
Al-Rafidain Journal of Computer Sciences and Mathematics (RJCM), Vol. 17, No. 1, 2023 (43-51) 
 

43  

 

 
 

Real Time System Scheduling Approach:Survey 
Dhuha B. Abdullah 1

,* Israa Nasir Abood 2
 Raya akram hamdi 3 

 

Department of Computer Science, College of computer science and mathematics, Mosul University, Mosul, Iraq
 1.2.3

 

*Corresponding author. Email: prof.dhuha_basheer@uomosul.edu.iq
 1 

 

  Article information  Abstract  
 
Article history: 

Received : 12 /6/2022 

Accepted : 5/12/2022 
Available online : 

 
Real-time systems play a major role in our today's life. They are used in essential control 

systems that rely on timely response and determined outcomes to work. The main real-time 

scheduling algorithms for both soft and hard real-time system is presented in this paper, both in 

processors uniprocessor and multiprocessor schemes. The effectiveness of scheduling is derived 

from various factors, including hardware configuration, real-time application type, and real-time 

problem complexity. This review presents a characterization of scheduling techniques to help 

the researcher to get enough knowledge in real-time systems with adequate scheduling schemes 

to reach their timeliness characteristic. In this paper, we aim to investigate the scheduling 

attributes and scope of research in real-time computing, and classify real-time system in two 

categories: algorithms for multiprocessor scheduling and algorithms for uniprocessor 

scheduling. Furthermore, gives special attention to characteristic and their task, that is one of the 

following original contributions to real-time scheduling algorithms. 
   
  

Keywords:  
Scheduling Algorithms, Real-time Systems, Hard RTS, Soft RTS schedulable, Priority driven Algorithms; EDF (Earliest Deadline First); RM (Rate 

Monotonic)   
 

1. NTRODUCTION TO REAL TIME 
 

Real-time systems are computing systems that will always 

perform their operations within specified strict deadlines 

[1,2]. In a Real Time, system, processes relate to tasks that 

have defined features such as a deadline, execution time, and 

release time. Because the real-time system has deadline 

constraints, a real-time task can be classed into one of three 

categories: hard, soft, or firm, based on the consequences of 

missing the deadline. If a deadline is missed on a hard real-

time task, the system will fail completely and catastrophic 

consequences will result.  

A deadline can be missed in a soft real-time system, but it 

will not result in a total failure, simply a reduction in system 

stability. A real-time task is firm since if the deadline is 

missed, the produced outcome will be useless and cause no 

damage to the system [3]. 

A large number of different applications use hard real-time 

systems today, including automotive electronics, avionics, 

space systems, medical systems, household automation, and 

robotics [4]. To get the desired and predictable behavior from 

the system, real-time scheduling algorithms are of great 

importance. In addition, the scheduling of tasks and the 

management of processor resources on different processors are 

equally important issues when designing algorithms for 

scheduling in multiprocessor systems. 

Scheduling tasks in a global or hierarchical manner serves as 

the manager, is one of the generic methods. It then According 

to the general principle, divide the tasks between the 

processor‟s characteristics. Then, each processor can 

independently schedule based on its own approaches. There 

are many types of algorithms, and choosing an appropriate one 

has a significant impact on the behavior of the real-time 

system. Also, other critical Scheduling methods based on real-

time criteria, including response time and average schedule 

rate, energy consumption, and fault tolerance are also 

important considerations in real-time scheduling methods [2]. 

The use of multi-core processors has increased as the number 

of applications of embedded real-time systems in modern life 

has grown, as has the necessity for greater processing. By 

 
Al-Rafidain Journal of Computer Sciences and Mathematics (RJCM) 

 

www.csmj.mosuljournals.com 



Al-Rafidain Journal of Computer Sciences and Mathematics (RJCM), Vol. 17, No. 1, 2023 (43-51) 
 

44  

increasing the processing power, energy consumption will 

increase.  

Consequently, effective energy use will become increasingly 

important. There are a number of tasks that must be 

performed, each with different requirements. task, how 

distinct tasks are scheduled on processors is of greater 

importance. Gradually, real-time applications have in this 

field, this role has taken on a major role. Therefore, 

scheduling plays an important role. algorithms should 

simultaneously handle should take into account both job time 

limitations and energy consumption. 

According to the literature, a variety of in addition to the 

various scheduling algorithms, several other factors, such as 

priority assignment strategies (static or dynamic), task 

models, etc., were also discussed. (Periodic or sporadic), 

energy optimization, and more [4]. Scheduling algorithms for 

automotive applications are presented in this paper, 

describing scheduling algorithms, this paper recommends a 

taxonomy of scheduling algorithms that can help automotive 

designers decide on the appropriate scheduling algorithm [5]. 

A taxonomy of preemptive real-time tasks is described 

multiprocessors; however, they did not specifically address 

automotive applications. 

This work is organized as follows. In Section II, we review 

related literature. In section III, we discuss scheduling 

algorithms for uniprocessor systems, such as the RM and 

EDF algorithms. A comparison between uniprocessor and 

multiprocessor scheduling algorithms is presented in Section 

IV. The conclusion and recommendations of this work are 

presented in section V. 

 
2. LITERATURE REVIEW 

 
A summary of the work of different researchers on real-time 

processor schedulers from 2019 to 2021 is provided in the 

following table. 

Based on the work of Beni et al. [6], a hierarchical schedule 

was developed for Linux that is optimized for virtualizing 

containers and is compatible with LXC containers with 

multiple CPUs. We provide a scheduler that is constructed by 

changing the real-time control group's mechanism so that its 

real-time run queues can be scheduled by the SCHED 

DEADLINE policy. Researchers have shown that using the 

new scheduler, real-time applications can be scheduled inside 

LXC containers as predicted by previous theoretical CSF 

analyses. The scheduler is easier to set up and produces 

superior results, while also using less real-time computing 

capacity inside the system, so it can be used for any real-time 

application reduction runs. 

In their [7] paper, Baital and Chakrabarti proposed a 

scheduling algorithm where random tasks of varying 

periodicity and duration are generated at different intervals. 

Especially in battery-powered systems, energy consumption 

is a critical design consideration. As part of our work on 

schedule, we have extended our efforts to heterogeneous 

multicore systems (HMS) architectures, where real-time tasks 

are distributed accordingly while still meeting deadlines. 

Using heterogeneous multicore schedulers, the researchers 

demonstrated that commercially available heterogeneous 

multicore processors can be made. By comparing the 

performance of our model to some popular and novel 

scheduling techniques, the authors found our model performs 

exceptionally well in all cases and reduces energy 

consumption by a significant amount. 

As part of [8], Pradhan suggests It consists of a RR algorithm 

modified so that the initial quantum is equal to the burst time 

for the first task. Whenever a new task is added to the ready 

queue, the quantum of the ready queue The time is now 

calculated by averaging the burst times of all tasks in the 

queue, including the new one. Turnaround time and wait times 

were significantly improved in the MATLAB experiments. 

The proposed algorithm by I. S. Rajput in [9] addressed the 

shortcomings of the RR algorithm, which does not take 

priority into account. The process will be arranged in the 

queue according to their priority first. This algorithm will then 

be used in the first round in order to perform the processes. 

The second round will reorder the tasks based on the 

remaining burst time. According to MATLAB evaluation 

results, this proposed algorithm has an advantage over the 

Average waiting time, average turnaround time, and context 

switching of the traditional RR algorithm. 

D. Khokhar and A. Kaushik published an algorithm in [10] 

that resolves the problems with traditional RR algorithms. To 

determine the best quantum time, they developed a new 

approach based on the mean and mean of the tasks' burst 

times. Based on these experiences, a new algorithm has 

proven to be superior in terms of reducing waiting time and 

turnaround time. 

In 2020, Sanj M S et al. [19] To increase efficiency without 

affecting classical Round Robin (RR) functionality, ERR was 

suggested. This algorithm is applied and tested by the 

CloudSim toolkit. In contrast to classical RR, ERR minimizes 

the waiting time for a specific number of tasks in a specific 

number of cloudlets. 

In 2020, Yong Shi and et al. [20] In order to improve Min-

min's efficiency, the BMin algorithm is proposed. Based on 

the results of a cloudsim simulation, the proposed algorithm 

reduces completion time, maximizes throughput, and enhances 

resource load balance. 

 
3. Real time system classification 

 
Real-time computing is the concept of computing in real-time. 

In order for temporary correctness to be ensured, tasks must be 

completed before the deadline. Failure to meet the deadline 

will have different consequences depending on the system [21, 

22]. Figure 1 shows the classification 

 Soft real-time:  

In situations in which a deadline is missed, the quality of the 

result of a task decline. Eventually, the performance of the 

system will decline when too many deadlines are missed. 

When deadlines are missed, the system does not fail. An 

example of soft real-time is the capture of temperature, wind, 

humidity, and other sensors at the weather station. 



Al-Rafidain Journal of Computer Sciences and Mathematics (RJCM), Vol. 17, No. 1, 2023 (43-51) 
 

45  

 Firm real-time: 

When a deadline is not met, the quality of the outcome of a 

task drops to zero. This does not mean that the system will 

collapse. The system degrades when too many deadlines are 

missed, as it does with the soft deadline. Streaming video is 

an example of such a system. 

 Hard real-time: 

In real-time deadline situations, the quality of the results is 

zero when deadlines are missed. More importantly, if one of 

the deadlines is missed, the system will fail completely and 

even result in catastrophic consequences. Hard real-time 

systems demand that tasks meet their deadlines at any 

system load by all means possible. The ABS system of a car 

can be viewed as an example of a real-time system with a 

hard deadline. 

 
Figure 1: Real Time system classification 

 

Table 1. Scheduling algorithms for real-time: summary of literature review

                                                                                  

 

4. REAL TIME SCHEDULING ALGORITHM 

The functionality of a real-time system is described by 

numerous computational and logical activities. As these 

activities can't be performed in a random order, a 

precedence graph highlights their interconnectedness. In 

general, scheduling algorithms are used to determine the 

best way to distribute CPUs and networks are shared 

resources for computing activities. Various algorithms are 

offered in scheduling literature based on the restrictions 

enforced. Among these algorithms are periodic, independent 

tasks on uniprocessors and Distributed tasks with 

periodicity and aperiodicity [23,24]. 

 



Al-Rafidain Journal of Computer Sciences and Mathematics (RJCM), Vol. 17, No. 1, 2023 (43-51) 
 

46  

 
 

Figure 2: REAL TIME SCHEDULING  CLASSIFICATION 

 

Offline scheduling:  

All the scheduling decisions for the real-time system are 

stored in a scheduling table, along with the activation times 

for all tasks. Scheduling decisions are therefore made before 

a process has started and are based on an understanding of 

how it will behave [23]. 

Clock driven scheduling  

Tasks can be triggered by clock-driven approaches if their 

release times are known and all tasks are periodic. An 

offline schedule can then be created based on this 

information. Task dependency is a constraint on the 

scheduler, which must be met. A schedule is built for a 

hyper period if all tasks are released synchronously. We 

then arrive at a periodic schedule, or cyclic schedule, that 

concludes this process. Generally, when the tasks are 

independent, the schedules can be worked out by an 

algorithm, including priority-driven scheduling algorithms. 

The scheduling problem becomes NP-complete if any 

precedence or exclusion constraints exist[22]. 

Online scheduling:  

The scheduling algorithm makes decisions Priorities are 

assigned during runtime according to certain rules. 

Schedules are typically stored as tables. a separate database, 

i.e., in a static system, but it can be used in Systems with 

dynamic arrivals and departures of jobs (e.g., embedded 

systems) [24]. 

 

Weighted round robin  

In a round-robin schedule, tasks are assigned a time slice 

and scheduled in order. It goes back to the queue and waits 

for the next round after it has consumed its time slice or 

been yielded to another task. Modern operating systems are 

based on this scheduling algorithm. By categorizing 

processes into different priority levels, the Linux kernel 

implements completely fair queueing, which is a variation 

of round-robin. Typically, one round of scheduling is 

performed at each level. There is the same problem with this 

algorithm as with the FIFO algorithm, which does not 

consider the deadlines for tasks [25]. 

Priority driven  

The Tasks may be assigned fixed or dynamic properties by 

the scheduler in a priority-driven scheduling approach. 

During compilation, this assignment is applied to each task 

in the task set. A queue of ready tasks is maintained by the 

online scheduler, which Organizes the tasks by priority and 

executes them accordingly. Schedules that are prioritized 

based on fixed priorities or dynamic priorities are classified 

as priority-driven scheduling. Below, two exemplary 

algorithms, one for each class, are briefly described for each 

domain [26]. 

 

 
Figure 3: Ppriority driven classification  

 

Static Algorithms 

In this section, we describe Static-priority scheduling 

algorithms are some of the most important: 

 

 RM (Rate Monotonic)   

For uniprocessor systems, an algorithm for determining 

priority scheduling is RM, which is static and preemptive. 

Due to the demand rate being higher, shorter period tasks 

are more likely to be executed. If the period is shorter, the 

priority would increase as well. Therefore, periodic tasks 

are used. A number of assumptions have been incorporated 

into the RM algorithm [25]:  

1) Periodic tasks are ready to begin executing during the 

beginning of each period T and have a fixed runtime.  

2) In other words, the Tasks (D) have an implied deadline 

(D) period end, since D=T. 

3) The tasks are independent of one another and do not 

interfere with one another. 

4) As a result of time spent on context switching and 

exchanging, no scheduling overhead is assumed. 

 DM (Deadline Monotonic) 

The D*T (constrained deadline) scheduling algorithm is 

similar to RM and differs from RM in that it has a fixed 

date. The task priority in RM can be determined by the 

deadline, so it is treated as a special case of DM. 

Consequently, shorter deadlines are assigned a higher 

priority. 

RM has undergone some improvements to enhance its 

performance. So, when the task is shared with their 

resources, we can also make use of the RM. Using a 



Al-Rafidain Journal of Computer Sciences and Mathematics (RJCM), Vol. 17, No. 1, 2023 (43-51) 
 

47  

technique called semaphore, we can prevent the 

simultaneous use of shared resources. The task will lock 

when it reaches the critical section, and once it exits it is 

released [24,25]. 

Dynamic Algorithms 

Dynamic-priority scheduling algorithms include the 

following [25,26]: 

 

 EDF (Earliest Deadline First) 

The EDF algorithm determines priority via dynamic 

scheduling priorities based on deadlines. So, the highest 

priority would be given to tasks that are approaching their 

deadline. In addition, in addition, it has the capability of 

maximizing the efficiency of the system because of its 

preemptive nature. In addition to RM, EDF also holds the 

same conditions and assumptions.[25] 

 

 LLF (least Laxity First) 

Accordingly, Since the LLF algorithm prioritizes according 

to laxity, it will have a higher priority if it had less laxity. A 

laxity interval accounts for the period during which a task is 

relaxed. be executed. 

Therefore, Laxity time determines if two tasks are the same 

automatically stop another execution when they have the 

same laxity time. As a result, there will be frequent context 

switches. Nevertheless, ignoring A dynamic scheduling 

algorithm optimized for LLF's derived cost, similar to EDF 

[26]. 

 

5. EXAMPLES OF PRACTICAL REAL-TIME 

APPLICATIONS: 

In recent years, real-time has increasingly been used to 

describe many computing systems and applications that are 

related to time, including time trackers, gaming systems, 

and information services [21, 22]. 

 General control management systems 

such as the ones found in avionic systems. Realtime engine 

controllers are responsible for automatic navigation and 

detection of hardware malfunctions or damages through 

reading sensors and processing their parameters and 

reacting within an acceptable delay. Another critical 

application is the air traffic control system [23]. 

  Mobile and communication systems. 

Message passing and delay guarantees are required by 

wireless communication systems, for example, for 

Applications that have a large number of nodes, such as 

automotive and industrial applications.[20]. 

 Data distribution systems 

Users are notified of important information in a short period 

of time (a few minutes or less). A system like this is used to 

notify passengers about accidents, schedule delays, and 

other changes in transport systems [21]. 

 General-purpose computing   

This is common in financial and banking systems. 

 Multimedia and entertainment systems: 
Streaming audio and video are forms of multimedia 

information. In information processing, communication 

between multimedia servers and receivers can be of great 

importance in terms of real-time requirements [21]. 

 Medical systems 

There are peacemakers and medical monitors of treatments 

and surgery, for example. 

 Industrial automation systems 

They are used Controlling and monitoring production in 

factories processes. Sensors, for instance, continuously 

gather Measurements are sent to real-time controllers, 

which evaluate them and make adjustments when necessary 

needed. Systems such as these can be used for noncritical 

activities, such as logging and surveillance [22]. 

6. SCHEDULING ALGORITHMS FOR UNIPROCESSOR 

AND MULTIPROCESSOR SYSTEMS 

Multiple scheduling algorithms are used in real-time 

systems with a single processor. There are two types of 

algorithms: static algorithms and priority-driven algorithms. 

A static algorithm is one that divides the processor time 

evenly among many tasks, such as Round Robin (RR). The 

focus of this section is on priority-driven algorithms. [26] 

A priority-driven scheduling algorithm can either be fixed 

or dynamic. The priority assignment determines whether the 

priority is static or changes during running. This section The 

EDF and RM algorithms are the most commonly used 

priority-driven algorithms in real-time systems. [28,29] 

An alternative name for the RM Scheduling Algorithm is 

Rate Monotonic Algorithm. A fixed or static priority 

scheduling algorithm is the RM algorithm. RM prioritizes 

tasks according to their period. This algorithm has the 

disadvantage that it does not provide a perfect result in low-

load situations. In overloaded situations, RM performs 

better than dynamic scheduling. The RM algorithm gives 

the most chances of executing in the shortest period of time. 

[27] 

Earlier deadline first scheduling algorithms are also known 

as nearest deadline first scheduling algorithms [27].  

Dynamic scheduling algorithms are based on the EDF 

algorithm. As soon as possible, the task must be completed. 

The earliest deadline determines the priority of a task. A 

task is utilized 100 percent when EDF Scheduling is used, 

regardless of whether it is loaded or not loaded equal to 1. 

When tasks are overloaded or cross-loaded, the processor's 



Al-Rafidain Journal of Computer Sciences and Mathematics (RJCM), Vol. 17, No. 1, 2023 (43-51) 
 

48  

utilization decreases exponentially [28]. As shown in Table 

2, RM and EDF have their advantages and disadvantages. 

TABLE 2. ADVANTAGES AND DISADVANTAGES OF RM AND 

EDF 

Algorithms Advantages Disadvantages 

Rate 
Monotonic 

 It is easy to 
implement. 

 This is a 
common 
algorithm. 

Utilization of 
CPU is wasted 

Earliest 
Deadline First 

 

Utilization of 
all processes 

 Implantation 
difficulty 

 Overloaded 
conditions can 
lead to 
misbehavior 

 

RM and EDF behave differently on the same task set as 

shown in Figure 3. Suppose there are three tasks in a task 

set, Ti, Ci, and Pi, where Ti represents the computation time 

and period of each task. A task T1(2,6), a task T2(3,8), and 

a task T3(2,12) are included. The priority in RM is 

determined by the period, as shown in Figure 3(a). Thus, the 

most important task is the one with the shortest period. The 

priority of the EDF changes based on the deadline in Figure 

3(b). As a result, the task with the shortest deadlines at each 

time interval is given the highest priority. 

Figure 4 This case study illustrates how RM misbehaves 

under certain conditions. Assume you have two tasks 

T1(2,5) and T2(4,7) in a task set. Due to T1's higher priority 

than T2, T1 will preempt every instance of T2, and 

sometimes it can result in a deadline being missed. Figure 

4(b) illustrates how the EDF can schedule this task set 

without missing any deadlines. In [29], it states that "For 

larger task sets, the number of preemptions caused by RM 

increases, thus the overhead due to context switching is 

higher under RM". 

 

Figure 3. (a) RM and (b) EDF scheduling comparison [28] 

 
 

Figure 4. (a) RM and (b) EDF scheduling comparison [28] 

 

Increasingly complex and heavy computations require more 

than one processor as time goes on. The scheduling scheme 

for multiprocessor systems differs from that for 

uniprocessor systems. To find the best scheduling 

algorithm, many research works have been conducted in this 

field. Fig. Multiprocessor systems are classified according 

to the algorithm in figure 5. They can be divided into classic 

algorithms, heuristic algorithms, and evolutionary 

algorithms. While most algorithms in the classic category 

are not specifically designed for multiprocessor 

environments, they do achieve a lesser time complexity 

when used in multiprocessor systems. Classic algorithms 

don't guarantee an optimal solution, which is one of their 

major drawbacks. As well as heuristics and evolutionary 

algorithms, which achieve a near-optimal result at the 

expense of more running time, there are also heuristic 

algorithms [30]. 



Al-Rafidain Journal of Computer Sciences and Mathematics (RJCM), Vol. 17, No. 1, 2023 (43-51) 
 

49  

 
Figure 5. Scheduling algorithms for multiprocessor systems [29,30] 

 

In Table 3, authors in [30,32] This paper compares some 

uniprocessor and multiprocessor scheduling algorithms 

from a variety of metrics, including priority, CPU 

utilization, context switching, optimality, likelihood of 

missing deadlines, response time, predictability, 

effectiveness, and limitations. Compared to other 

uniprocessor algorithms, the Instantaneous Utilization 

Factor (IUF) scheduling algorithm performs better than that 

of the Modified Instantaneous Utilization Factor (MIUF). 

utilization factor In comparison to other multiprocessor 

algorithms, MIUF provides faster response times, higher 

CPU utilization, and easier context switching [31][32].

  

 

TABLE 3. Comparison between Uniprocessor and 

Multiprocessor Algorithms [30,31,32] 

 

 

7. CHALLENGES AND ISSUES  

As multiprocessor systems become more prevalent in 

today's computing environment, they can be used as 

powerful computing solutions in hard real-time systems 

with the highest efficiency and reliability. One of the 

challenges in the field of computer engineering is 

scheduling multiprocessor systems. Real-time task 

scheduling in multiprocessor systems consists of 

determining which task from a set of tasks should be 

executed on which processor. The following issues may also 

arise [31,32]: 

 Processor usage restrictions 

 effective scheduleability tests 

 Taking overhead (cost) into account 

 Multiprocessor systems with limited task models 

 Limitations on the use of shared resources (Resource 

Allocation) 

8. CONCLUSION 

A review of real-time scheduling algorithms is presented in 

this paper. In the field of scheduling algorithms in real-time 

systems, earlier studies have been reviewed and discussed. 

Also discussed in this paper are the most commonly used 

uniprocessor algorithms, which are RM and EDF. 

Additionally, multiprocessor scheduling algorithms have 

been described. 

This paper discusses scheduling and hard RTS scheduling 

approaches. Tables have been compiled and compared to 

summarize the results. Furthermore, several common 

scheduling algorithms are examined. This is the best way to 

guarantee that tasks are completed on time under these 

conditions. Then, in the following part, in some hard RTS 

applications, there are several scheduling approaches will be 

discussed 

 As a result, the choice of scheduling algorithm depends on 

many factors, and no one algorithm is optimal for all 

systems due to the differences in their structure and needs. 

Research and development in evolutionary algorithms in 

scheduling can be done in the future. 

9. REFERENCES 

[1] Buttazzo, G.C.: „Hard real-time computing systems: predictable 
scheduling algorithms and applications‟ (Springer Science & 
Business Media, 2011. 2011) 

 

[2] Davis, R.I.: „A review of fixed priority and EDF scheduling for hard 
real-time uniprocessor systems‟, ACM SIGBED Review, 2014, 11, 
(1), pp. 8-19 

 

[3] Lindh, F., Otnes, T., and Wennerström, J.: „Scheduling algorithms for 
real-time systems‟, Department of Computer Engineering, 
Malardalens University, Sweden, 2010 

 

[4] Davis, R.I., and Burns, A.: „A survey of hard real-time scheduling for 
multiprocessor systems‟, ACM computing surveys (CSUR), 2011, 
43, (4), pp. 1-44 



Al-Rafidain Journal of Computer Sciences and Mathematics (RJCM), Vol. 17, No. 1, 2023 (43-51) 
 

50  

[5] Carpenter, J., Funk, S., Holman, P., Srinivasan, A., Anderson, J.H., 
and Baruah, S.K.: „A Categorization of Real-Time Multiprocessor 
Scheduling Problems and Algorithms‟, in Editor (Ed.)^(Eds.): „Book 
A Categorization of Real-Time Multiprocessor Scheduling Problems 
and Algorithms‟ (2004, edn.), pp. 

 

[6] Abeni, L., Balsini, A., and Cucinotta, T.: „Container-based real-time 
scheduling in the linux kernel‟, ACM SIGBED Review, 2019, 16, 
(3), pp. 33-38 

 

[7] Baital, K., and Chakrabarti, A.: „Various approaches for high 
throughput and energy efficient scheduling of real-time tasks in 
multicore systems‟, in Editor (Ed.)^(Eds.): „Book Various approaches 
for high throughput and energy efficient scheduling of real-time tasks 
in multicore systems‟ (IEEE, 2019, edn.), pp. 402-405 

 

[8] Dauphin, B., Pacalet, R., Enrici, A., and Apvrille, L.: „Odyn: 
Deadlock Prevention and Hybrid Scheduling Algorithm for Real-
Time Dataflow Applications‟, in Editor (Ed.)^(Eds.): „Book Odyn: 
Deadlock Prevention and Hybrid Scheduling Algorithm for Real-
Time Dataflow Applications‟ (IEEE, 2019, edn.), pp. 88-95 

[9] Chen, H., Wen, J., Pedrycz, W., and Wu, G.: „Big data processing 
workflows oriented real-time scheduling algorithm using task-
duplication in geo-distributed clouds‟, IEEE Transactions on Big 
Data, 2018, 6, (1), pp. 131-144 

[10] Cao, S., and Bian, J.: „Improved DAG Tasks Stretching Algorithm 
Based on Multi-core Processors‟, in Editor (Ed.)^(Eds.): „Book 
Improved DAG Tasks Stretching Algorithm Based on Multi-core 
Processors‟ (IEEE, 2020, edn.), pp. 18-21 

[11] Nguyen, K.K., Vien, N.A., Nguyen, L.D., Le, M.-T., Hanzo, L., and 
Duong, T.Q.: „Real-time energy harvesting aided scheduling in UAV-
assisted D2D networks relying on deep reinforcement learning‟, 
IEEE Access, 2020, 9, pp. 3638-3648 

[12] Chen, J.-J., Shi, J., von der Brüggen, G., and Ueter, N.: „Scheduling 
of real-time tasks with multiple critical sections in multiprocessor 
systems‟, IEEE Transactions on Computers, 2020, 71, (1), pp. 146-
160 

[13] Lee, D., Jung, H., and Yang, H.: „Real-time schedulability analysis 
and enhancement of transiently powered processors with NVMs‟, 
IEEE Transactions on Computers, 2020, 70, (3), pp. 372-383 

[14] Pradhan, P., Behera, P.K., and Ray, B.: „Modified round robin 
algorithm for resource allocation in cloud computing‟, Procedia 
Computer Science, 2016, 85, pp. 878-890 

[15] Rajput, I.S., and Gupta, D.: „A priority based round robin CPU 
scheduling algorithm for real time systems‟, International Journal of 
Innovations in Engineering and Technology, 2012, 1, (3), pp. 1-11 

[16] Balharith, T., and Alhaidari, F.: „Round robin scheduling algorithm in 
CPU and cloud computing: a review‟, in Editor (Ed.)^(Eds.): „Book 
Round robin scheduling algorithm in CPU and cloud computing: a 
review‟ (IEEE, 2019, edn.), pp. 1-7 

[17] A. Rahman, S. Dash, M. Ahmad, T. Iqbal, "Mobile Cloud Computing: 
A Green Perspective," Intelligent Systems, Lecture Notes in 
Networks and Systems book series (LNNS, volume 185), pp. 523-
533, 2021. 

 

[18] Rahman, A. U., Dash, S., & Luhach, A. K. (2021). Dynamic 
MODCOD and power allocation in DVB-S2: a hybrid intelligent 
approach. Telecommunication Systems, 76(1), 49-61. 

[19] Sanaj M S, J. P. P. M. (2020). An Enhanced Round Robin (ERR) 
algorithm for Effective and Efficient Task Scheduling in cloud 
environment. IEEE. 

[20] Yong Shi, K. S., Steven Kemp and Jameson Hodge. (2020). A Task 
Scheduling Approach for Cloud Resource Management. Paper 
presented at the Fourth World Conference on Smart Trends in 
Systems,Security and Sustainability (WorldS4) 

 

[21] Qamhieh, M.: „Scheduling of parallel real-time DAG tasks on 
multiprocessor systems‟, Paris Est, 2015 

[22] ALAHMAR, D.: „Random Task Scheduler Algorithms as a 
Comparison and Access to the Best to Use in Real Time‟, 
International Journal of Scientific & Engineering Research, 2019, 1, 
(5), pp. 529-522. 

 

[23] Voss, S.: „Integrated task and message scheduling in time-triggered 
aeronautic systems‟, Duisburg-Essen University Munich, Germany, 
2010 

[24] Buttazzo, G.C.: „Hard real-time computing systems: predictable 
scheduling algorithms and applications‟ (Springer Science & 
Business Media, 2011. 2011) 

 

[25] Rouhifar, M., and Ravanmehr, R.: „A survey on scheduling 
approaches for hard real-time systems‟, International Journal of 
Computer Applications, 2015, 131, (17), pp. 41-48 

[26] D. G. Harkut, M. S. Ali, M. Poonam Lohiya, B. Principal, and nd yr, 
“Real-time Scheduler For Wireless Sensor Network : A Review.” 
[Online]. Available: www.ijert.org 

 

[27] H. Thakar, “Comparison between EDF_RM and EDF_DM in dynamic 
scheduling algorithm with sporadic task,” vol. 1, 2016, [Online]. 
Available: www.ijsdr.org49 

[28] G. C. Buttazzo, “Rate Monotonic vs. EDF: Judgment Day,” 2005 

 

[29] M. Rouhifar and R. Ravanmehr, “A Survey on Scheduling 
Approaches for Hard Real-Time Systems,” International Journal of 
Computer Applications, vol. 131, no. 17, pp. 41–48, Dec. 2015, doi: 
10.5120/ijca2015907656. 

[30] M. Rouhifar and R. Ravanmehr, “A Survey on Scheduling 
Approaches for Hard Real-Time Systems,” International Journal of 
Computer Applications, vol. 131, no. 17, pp. 41–48, Dec. 2015, doi: 
10.5120/ijca2015907656. 

[31] A. Rahman, I.M. Qureshi, A.N. Malik, M.T. Naseem, “Dynamic 
Resource allocation for OFDM Systems using DE and Fuzzy Rule 
Base System”, Journal of Intelligent & Fuzzy Systems (JIFS), vol. 26 
(4), pp. 2035-2046, 2014. 

 

[32] A. Rahman, “Applications of Hybrid Intelligent Systems in Adaptiven 
Communications”, Modeling, Analysis and Applications of 
NatureInspired Metaheuristic Algorithms, Edition: 1st, Chapter: 10, 
pp. 183-217, Publisher: IGI Global, 2017 

 

[33] A. Rahman, S.A. Alrashed, A. Abraham, “User Behavior 
Classification and Prediction using FRBS and Linear Regression” 
Journal of Information Assurance and Security, vol. 12, no. 3, pp. 86-
93, 2017. 

 

 

 

 

 

 

 

 

 

 

 

 

http://www.ijert.org/


Al-Rafidain Journal of Computer Sciences and Mathematics (RJCM), Vol. 17, No. 1, 2023 (43-51) 
 

51  

 

 نهج جذونة اننظاو فً انىقث انحقٍقً: الاسحبٍاٌ
 ضحى بشٍر عبذالله               اسراء ناصر عبىد              راٌا اكرو حًادي

 انًىصم، وانرٌاضٍات، جايعة انحاسىب عهىو كهٍة انحاسىب، عهىو قسى

انعراق انًىصم،  
prof.dhuha_basheer@uomosul.edu.iq 

 
 5/12/2022انقبىل: جارٌخ             2022/6/12جارٌخ الاسحلاو:

 
 انًهخص

رهؼت أنظًخ انىلذ انفؼهي دوسًا سئيسيبً في حيبرنب انيىو. يزى 

اسزخذايهب في أنظًخ انزحكى الأسبسيخ انزي رؼزًذ ػهً الاسزجبثخ في انىلذ 

انًنبست واننزبئج انًحذدح نهؼًم. يزى رمذيى خىاسصييبد انجذونخ انشئيسيخ في 

مي نكم ين نظبو انىلذ انفؼهي اننبػى وانصؼت في هزه انىسلخ ، في انىلذ انحمي

كم ين أنظًخ انًؼبنجبد أحبديخ انًؼبنج ويزؼذدح انًؼبنجبد. يزى اشزمبق فؼبنيخ 

ين ػذح ػىايم ، ثًب في رنك ركىين الأجهضح ونىع انزطجيك في انىلذ  انجذونخ

انفؼهي ويذي رؼميذ انًشكهخ في انىلذ انفؼهي. رمذو هزه انًشاجؼخ رىصيفًب 

نزمنيبد انجذونخ نًسبػذح انجبحث في انحصىل ػهً يؼشفخ كبفيخ في أنظًخ 

انىلذ انىلذ انفؼهي يغ يخططبد جذونخ ينبسجخ نهىصىل إنً خصبئصهب في 

انًنبست. في هزا انجحث ، نهذف إنً انزحميك في سًبد انجذونخ ونطبق انجحث 

في انحىسجخ في انىلذ انفؼهي ، ورصنيف نظبو انىلذ انفؼهي إنً فئزين: 

خىاسصييبد نجذونخ يزؼذدح انًؼبنجبد وخىاسصييبد نجذونخ أحبديخ انًؼبنجبد. 

ًيضح ويهًزهب ، وهي إحذي ػلاوح ػهً رنك ، يىني اهزًبيًب خبصًب نهسًبد انً

  انًسبهًبد الأصهيخ انزبنيخ في خىاسصييبد انجذونخ في انىلذ انفؼهي.

 

 RTSخىاسصييبد انجذونخ ، أنظًخ انىلذ انفؼهي ، انكهًات انًفحاحٍة : 

اننبػًخ ، انخىاسصييبد انًذفىػخ ثبلأونىيخ ؛  RTSانصهجخ ، إيكبنيخ جذونخ 

EDF  ألشة يىػذ نهبئي أولاً( ؛(RM )يؼذل سريت( 


