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 The purpose of the present article  is to study and introduce the family of  

holomorphic univalent functions defined on the open unit disk incluing the linear 

operators reduced by using the convolution concept between two familiar operators 

introduced by many authors and also studied in various families generalized by starlike 

and convex functions. Also, many mathematicians considered these families, our study 

deals with Bord distribution series, and we obtained many interesting geometric properties 

like the coefficient bounds of functions belonging to our family by proving the main result 

in characterization   theorem, we obtained also the bounds of the derivative of the 

operators         by proving the distortion theorem ,the extreme points also take into 

consideration and found them, the radii convexity and starlikeness are pointed out of 

functions belong to this family . 
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1. INTRODUCTION 
 

Let   be a class of functions with the following form  

          

                   ∑   
 
      ,                                    (1.1) 

which are holomorphic and univalent in open unit disk; 

 Ω= {w ∈ C∶ |w|<1}. 

A function  ∈   is called starlike of complex order 

  

                 ,  
 

 
(
      

    
  )-    ,               and 

 ∈   { }                (1.2) 

A discrete random variable y which has a Borel-distribution if 

it takes the standards 1,2,3,… with the probabilities  

                                
   

  
 
      

  
 
       

  
                                 

Where y is the parameter, hence Prob       
           

  
. 

        

 

The following power series using probabilities from the Borel  

           ∑     
 
     ,        ∈                    

(1.3) 

Where 

                           
                   

      
 ,            

            

Now, we introduce a linear operator            defined 

as   

              ∑        
  

     ,     ∈       

          (1.4) 

Motivated by many authors studied the several classes 

associated with many distribution series like logarthemtic 

distribution, Binomial distribution and zeta distribution (see 

for example. [1],[2],[3],[4],[6],[8]) 

Here, we have obtained some results and give conditions for 

the functions belonging in our classes.  
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Definition 1.     ∈     supposedly in         if the 

following condition holds: 

           

  ,  
 

 
(
      

    
  )-    ,            and            

 ∈   { }  .         (1.5)  

 
Moved by the work of Srivastava and Gaboury [7],Juma and 

Darus[5],and  we investigate some geometric properties of 

the current function class such as coefficients-estimate, 

distortion bounds, Radius and the extreme points. 

  
  2. MAIN RESULT 
 

 Theorem 2.1. For        ∈   { } and if    

     ∈    complies with the following conditions 
  

  ∑     | |     
 
   |  |     | |, then  ∈                       

(2.1)    

 

Proof. Imagine that (2.1) satisfy, we have    

                               

                    

            

           
 (

 

 
     )  

            

           
 (

 

 
     )  

 

 
 As a result, it is enough to show that |    |      

 that is     

 

                            |

            

           
 (

 

 
     )  

            

           
 (

 

 
     )  

|                     

                               

                       |
    ∑     

 
              

 

        ∑     
 
              

 |, 

   

 thus by using (2.1) we have  

 

   
                                                                                                    

                        
 | || | ∑     

 
         | | |  || 

 |

     | || | ∑     
 
         | | |  || 

 |
                            

            

        

                         
 | | ∑     

 
         | |   

     | | ∑     
 
         | |   

    , 

 

 and the proof is complete. 

 

Definition 2. Let    represents the subclass of   of the kind     
 
           ∑   

 
     ,                                (2.2)   

 

    if  ∈   is given by (2.2) then we have  
 

                  ∑       
 
     . 

 

  Therefore, we take                   . 

 

Theorem 2.2. A function    of the form (2.2) which are from 

the class            
                 

                ∑     | |         | | 
                           

 

Proof. Since                . Then  ∈                        
by Theorem (2.1). 

Conversely, since   ∈        ,then 

                

                    ,  
 

 
(
            

          
  )- 

 

                =  {
  ∑              

 
   

    ∑     
 
      

}     . 

  

We select  's value. on the real axis. Let        

though real values, we discover inequality (2.1). 

 

Corollary 2.1.let the function      described by (2.2) be in 

the class          then 

 

                |  |  
   | |

    | |     
   ,                          

  

 3. DISTORTION BOUNDS 

Theorem 3.  For        ∈   { }, and suppose      
belongs to in the class         therefore, 
 

           
     | | 

     
  ∑

 

    (     
     |  |

     
)

 
                          

 

|    |    
     | | 

     
  ∑

 

    (     
     |  |

     
)

 
       ,  

 | |                            (3.1) 

                      

                  
     | | 

     
 ∑

 

    (     
     |  |

     
)

 
                           

 

           |     |    
     | | 

     
 ∑

 

    (     
     |  |

     
)

 
     ,   

 | |                       (3.2)       
 
Proof. Belong to M. In virtue of Theorem 2.1, we get 
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              |    |  | |  ∑ |  || 

 | 
                                          

     

               
     | | 

     
  ∑

 

    (     
     |  |

     
)

 
                              

and 
 

                    |    |  | |  ∑ |  || 
 | 

                                                   

 
                                

   
     | | 

     
  ∑

 

    (     
     |  |

     
)

 
     ,    

 | |      . 
 
Also, from (1.1), there are 
 
              |     |    ∑  |  || 

   | 
         

 

          
     | | 

     
 ∑

 

    (     
     |  |

     
)

 
                          

 and 

          |     |    ∑  |  || 
   | 

                                                   

     

           
     | | 

     
 ∑

 

    (     
     |  |

     
)

 
    ,                             

 | |      .                         
 
Thus, we obtained the required results.  

 

 4. EXTREME POINTS  

We consider the subclass  ̂      of the class        in this 

section, which consists of all the functions     ∈   of the 

form (1.1), and we satisfy (2.1). The extreme points of the 

subclass  ̂      are defined by the following theorem. 

 
Theorem 4. Let                                    (4.1)                                                 
 
and 

                   
 

    | | |    |
   ,                 

 
Then   ∈  ̂       if, and only if 
 
     ∑   

 
                   ∑      

                                               

(4.3) 
 
Proof. Let  ∈  ̂     . Then in virtue of (2.1). we can 
set 

         | | 
    

    | | 
 ,        .                 (4.4) 

 
Which results in our (4.3). 

Conversely, let 

 
                      ∑   

 
                                

                                         

                              ∑   
 
   

 

    | | |    |
   . 

Then 

                    ∑     | |     
 
   . 

 

    
 

    | | |    |
  

                            

                   | |∑        | |       
 
     

 

Therefore, we have  ∈  ̂     .                        

5. RADII OF STARLIKENESS AND 

CONVEXITY 

Theorem 5.1. If   ∈         of the form (2.2), then   is 

holomorphically starlike from order  ,         in the disk 

| |           where 

                *
    | |          

    | |      
+

 

   
                (5.1)                      

 

Proof. By a computation, we have 

    

     |
      

    
  |  |

 ∑             
   

  ∑        
   

|   

 

                       
∑        | |    

   

  ∑   | |    
   

 . 

 
Thus   is starlike of order   if 

               

                  ∑
     

   
 
     | |                     (5.2) 

 

Since  ∈        ,we have  

 

                    ∑
    | |     

   | |
 
                           (5.3) 

 

Now, (5.3) holds if 

 

                   
     

   
| |    

    | |     

   | |
, 

 

That is, if 
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                 | | *
    | |          

    | |      
+

 

   
               (5.4)                           

 

Theorem 5.2. If   ∈         of the form (2.2),then   is 

holomorphically convex from order  ,         in the disk 

| |           where 
 

                 *
    | |          

    | |         
+

 

   
               (5.5)                       

 

Proof. By a computation, we have 

 

             |
       

     
|  |

 ∑              
   

  ∑         
   

|            

 

                          
∑         | |    

   

  ∑    
 
   | |    

 

Thus   is convex of order   if 

 

 

                       ∑
      

   
 
     | |                      

(5.6)                  

 

Since  ∈        ,we have  

 

                       ∑
    | |     

   | |
 
                                

(5.7) 
 

Now, (5.7) holds if 

               | |        *
    | |          

    | |         
+

 

   
                        

(5.8) 
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 يحول عائهة اندوال انتحهيهيه باستخداو يؤثر خط         
 

سعيد خهيم پميس           عبدانرحًٍ سهًاٌ جًعه         

 

 كهية انتربية نهعهوو انصرفة ،جايعة

انعراق الاَبار،  

 عهوو كهية ،انرياضيات  قسى

 وانرياضيات، جايعة انحاسوب

انعراق انًوصم، انًوصم،  
eps.abdulrahman.juma@uoanbar.edu.iq sipal.seed@gmali.com 

 

 :2/3/2023انقبول تاريخ             2022/11/1تاريخ الاستلاو:

 

 انًهخص
انغزض ين ىذا انبحث ىٌ دراست ً تقذيى كايهت ين انذًال انتحهيهيت 

احاديت انتكافؤ انًعزفت عهى قزص انًٌحذة ً باستخذاو يؤثز خطي تى استنتاجو 

 ين خلال يفيٌو الانتفافاث بين يؤثزين خطين انًقذيت ين قبم عذد ين انباحثين

في ىذا انًجال بالإضافت انى دراست نتعًيى يفيٌو انذًال اننجًيت ً انًحذبت 

دراستنا  تزتبط يع سهسهت انتٌسيع ً انحصٌل عهى عذد ين انخصائض انًيًت 

انينذسيت يثم قيٌد انًعايلاث انذًال انتي تنًي انى ىذا انعائهت ً كذنك نظزياث 

نى انصاف الاقطار اننجًيت ً انًحذبت انتشٌيو ً ايحاد اننقاط انًتطزفت بالإضافت ا

 .نهذًال انتي تنتًي انى ىذه انعائهت

  

يؤثز خطي, دًال تحهيهيت, دًال احاديو انتكافؤ, انذًال انكهًات انًفتاحية : 

 اننجًيت يسائم انصاف الاقطار.
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