

On GAN-injective Rings

Hazim.T. Hazim¹*, Raida D. Mahmood²

Northern Technical University / Technical Institute of Mosul, Mosul, Iraq¹, Department of Computer Science, College of computer science and mathematics, Mosul University, Mosul, Iraq² *Corresponding author. Email:mti.lec80.hazim@ntu.edu.ig

Article information	Abstract
<i>Article history:</i> Received : 2 /5 /2023 Accepted :28/5/2023 Available online :	If for any maximal right ideal P of B and $a \in N(B)$, aB/ aP is almost N-injective, then a ring B is said to be right generalized almost N-injective. In this article, we present some significant findings that are known for right almost N-injective rings and demonstrate that they hold for right generalized almost N-injective rings. At the same time, we study the case in which every S.S.Right B-module is generalized almost N- injective.

Keywords:

Nil-injective rings, n-regular rings, reduced rings, ANil-injective rings.

Correspondence: Author : Hazim.T. Hazim Email:mti.lec80.hazim@ntu.edu.iq

1. INTRODUCTION

A ring B will be an associative ring with identity throughout this work, and all modules will be unitary. We write P_B to indicate right B-modules. For $a \in B$, we write Y(B), N(B), J(B) for the right singular ideal, the collection of nilpotent elements, and the Jacobson radical of B, and $r(\alpha)$ (1(a)) for the right (left) annihilator of a. The right nilinjective ring was first defined Wei, J.C. and Chen, J.H in [10] and provided many properties of its. If $\alpha \in N(B)$, $lr(\alpha) = B_{\alpha}$, a ring B is said to be right nil-injective. In [9], introduced a module that is almost Nil-injective or (ANinjective). Let $S = End(P_B)$ and let P be a right B-module. If the module P has an \mathcal{J} -submodule X_{a} of P such that $l_P r_B(a) = P a \oplus X_B$ as left δ -modules for any $a \in N(B)$, then the module is known to as AN-injective. If there is a positive number n such that $a^n \neq 0$ and any right Bhomomorphism of $a^n B$ into P extends to one of B into P, then the right B-module P is said to be GP-injective [2]. B is a reduced ring, if N(B)=0. Further work on reduced and injectivity rings appears in

[2,4,5,6, and 11]. If we have ab=0 for every $a, b \in B$ implies that ba=0, then the ring B is a ZC-ring [1]. B is a ZC-ring if and only if $I(\alpha)(r(\alpha))$ is an ideal of B for each case where $\alpha \in B$. If there is a $b \in B$ such that aba = a exists for any $a \in B$, then the ring is said to be regular [2]. In accordance with [9], a ring B is referred to as n-regular if for each $a \in N(B), a \in aBa$. Every reduced ring is n-regular, as is a regular ring,[9] and B is said to be NJ if $N(B) \subseteq I(B)$ [7].

2-GAN-injective Rings:

If for any maximal right ideal P of B and for any $a \in P$, aB/aP (Ba/Pa) is AGP-injective, then a ring B is said to be right (left) WAGPI according to [4].

We now provide the description that follows. **Definition (2.1):** If for any maximal right ideal P of B and for any $a \in N(B)$ aB/aP is almost N-injective, then a ring B is said to be right generalized almost Ninjective (for short GAN-injective).

Lemma (2.2):[9] Suppose that P is a right B-module

with $S = End(P_B)$. If $l_P r_B(a) = Pa \oplus X_a$, where X_a is a left S-submodule of P_B with $f: aB \to P$, a right B-homomorphism, then f(a) = pa + x, with

$p \in P, x \in X_{\alpha}$.

From now on we consider every simple singular right B-module is GAN-injective (for short S.S.GANinjective) and essential (maximal)right ideal (for short E.(M.)R.I.)

The next lemma, which is due to [3], plays a central role in several of our proofs.

Lemma (2.3): If P is M.R.I. of B and $r(\alpha) \subseteq P$, $\alpha \in P$, then:

- a) $\alpha B \neq \alpha P$
- b) $B/P \simeq \alpha B/\alpha P$

If $B_{\alpha}(\alpha B)$ is an ideal of B for all instances where $\alpha \in N(B)$, a ring B is left (right) N-duo [8].

Theorem (2.4): B is reduced, if B is N-duo and GAN-injective ring.

- **Proof:** If B is not reduced. Consequently, there is $0 \neq a \in B$ such that $a^2 = 0$. Hence there exists M.R.I. P of B containing r(a). If aB = aP, then a = ac for some $c \in P$, hence $(1-c) \in r(a) \subseteq P$, therefore $1 \in P$, which is contradiction. Now if $aB \neq aP$, then $aB/aP \simeq B/P$ and hence B/P is ANinjective and $l_{B/P}r_B(a) = (B/P)a \oplus X_a$, $X_a \leq B/P$. Let $f:aB \to B/P$, be defined by $f(ab) = b + P, b \in B$. Note that f is a well-defined Bhomomorphism. Then 1 + P = f(a) = ca + P + x, $c \in B, x \in X_a$ and $1 - ca + P = x \in B/P \cap X_a = 0$, $(1 - ca) \in P$. Since B is right N duo, aB is an ideal of B, so $da \in aB \subseteq r(a) \subseteq P$, whence $1 \in P$, acontradiction. Thus, B is reduced.
- **Corollary (2.5):** Let B be a right GAN-injective and right N duo ring. Then B is n-regular.
- **Proof:** From Th.(2.4) then B is reduced. Therefore B is n-regular ring. ■

Proposition (2.6): There is no non-zero nilpotent element in $I(B) \cap Y(B)$, if every S.S.GAN-injective.

- **Proof:** Suppose $0 \neq \alpha \in j(B) \cap Y(B)$ with $\alpha^2 = 0$. Then $B_{\alpha}B+r(\alpha)$ is an E.R.I. of B, if it does not the M.R.I. P of B containing $B_{\alpha}B+r(\alpha)$. If $\alpha B=\alpha P$, then $\alpha = \alpha c$ for some $c \in P$. It follows that $(1-c) \in r(\alpha) \subseteq P$, when $1 \in P$ contradicting $P \neq B$. If $\alpha P \neq \alpha B$, then $\alpha B/\alpha P \simeq B/P$. Since B/P is AN-injective then $l_{B/P}r(\alpha) = (B/P)\alpha \oplus X_{\alpha}$. Thus $B_{\alpha}B+r(\alpha)=B$. By the proof of Theorem (2.4) hence $\alpha = d_{\alpha}$ for some $d \in B\alpha B \subseteq j(B), (1-d)\alpha = 0$ Since $d \in j(B), 1-d$ is invertible. It follows from this $\alpha = 0$, which is contradiction. Therefore $j(B) \cap Y(B)$ contains no non-zero nilpotent element .
- **Proposition (2.7)**: Let B is a ring. If every S.S.GANinjective, then $J(B) \cap Y(B) = (0)$.

Proof: If $J(B) \cap Y(B) \neq 0$, then there exists $0 \neq a \in J(B) \cap Y(B)$ such that $a^2 = 0$. We'll show

that BaB+r(a)=B. If not, we obtain BaB+r(a)=B as shown by the argument in Proposition (2.6), and a=da for some $d \in BaB \subseteq J(B)$. This gives that a=0, which is contradiction that a is non-zero. Therefore $J(B) \cap Y(B) = 0$.

Lemma (2.8):[2] If B is ZC-ring, then $B_{\mathbf{x}}B+r(\mathbf{x})$ is an E.R.I. of B for every $\mathbf{x} \in \mathbf{B}$.

Lemma (2.9): Let $B_{\alpha}B+r(\alpha)$ is an E.R.I of B for every $\alpha \in N(B)$ If B is a ZC-ring

Proof: Similar to the evidence for, (Lemma (2.8)) **Theorem (2.10):** If B is an S.S.GAN-injective and ZC- ring. Then B is a reduced.

Proof:Let $\alpha^2 \neq 0$ Suppose $\alpha \neq 0$ Consequently, there is a M.R.I. P of B containing $r(\alpha)$. By Lemma (2.9) P is an E.R.I. of B containing $r(\alpha)$. If $\alpha B = \alpha P$, then $\alpha = \alpha c$ for some $c \in P$, hence $1 - c \in r(\alpha) \subseteq P$. Therefore $1 \in P$.Now, if $\alpha B \neq \alpha P$, then $\alpha B/\alpha P \simeq B/P$ and hence B/P is AN-injective. Similar to prove of Theorem (2.4) we get, $1 - c\alpha \in P$ for some $c \in B$. Since B is ZC-ring, $ca \in r(a)$. It follows that, $1 \in P$, both cases contradicts that P is a M.R.I. and does not contain the identity of the ring. Therefore $\alpha = 0$ and hence, B is reduced . **Proposition (2.11):** If B is an S.S.GAN-injective and ZC-ring. Then, for each $b \in N(B)$, BbB+r(b)=B. **Proof:** Suppose $BbB + r(b) \neq B$ for some $b \in N(B)$. Consequently, there is a M.R.I. P of B containing BbB+r(b) by Lemma (2.9) P is an E.R.I. of B. If bB=bP, then b=bc for some $c \in P$. Therefore $1 \in P$. If $bB \neq bP$, then $bB/bP \simeq B/P$. Since bB/bP is ANinjective, then B/P is AN-injective, and

 $lr(b) = (B/P)b \bigoplus X_b$, $X_b \le \frac{B}{p}$. Let $f: bB \to B/P$, be defined by f(br) = r + P. Note that f is a well-defined B-homomrphism. Then

 $1+P = f(b) = db + P + x d \in B, x \in X_h,$

 $1 - db + P = x \in \frac{B}{p} \cap X_b = 0, 1 - db \in P$, so $1 \in P$. Both cases contradicts that P is a M.R.I. and does not contain the identity of the ring. Therefore BbB + r(b) = B, for any $b \in N(B)$.

Proposition (2.12): Let B be a ZC-ring. Then the following conditions are equivalent:

- 1. B is reduced ring.
- 2. B is n-regular and NJ-ring.
- 3. B is an S.GAN-injective.
- 4. B is an S.S.GAN-injective.

Proof: Obviously $1 \rightarrow 2 \rightarrow 3 \rightarrow 4$ and $2 \rightarrow 1[8, Theorem 2.24]$

 $4 \rightarrow 1$ by Theorem (2.10)

References

- [1] Cohn, P.M. (1999), "Reversible rings", Boll. London Mat Soc. 31, PP.641-648.
- [2] Kim,N.Nam,S,B.and J.Y.Kim, J.Y. (1999), On simple singular GPinjective module, Comm. Algebra, 27(5), PP. 2087-2096.

- [3] Mahmood ,R.D. and Mohammad, H.Q.(2012),"On generalized simple singular AP-injective rings", Rafidan J. of Computer Science Math,Vol.(9),NO.1,PP. 175-180
- [4] Mahmood,R.D. and Hazem,T.H,(2013)," On weakly AGP-injective rings" Aust.J.of Basic and Appl. Sciences ,7(12), PP. 151-155.
- [5] Mohmood ,R.D. and Khider,K. J.(2020), "On Pw^{III}-regular rings" J.Physics:Coference Series 1591.
- [6] Mahmood,R.D. and Mohammed,R.S.(2021), "QR and JCPI-ring" J.Physics: Conference Series 1879.
- [7] Lee,C.I. and park,S.Y.(2018), "When nilpotents are contained in Jacobson radicals" J.korean Math. Soc.Vol.(55).No.5, PP. 1193-1205.
- [8] Nam,S.B.Lee,H.T and Lee,y.k.(2016), "N-duo and SRB-rings" Gold J. of Pure and APP.Math., Vol.12(4), PP. 3037-3042.
- [9] Xianneng, D.and Zhao, Y. (2011), "On almost Nil-injective rings" Inter. Eles. J. of Algebra, Vol.9, PP. 103-113.
- [10] Wei,J.C. and Chen,J.H.(2007), "Nil-injective rings" Inter .Electron .J. of Algebra ,Vol.2,PP. 1-21.
- [11] Wei,J.C. and Chen,J.H.(2008),"Npp-rings, reduced rings and SNFrings" Inter .Electron .J. of Algebra , Vol.4, PP. 9-96.

حول الحلقات الغامرة من النمط - GAN

رائدة داؤد محمود

حازم طلعت حازم

الجامعة التقنية الشمالية، المعهد التقني الموصل، الموصل ،العراق mti.lec80.hazim@ntu.edu.ig قسم علوم الرياضيات، كلية علوم الحاسوب والرياضيات، جامعة الموصل، الموصل، العراق raida.1961@uomosul.edu.iq

الملخص

يقال للحلقة B بأنها غامرة يمنى من النمط -N تقريباً المعممة ، اذا كان كل مثالي اعظمي ايمن P في B و B (ap، ap ap غامراً من النمط -N تقريبا . في هذا البحث, اعطيت خواص هذه الحلقات مع تعميم بعض من نتائج للحلقات الغامرة من النمط – N تقريباً وكذالك درسنا الحلقات التي يكون فيها كل مقباس ايمن بسيط منفرد غامر من النمط –N المعممة.

الكلمات المفتاحية : حلقه مختزلة ،حلقه منتظمة من النمط -n، حلقه غامر. من النمط – nil، حلقه غامر من النمط – Anil .