN NN 0 .
§ 10 15 20 § 10 15 20 10 15 20
Figure (6)

ND. of PC for APP. b M
Nb. of PC for final PCA B v
l Denoise ‘ [ Residuals l

] Show Denaised Sigrals

© Coefs *) Denoised Coefs

Display up o level 4 ]

de-noise by use Multivariate bior Wavelet

Check univariate distributions for normality with Kolmogorov-
Smirnov test for de-noise data (see Appendix table (C)) and summarizes

the most important results through the following table:

Table (5)
Kolmogorov-Smirnov Test (de-noise data- Mult. bior)
Y Mg SO4 HCO3
Kolmogorov-Smirnov Z 714 993 794 874
Asymp. Sig. (2-tailed) .688 278 .554 430

The results show that all p-values are greater than 0.05 which means
that all the variables have a univariate normal distribution.
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Using a y*> test was all values of Mahalanobis distances (for

multivariate normality) less than tabulated y° under the significant level of

1% and 4 degrees of freedom equal to (13.28) which means that the four
variables (dependent variables for four models) have a multivariate normal
distribution.

De-noise data were used in the re supposed path analysis and the results
summarized in the following table:

Table (6)
Linear Regression Analysis (Multivariate bior Wavelet Method)

Unstandardized Stand. Indirect Direct Std. F Sig.
Coefficients Coef. effect  effect Error

Model Beta Sig. Beta R?
1 Constant -932.733 0.194 112.16 34.60 0.000
Y Ca -2.826 0.002 -.988 1.6657 9761 0.925

Mg 2.054 0.038 .144 .6619 .0207
SO4 1.300 0.722 261
HCO3 8.203 0.101 1478

NO3 -2.022 0.298 -.126

2 Constant -112.06 0.008 36.529 52.99 0.000
SO4 Mg 2.469  0.000 0.864 0.746
3 Constant  14.390 0.550 13.494 23.36 0.000
Mg Ca -033 0.640 -0.163 0.733

HCO3 392  0.009 1006 -0.1518 1.012

4 Constant  139.346 0.000 9.638 402.4 0.000
HCO3 NO3 -350 0.011 -0.121 0.6071 0.0146  0.979
SO4 947  0.000 1.054 -0.0697 1.1109

Figure (7) presents the path model together with the estimated
regression coefficients (Beta values) associated with the hypothesized
paths. It can be concluded that Ca and Mg have direct effects
(-0.988 and 0.144) and indirect effects (1.6657 and 0.6619) on the Y. The
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results also show that at least part of these influences is indirect, Where Mg
affect the SO4, which in turn affect the HCOS3, then affect the Mg and then
affect the Y, as well as our HCO3 affect the Mg, which in turn affect the Y,
Finally NO3 and SO4 affect the HCO3, which in turn affect the Mg, and
then affect the Y, and the following figure (Using Amos program) shows
that:

NO3

\0121 1478

0.261
HCO3

T‘I .054

S04

Figure (7)
The path model with the Standardized regression Coefficients by using de-
noise data (Multivariate bior Wavelet)

The correlation matrix calculation between the variables of the study (De-
noise Data) was also in the Appendix (Table-G).
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3- Multivariate rbio-3.7 Wavelet:
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the most important results through the following table:

Table (7)
Kolmogorov-Smirnov Test (de-noise data- Mult. rbio)

de-noise by use Multivariate rbio Wavelet

Y Mg S04 HCO3
Kolmogorov-Smirnov Z 765 .657 .788 792
Asymp. Sig. (2-tailed) .601 782 .564 .557

The results show that all p-values are greater than 0.05 (which are
greater than p-values for original data except SO4) which means that all the

variables have a univariate normal distribution.
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Using a y*> test was all values of Mahalanobis distances (for

multivariate normality) less than tabulated y° under the significant level of

1% and 4 degrees of freedom equal to (13.28) which means that the four
variables (dependent variables for four models) have a multivariate normal

distribution.

De-noise data were used in the re supposed path analysis and the
results summarized in the following table:

Table (8)
Linear Regression Analysis (Multivariate rbio Wavelet Method)

Unstandardized  Stand. Indirect Direct Std. F Sig.
Coefficients Coef. effect  effect Error
Model Beta  Sig. Beta R?
1 Constant -127.671 .025 6.9059 3933.1 0.000
Y Ca 3.420 .000 0.695 0.2885 0.483 0.989
Mg -3.880 .031 -0.242 1.1959 0.0586
SO4 14697 .000 1.925 -0.973 3.7056
HCO3 -7.695 .000 -1.514  2.4683 2.2922
NO3 3.287 .000 0.265 0.3422 0.0702
2 Constant -47.792  0.032 10.809 1199 0.000
SO4 Mg 1962  0.000 0.932 0.869
3 Constant  45.740 0.000 2.782 226.7 0.000
Mg Ca 0.181 0.000 0590 0.3741 0.3481 0.964
HCO3 0.132 0.001 0418 0.5281 0.1747
4 Constant -11.851 0.000 1.756  5878.7 0.000
HCO3 NO3 0.246 0.000 0.101 0.4951 0.0102 0.989
S04 1416 0.000 0.943 0.0530 0.8892

Figure (9) presents the path

model together with the estimated
regression coefficients (Beta values) associated with the hypothesized
paths. It can be concluded that all the independent variables have direct
effects (0.695, -0.242, 1.925, -1.514 and 0.265 respectively) and indirect

287



2020 (1) 34 (10) Alaall LalaiBy) g Ay )IaY) a glall &S S daala dxa

effects (0.2885, 1.1959, -0.973, 2.4683 and 0.3422 respectively) on the Y.
The results also show that at least part of these influences is indirect,
Where Mg affect the SO4, which in turn affect the Y, as well as our Ca and
HCO3 affects on Mg, which in turn affect the Y, Finally NO3 and SO4
affect the HCOS3, which in turn affects on Y, and the following figure
(Using Amos program) shows that:

Figure (9)
The path model with the Standardized regression Coefficients by using
de-noise data (Multivariate rbio Wavelet)

The correlation matrix calculation between the variables of the study
(De-noise Data) was also in the Appendix (Table-H).

3-3: The comparison between the classical and proposed
method

Will be here the comparison between the classical methods and
proposed for a three different multivariate wavelets in the path analysis
relying on some statistical criterions such asR?, S.E. and F, and
summarized in the following table:
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Table (9)

The comparison between the classical and proposed method

Methods Model R Square Std. Error F
Classical 1 0.771 270.53 9.417
2 0.516 54.423 19.21
3 0.696 20.569 19.48
4 0.766 49.747 27.79
Multivariate 1 0.996 32.609 784.9
Daubechies 2 0.773 39.420 61.12
3 0.852 17.653 49.09
4 0.984 8.285 514.1
Multivariate 1 0.925 112.16 34.60
bior 2 0.746 36.529 52.99
3 0.733 13.494 23.36
4 0.979 9.638 402.4

Multivariate

rbio

The results show that Multivariate wavelets (proposed method) has
best path analysis (four regression models) than classical method
depending on the three statistical criterions (Because the value of S.E. is at
least while the R? and F are the largest), So was the way Multivariate rbio
wavelets (proposed method) is the best compared with other the methods
used in the path analysis (four regression models) depending on the three
statistical criterions.
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4: Conclusions and Recommendations

Through this study we reached to the following Conclusions and
recommendations.

4-1: Conclusions:

1. The proposed method is better than the classical method for Path
analysis of these data.

2. The proposed Multivariate rbio method is better than the other methods
for Path analysis depending on the statistical criteria used.

3. There is amount the effect of the independent variables (direct and
indirect) different on dependent variable depending on the method used
in the treatment of contamination.

4-2: Recommendations:

1. Use the proposed methods in the path analysis, especially Multivariate
Wavelet rbio for other data.

2. The proposed method compared with other methods for contamination
treatment.

3. Conduct a study on the use of the method proposed in Structural
Equation Modeling.
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(1) Appendix
Table (A): Original data

Y

365.44
671.96
519.29
1003.87
429.70
576.19
345.95
1228.24
501.95
1451.51
1731.95
532.49
654.17
1120.36
1181.18
1451.51
1910.79
1180.19
1121.32
342.95

Table (B): De-noise data (by using multivariate db wavelet)

Y

129.19
241.35
369.38
516.74
664.98
817.07
961.73
1092.77
1207.16
1307.92
1391.00
1449.58
1482.66
1479.73
1435.80
1341.98
1182.18
937.77
597.08

Table (C): De-noise data (by using multivariate bior wavelet)
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Y HCO3

140.13 . 134.61
304.42 157.59
466.79 185.96
628.16 204.80
777.56 218.91
917.19 237.96
1046.91 258.53
1165.45 275.04
1215.09 292.00
1195.85 309.44
1106.86 313.21
951.19 310.00
891.15 308.26
926.76 308.00
1058.82 310.76
1287.35 316.53
1322.39 293.29
1164.42 243.14
814.58 190.31
272.88 . 134.80

Table (D): De-noise data (by using multivariate rbio wavelet)

Y

59591
625.19
650.21
673.08
710.84
759.38
824.20
904.42
969.60
1018.23
1058.84
1087.79
1115.04
1149.32
1165.50
1150.06
1170.85
1254.63
1236.30
1087.77
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Table-E: Correlation Matrix (Data original)

Y Ca Mg SO4 HCO3 NO3
Correlation Y 1.000 528 .789 742 .698 548
Ca 528 1.000 766 699 599 420
Mg 789 766 1.000 719 724 499
S04 742 699 719 1.000 677 361
HCO3  .698 599 724 677 1.000 762
NO3 548 420 499 361 762 1.000
Table-F: Correlation Matrix (De-noise Data)
Y Ca Mg S04 HCO3 NO3
Correlation Y 1.000  .980 893 .988 948 289
Ca 980  1.000 917 960 876 147
Mg 893 917 1.000 879 754 -.026-
S04  .988 960 879 1.000 960 267
HCO3  .948 876 754 960 1.000 497
NO3  .289 147 -.026- 267 497 1.000
Table-G: Correlation Matrix (De-noise Data)
Y Ca Mg S04 HCO3 NO3
Correlation Y 1.000 678 .807 .899 877 409
Ca 678 1.000 774 .880 931 408
Mg 807 774 1.000 864 854 485
S04 899 880 864 1.000 985 576
HCO3  .877 931 854 985 1.000 486
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NO3 409 408 485 576 486 1.000
Table-H: Correlation Matrix (De-noise Data)
Y Ca Mg S04 HCO3 NO3
Correlation Y 1.000 985 .983 954 954 608
Ca 985 1.000 964 894 895 588
Mg 983 964 1.000 932 946 722
S04 954 894 932 1.000 996 525
HCO3  .954 895 946 996 1.000 596
NO3 608 588 722 525 596 1.000
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