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A B S T R A C T 

The application of ground-penetrating radar (GPR) is addressed in this study, with the main application 

being the detection and classification of an underground target using GPR technology. This study focuses 

on the important task of GPR that needs to be done to improve the detection process, as well as ways to 

eliminate unwanted signals from the GPR image. The accuracy of detecting buried objects using GPR 

largely depends on the algorithms used, as smart algorithm technology has proven to be the most accurate, 

effective, and cost-effective. 
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1. Introduction 

         Many methods are used to discover and identify materials in the 

subsurface area. In recent years, ground-penetrating radar (GPR) has 

become an essential non-destructive device that detects and identifies a 

buried object. The GPR is a reliable tool used in many applications such 

as construction, mining, military, archaeological sites, tree roots, caves, 

land mines, civil and Geotechnical engineering[1]. The main parts of the 

GPR are the display, control box, transmitter (Tx) and receiver (Rx), Tx 

and Rx connected to the antenna, as shown in Figure (1). The average 

operating frequency range is from 10MHz to 4GHz, and the frequency is 

inversely proportional to the penetration depth and directly to the 

accuracy. The reflected signal is detected by the GPR system receiver and 

is the raw data that requires further processing for interpretation.  
 

 
 
 

Figure 1. The main parts of the GPR 
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There are three types of scans, A-scan, B-scan, and B-scan. The A-scan 

signal is one-dimensional and represents the electromagnetic fields 

reflected in one position, and the B-scan signal is two-dimensional. It is 

the sum of the A-scan signal, while the C-scan is the sum of the B-scan 

signal. The raw data is interpreted and analyzed to identify buried targets, 

where the raw data is analyzed either manually, semi-automatically, or by 

an automated algorithm[2]. 

This article conducts a comprehensive review of research papers on 

applying the Ground Penetrating Radar (GPR) system and is divided into 

five phases, as shown in Figure (2). 

 

 

 

Figure 2. Summary of the five sections of the research paper 

2. General application of ground-penetrating radar 

This section summarizes the research papers that use the GPR system in 

general application. The researcher estimated soil change properties, coal 

seam thickness, tunnel defect treatment, plant root profile. In addition, 

methods for measuring the velocity of electromagnetic waves (EMW) in 

the medium, the thickness of the coal seams, etc., are found below. In 

Table 1 In [3], a simulation of the new hybrid algorithm based on the 

ground-penetrating radar (GPR) image is discussed, which provided 

technical guidance for tunnelling defects. In this simulation, a numerical 

experiment was performed on the finite element time-domain (FETD). 

This algorithm provided accuracy as well as efficiency information about 

tunnel defects. [4]discusses the detection of subsurface materials based on 

GPR images using various classification algorithms. A simulation 

software (gprMax) is used to obtain 180 GPR images of the target, where 

the shape and depth of the buried object determine the types of 

hyperbolae. Suggestion systems consist of four stages: preprocessing, 

feature extraction, feature reduction, and classification process. In[5], an 

experimental ultra-wideband of the bi-static synthetic aperture radar for 

design, implementation, and image analysis of plant root system 

architectures is discussed. It is a low-cost solution that provides important 

information about the system. The system consists of three parts, the first 

step is data processing, the second part is image processing, and the last 

step is to analyze the model. The simulation was carried out using 

MATLAB and the delay and sum beamforming algorithm used to 

generate a two-dimensional (2D) image from a one-dimensional (1D) 

image. The factors affecting the output results are soil condition, the 

relative permittivity of roots, and root sizes, while the problem in practical 

implementation is hardware limitations. [6]use ground-penetrating radar 

(GPR) data to provide approximate values for soil parameters. Simulated 

annealing (SA) is used as a global reflection method to obtain a one-

dimensional (1D) full-wave response of finite difference (FD) for a 

typical ground response. The two basic steps of the SA method are to 

generate a random model, and then a decision is made based on an 

acceptance or rejection criterion. The test was obtained successfully, and 

the result of synthetic data and noise were added to it. The SA method can 

be summarized in two basic steps: the generation of a random model and a 

decision based on an acceptance or rejection criterion. [7] determine the 

electromagnetic wave (EMW) velocity of the sub-service material using 

Ground Penetrating Radar (GPR), which is required for the results of 

depth estimation, topographic correction, and buried object transmission. 

There are several common methods for estimating the velocity of an 

electromagnetic wave, such as velocity tables, scattered implants, 

hyperboloid fitting, and common midpoint (CMP), considered the most 

efficient treatment because they got better results than the rest.In [8], the 

operation of the GPR system has been analyzed using different buried 

objects and compared the results with different other frequencies 

(800MHz-250MHz). The frequency of the operation determines the 

distance and accuracy of the buried object. High resolution and shallow 

depth are obtained at 800MHz, while 250MHz is more suitable for lower 

resolution and greater penetration depth. [9] analyze different signal 

processing techniques by testing three spectrum characteristics to identify 

three types of materials. The operating frequency is 200MHz for the GPR 

system, and the type of materials used are metal, plastic, and concrete. 

Then evaluate the three buried objects in the frequency domain. The 

interface between matter and electromagnetic wave (EMW) was obtained 

using three spectral features, power spectral density (PSD) with short-

range Fourier transform (STFT) as well as Wigner-Ville distribution 

(WVD). Simulation results and real data of the behavior of the spectral 

properties under different conditions, different electrical properties of the 

soil, and the dimensions of the buried object were compared. 

Environments and antenna frequency require further research to improve 

GPR image quality for plastic, concrete, and metal. [10]proposed an 

algorithm to identify hyperbolas in real-time GPR data. New technology 

has provided an efficient and accurate measurement of the depth and the 

volume of an underground object. It is more suitable for practical testing 

due to lower computational complexity than Hough transforms and 

simpler training data and neural network-based methods. It showed an 

accurate result for both the simulation data and the real GPR data. 

However, further, improvement is needed by increasing the GPR scanning 

with different types and positions of the buried objects. Regarding[11], an 

algorithm for coal thickness, The error rate of the detection results is 

about 3 cm. The new detection technology is applied to only one goal of 

reducing conventional symmetric filtration, and more research is needed 

to apply it to underground coal mining applications. In [12], an image 

retrieval algorithm of the reconstructed image with a new geometry has 

been proposed to reduce ground-based radar requirements and allow 

estimation of average permittivity. It can produce buried objects such as 

metal and plastic in highly wasted environments. 

3. The effect of noise and interference on the detection 

process of ground-penetrating radar 
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The GPR antenna receives several signals from buried targets and other 

signals reflected by the internal and external sources that become part of 

the GPR image. The sources of unwanted signals are antennas, electronic 

parts, buildings, trees, and communication stations which increases the 

error rate in the detection process. The initial step of raw data analysis in 

the detection process is to remove unwanted signals such as noise and 

other reflected signals, as in the paper[13] that separates unwanted 

reflected signals from buried targets. The signal-to-noise ratio was 

improved in paper [14], and the effect of noise on the detection process 

was reduced using artificial neural networks (ANN). At the same time, in 

[15], better image discrimination and accuracy of raw data interpretation 

were obtained using a wavelet transfer process in noise isolation. The 

target signal is weaker than the unwanted signals because they are 

attenuated while passing through the medium; a specific procedure is 

required to separate them from the GPR image. Paper [16] discussed 

filters to separate the target signal from the unwanted signals. Another 

option is to compare images with and without the reflected 

electromagnetic wave (EMW). It is also described as a framework for de-

cluttering GBR images by integrating a Multiscale Directional Bilateral 

Filter (MDBF) algorithm with GPR images. [17] Implemented various 

clutter removal methods. The method of mean subtraction, subspace 

projection or time gate based on entropy has problems determining local 

scattering in a given area or when buried objects are close to each other. 

The data is collected experimentally in different ways. The reflected 

signal of the buried object is represented as a hyperbola curve, while the 

received unwanted signal has a horizontal shape.  

4. Detection of buried objects based on ground-penetrating 

The GPR application is used to discover and identify the buried object, 

and there are many methods used in the detection process. The raw data 

must be interpreted using an algorithm. The factors that affect the 

detection process are accuracy, error rate, process complexity, uptime, 

material cost/time, and safety. Table 3 summarizes the different 

algorithms' research papers related to the detection process. [18] A 

powerful ground-penetrating radar detector was developed using the 

Adaptive Normalized Match Filter (ANMF) to detect buried tubes. The 

electromagnetic wave (EMW) signal is sent directly to the ground. The 

GPR image is a combination of the reflected signal of the buried object 

and the noise and chaos signal. The noise source can be any electronic or 

telecommunication equipment, and clutter is also the reflected signal of 

small objects buried underground. [19] use an algorithm to detect 

hyperbola in the GPR image automatically. This algorithm does not have 

prior knowledge of the properties of the medium. The method depends on 

the canny filter that recognizes the edge in the hyperbola curve. The first 

step is to use a filter to change the parameters of the buried object, and 

then the next step is to remove the redundancy. The new method is used 

with different types of antennas and operating frequencies. The results are 

acceptable compared to the semi-automatic detection of commercial 

software. The high error rate results from using a constant permittivity or 

ignoring the cross-section area of the buried object. In [20], a buried 

object is detected and segmented using the Specific Peaks Summarizing 

Traces (SPST) algorithm for GPR image preprocessing. This method 

compared the segmentation results with other methods using the mean 

square error (MSE) and root square error (RMSE) criteria. It is essential to 

have a dry medium to reduce the effect of reflection. [21] Represents 

automatic detection of hyperbolic signatures in b-scan. Histogram of  

Oriented Gradients (HOG) has developed a new method for enabling 

region reflection signals from a target and using a Supported Vector 

Machine (SVM) for classification and training. The average accuracy is 

93.75% due to the detection goals of both synthetic and natural data tests. 

Operating frequency (250-700) MHz and synthetic data with less noise 

than real data test. [22] A GPR-based inverse tomography algorithm was 

used to reconstruct the geometrical features of the buried mineral material 

at different values of depth, soil, and material conditions. Simulation and 

experimentation results showed the correct localization of the buried 

objects despite noise on the data. [23] represented a multiple signal 

classification (MUSIC) algorithm for detecting a very closed buried 

object. The MUSIC algorithm suffers from a high error rate in the 

presence of noise and distortion. Then the W-MUSIC algorithm is the 

solution for a clear indication of targets in the presence of noise or 

distortion. The window of FFT music (W-MUSIC) is a new method to 

check a direct change in frequency with noise. [24] The buried body was 

identified and translated based on the GPR image with 3D random 

transformation (RT) and by a semi-automated approach algorithm. It is a 

robust and reliable algorithm with minimal human invasion. [25] studied 

the method of detecting non-metallic objects underground based on the 

GPR system and signal processing algorithm. The improvement in the 

detection process was obtained by increasing the signal-to-noise ratio of 

the received signal. This method used the cumulative energy distribution 

and the reflection of the buried object, which are related to each other. It 

is more efficient in the smooth ground such as path and road inspection, 

and the detection procedure is suffering a false detection with a different 

medium.. 

5. Landmine detection based on (GPR) 

An unexploded ordnance devices can cause loss of life or injury and even 

a financial problem for the family directly or indirectly. There are 

different tools used in the detection process of unexploded ordnance such 

as landmines, and GPR equipment is the most common device used to 

detect underground landmines. However, there are still problems related 

to the detection of an underground landmine in comparison to other buried 

objects such as large types of landmines, a material made, whether it is 

plastic or not, safety issues, and weather conditions. Table 4 summarizes 

various research papers with various procedures used to detect and 

identify buried landmines. [26]The buried object is determined by linear 

segmentation and impedance change between soil layers, and the accuracy 

of the convolutional neural network (CNN) is increased by training the 

synthetic data. [27]It obtained an excellent penetrating signal with a high-

accuracy detection system for metallic or non-metallic materials and 

improvised explosive devices (IEDs). The new method used a fast and 

accurate synthetic aperture radar (SAR) algorithm.[28]Presented 

applicable fast online algorithm for Dictionary Learning (DL) for a 

reverse construct of buried landmine. It is more accurate than another 

algorithm. At the same time, the operation time is practically high, and it 

is used with smaller mines. [29] This paper was used to compare the 

Energy Density Spectrum (EDS) of both the clutter detection signal and 

the target. This procedure has some difficulty in practice as Chaos objects 

can contain the same images created by the target object. Therefore, a 

high error alarm rate is possible in this algorithm, and it also cannot 

determine the size or shape of a land mine. [30] studied the identification 

of the buried object using the Simulated Correlation Algorithm (SIMCA) 

technique, which was used to locate the buried object. The combination of 



208       HUSSAIN ALSHAMY ET AL. /AL-QADISIYAH JOURNAL FOR ENGINEERING SCIENCES   14 (2022) 203–211 

 

GPR with SIMCA provided an excellent-resolution image. [31] Discuss 

the work of four algorithms in the process of detecting buried landmines. 

Using edge features in a hidden Markov model (HMM) and geometric 

features in a feed-forward command-weighted mean network.  

The third uses spectral features, and the fourth is a block edge graph. Data 

collected from a vehicle-mounted ground-penetrating radar sensor, which 

distinguishes landmine data from chaotic objects. The automatic detection 

process is obtained in different locations, soils, and climatic conditions. 

[32]  studied different sensor technology available to detect landmines. 

GPR used mine detection and still has limitations such as weather and 

noise. Each type of discovery has advantages and limitations. This paper 

is recommended for better results in landmine detection, as more sensors 

are required to improve the accuracy of the results and reduce scanning 

time. [33] comprised of different algorithmic methods for detecting and 

classifying landmines, where the error rate and accuracy are also essential 

for evaluating the correct algorithm. Other factors include algorithm 

types, target depth, soil propagation characteristics, and the physical shape 

of landmines. [34] Improved Landmine Detection for buried objects using 

the adaptive differential of gaussian (ADOG) methods. [35] The 

experimenter used a signaling process with multiple algorithms in parallel 

with GPR to detect the location of the landmine, using the Automatic 

Target Recognition (ATR) algorithm.  

Data is collected by Energy Focused GPR (EFGPR). The pilot test 

achieved a 96% accuracy rate and an error rate of about 0.017. The fuzzy 

inference system reduces false alarms and keeps detection rates at the 

same value.. 

6. Ground radar detection process with an intelligent 

algorithm. 

The function of GPR is to detect a buried object, and in to obtain good 

results, new methods of interpretation of the raw data are required to 

reconstruct the buried object. Some of these methods are based on a 

complex numerical equation, and others are based on artificial algorithms 

such as Artificial Neural Network (ANN), Machine Learning (ML), and 

Deep Learning (DL) technology, which have obtained good accuracy and 

stability. It is also able to reduce calculation time[36]. Table 5 summarizes 

research papers for the use of new methods in the detection and 

identification process. [37] Improved buried target locating and detection 

using Multi-Target Genetic Algorithm (MOGA). The advantage of 

MOGA methods is faster, less complex, and reduced computational times 

for target identification compared to other classification methodologies. 

[38].  

 

Table 1. Summary of the research paper for the general application of GPR 

 

Reference Characteristics of paperwork Result Comments and Limitations 

[3] 

A hybrid algorithm for providing technical 

guidance and processing tunnel defects using 

frequency (400-600-900) MHz 

Good results and accuracy with efficacy 

and efficiency. 
Only simulation and practical testing are required. 

[4] 
Various classification algorithms are used for 

detection and classification. 

High accuracy rate and results showing 

detection performance up to 91.7% 

Performance depends on the number of GPR 

images and the classifier's training required. 

[5] 
Implementation and analysis of image plant root 

system architectures used at (3.1-5.3) GHz 

Provided information about system 

parameters and factors limiting image 

features. 

Many constraints include soil condition, relative 

root permittivity, root sizes, and hardware devices. 

[6] 

Using one dimension (1D) to get a typical response 

from the ground. 

 

Obtain the approximate electrical 

conductivity, magnetic permeability, and 

dielectric constant values. 

Advance information about the medium is 

required.   

[7] 

Determined the EM wave velocity; in the medium 

in different ways, CMP processing is the most 

efficient. 

The velocity of the electromagnetic wave 

is required to estimate the depth of a 

buried object. 

Incorrect estimation increases error rate, and the 

wavelength is governed by the operating frequency 

and the substrate velocity. 

[8] 

Results at two different frequencies (800MHz-

250MHz using the RAMAC CU II system and 

Reflex W. 

More suitable for low resolution and 

greater penetration depth. 

The effect of weather on the accuracy of the 

results. 

[9] 

Determine the type of material, whether it is 

concrete, plastic or metal, with a frequency of 

200MHz. 

It is possible to distinguish between the 

three materials. 

Environments and antenna frequency require 

further research. 

[10] 

The probability hyperbola mixture model used a 

robust orthogonal distance-fit algorithm applied to 

the GPR image. 

Effective and accurate determination of 

the depth and volume of a buried object 

and less complexity in the calculation. 

Further improvement by increasing GPR scanning 

with different types and positions of buried objects.  

[11] 

Coal thickness was developed using an estimation 

algorithm to optimize the detection and estimation 

stages at F = 800 MHz 

Detect the object's depth with about a 3 

cm error rate of the actual value. 

The detection technique is only applied to one 

target, and more research is needed on the 

application of underground coal mining. 

[12] 
Image retrieval algorithm to reconstruct a new 

image geometry. 

An approximation of the permittivity 

value. 
Limited A to D to the 14-bit converter. 
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The problem of misclassification and accuracy of the GPR image has been 

resolved by using a new Underground Cavity Detection Network (UcNet) 

to improve hollow classification and overcome holes in complex urban 

areas. UcNet develops a convolutional neural network (CNN) and a B-

scan image. [36]Discuss a new algorithm to detect underground objects 

using artificial neural networks (ANN) and machine learning (ML).  

These algorithms improve object localization and the location of multiple 

objects, improving accuracy and reducing the error rate. Buried object 

features are required to identify the buried object. However, large data 

storage space is required, which can cause instability. [39]A pre-trained 

network improves detection performance by reducing the amount of data 

required by Convolutional Neural Networks (CNNs). The loss of some 

information will increase the error rate, and the level of pretraining 

depends on the degree of similarity between the source and the target. The 

pretraining stages determine the accuracy of the detection process. [40] 

proposed an automatic interpretation of the Simultaneous Perturbation 

Stochastic Approximation (SPSA) algorithm, which is used to obtain 

geometric values of a target such as location, physical dimension, and 

buried object type. The performance of this algorithm is improved in 

detection, recognition, and accurate information with a lower error rate. 

The new methods were performed on real and synthetic data and 

compared with the Hough transformation. A new model with cylindrical 

bodies was implemented with different cross-sectional values. [41] . 

 

Developed an automated convolutional neural network (CNN) algorithm 

to detect buried threats (BTD) based on a GPR device. Both pretraining 

and data augmentation were run to overcome the limited training data of 

CNNs with GPR data. Three other CNN architectures were used to get 

better CNN detection results. [42]Determine the physical properties of 

soils using Finite-Time Domain Difference (FDTD). It determined the 

physical properties of soil based on GPR response in homogeneous soils. 

Soil parameters used in the time-domain-difference B-scan response are 

also improved using particle swarm optimization (IPSO) related to target 

object recognition with multiple depths. Various simulations occur with 

the change of depth, radius, and conductivity of the buried object. [43] It 

studied different mines at different depths and then automatically detected 

a landmine or unexploded ordnance (UXO) based on machine learning 

(ML). A neural network (NN) and logistic regression are used to identify 

and locate buried objects. The results of using NN are more accurate 

compared to the logistic regression result. The threshold value was set to 

be 0.25 or less for better detection. [44]The detection process is improved 

with a new procedure that removes noise and noise from the GPR image 

and then distinguishes the target from the background by setting a 

threshold level. Neural networks and curve-fitting approaches Whatever it 

is, this method increases the error rate at a threshold value close to or 

above the reflection signal. 

 

Table 2. Summarizes published papers for detecting and removing unwanted signals. 

 

Reference Characteristics of this paperwork Result Comments and Limitations 

 

[13] 

Analysis of the effect of noise on the GPR scan of shielded 

antennas at (200-400) MHz 

Noise can blur the data, and external sources 

are powerful, which comes from the 

communication stations. 

Discuss external noise without internal 

noise and detect buried objects. 

 

 

[14] 

Artificial Neural Networks (ANNs) are trained to optimize 

the target's reflected wave and improve the weak signal-to-

noise ratio (SNR) 

Noise separation as well as target signal 

optimization and signal-to-noise ratio 

improvement. 

The results do not consider all types of 

noise, only white and colored Gaussian 

noises. 

 

[15] 
Wavelet transformation has been applied to improve the 

accuracy and resolution of the radar signal interpretations. 

Increases image recognition and interpretation 

of raw data. 

Noise removal and required thresholding 

with wavelet transform. 

 

[16] 

Separate the target from the unwanted signals by using 

filters or comparing images with and without the reflected 

electromagnetic wave (EMW). 

Image reconstruction using a bidirectional 

multidirectional filter (MDBF) algorithm. 

A problem in target detection or 

identification. 

 

[17] 

The Means subtraction and Subspace of the Projection are 

used for removal methods at frequency range (1 -2.3) GHz. 

A different method was used to remove the 

clutter and any unwanted signals. 

The problem to identify the clutter from 

the local area and to remove signal 

limited to a threshold value 

Table 3. Summary of the research papers for detection buried objects based on (GPR) 

 

Reference Characteristics of paperwork Result Comments and Limitations 

[18] A robust adaptive for the recognition process was 

tested in simulation and accurate data. 

Detection and localization of the buried 

pipe, identify the hyperbola in the scan 

area. 

The estimator is a big problem and practically 

has a small detection signal. 

[19] 

The algorithm has no prior knowledge of the 

medium, and a cunning filter recognizes the edge 

of the hyperbola, operating frequency at (400-

900) MHz 

Low computation time, good performance, 

and efficiency compared to commercial 

software. 

False alarms are lab tested (0 to 20%) and 

undetected rate (0 to 28%). 
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Table 3 (cont.). Summary of the research papers for detection buried objects based on (GPR) 

 

Reference Characteristics of paperwork Result Comments and Limitations 

[20] 
Detection and segmentation of buried objects 

using the MALÅ GPR system at a frequency of 

(250-500) MHz 

Good results in detection 

Buried objects compared to other 

segmentation methods such as MSE and 

RMSE standards. 

The effect of a radio wave causes distortion. 

[21] 
Using the HOG algorithm for the detection 

process and SVM as a classifier and training at 

(250-700) MHz 

The average result is 93.75% of detection 

targets for both synthetic and natural data 

tests. 

During testing, the parameters of the HOG 

algorithm must be set. 

[22] Buried objects are located despite the noise, and 

the test frequency is (0.5-1.5) GHz. 

The algorithm is used in different depths 

and conditions of soil and material. 

Only metallic materials were used, and other 

materials required different locations. 

[23] 
Perform different algorithms like; (MUSIC), and 

W-MUSIC discovers buried objects close to each 

other. 

The MUSIC algorithm reduces the error 

rate while W-MUSIC is affected by noise 

and changes with frequency. 

The music algorithm suffered from a high 

error rate. 

[24] Determine the dispersion of buried objects using a 

3D random transformation (RT). 

Reliability in the detection process despite 

noise and clutter. 

Memory is required to complete the detection 

and pattern recognition process. 

[25] The target detection energy correlation procedure 

used the GPR system at 1 GHz. 

Average and background removal was used 

to improve the detection of non-metallic 

objects. 

More process is required in object recognition. 

Table 4. Summary of research papers on landmines detection based on GPR 

Reference Characteristics of paperwork Result Comments and Limitations 

[26] 

Linear partitioning and CNN are used to 

train synthetic data at 2GHz bandwidth. The 

pipeline used in landmine detection and its 

Automated detection increased accuracy up 

to 95% with minimal detection 

preprocessing. 

Accuracy decreases as the size of the CNN 

network decrease. 

[27] 

Fast and accurate SAR algorithm with Tx on 

vehicle and Rx mount as a drone. 

Simulations at (3.5-5.5) GHz 

Improve penetration with high accuracy—

detection of metallic or non-metallic 

materials. 

The permittivity of the soil must be known or 

estimated. 

[28] 

GPR image representing the use of an online 

dictionary 

Learning that a support vector machine 

optimizes the extraction fracture of the 

buried object. 

Develop mini-batch online dictionary 

learning, which can be used for correlation 

training data. 

Practically high running time and less accurate 

results. False-alarm rates remain very high and 

are used with smaller mines. 

[29] 

Preprocessing and discrimination are used to 

remove clutter and characterize the energy 

density spectrum for landmines or clutter. 

Improve detection and clutter 

discrimination. 

A high error alarm rate is possible. It cannot 

identify the size or the shape of the landmine. 

[30] 

SIMCA is used to locate a buried object and 

uses a Pulse EKKO 1000 and REFLEXW 

package with an operating frequency of 

450MHz 

The integration of GPR with SIMCA 

provides the image with good accuracy and 

facilitates the interpretation of existing 

landmines. 

High error rate due to accuracy problem as a 

result of the correction. 

[31] 

The results were obtained for three 

algorithms used for the detection of 

landmines. 

Both EHD and HMM are good in a 

particular set of recognition processes.  

The error rate increases due to the medium and 

the environmental change. 

[32] 

Various sensor technology is available to 

detect landmines, and GPR is the most 

common type. 

Development is required in the image 

processing, the multi-sensing system, and 

the algorithm obtained. 

Effects of weather and noise on detection. False 

alarms increase uncertainty and limit future 

research. 
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Table 4 (cont.). Summary of research papers on landmines detection based on GPR 

Reference Characteristics of paperwork Result Comments and Limitations 

[33] 

Error rate and accuracy are crucial 

performance-affected factors in the 

detection process, where the operating 

frequency is = 1 GHz. 

Determining target depth, soil propagation 

characteristics, and landmine type depends 

on the types of detection used. 

Plastic landmines require more research into the 

detection process than the metal type. 

[34] 
ADOG method for improving explosive 

device identification based on a B image.  

ADOG output by subtracting the GPR 

image, the reflected signals of landmines 

are improved. 

It is also difficult to recognize the high error rate 

while the signal passes through the medium. 

[35] 

The Automatic Target Recognition (ATR) 

algorithm, in parallel with GPR, determines 

the location of landmines. 

The 96% of the recognition rate and false 

rate close to 0.017. Fuzzy logic reduced 

false alarms and changes in detection rates. 

15 transmitter/receiver pairs were used, and each 

receiver power. 

 

Table 5. Summarizes the research paper’s detection process using GPR with the smart algorithm. 

 

Reference Characteristics of paperwork Result Comments and Limitations 

[37] 
MOGA model is less complex and much 

faster than VSM and CNN models. 

Improved the localization & detection based on 

the MOGA method. 

The real-time implementation method takes a 

longer time & more architecture is required for 

implementation. 

[38] 

New methods UcNet developed based on 

a convolutional neural network (CNN) 

combined with phase analysis of super-

resolution (SR) GPR images. 

Overcome the sinkholes in complex urban roads. 

Image-based 3D Ground Penetrating Radar 

(GPR) Network for Underground Cavity 

Detection (UcNet) prevents sinkholes in complex 

urban roads. 

GPR image inaccuracy may cause false alarms 

during phase analysis. 

[36] 
New algorithms from ANN and ML are 

used for the underground object. 

Improve the localization of the buried object 

reduces the error rate. 

Large data is required, which increases cost and 

can lead to instability. 

[39] 
Automatic algorithm of a (CNN) used to 

detect a buried threat detection (BTD). 

Pretraining brought higher detection performance 

and improvements in detection performance for 

CNNs. 

CNN's limited training data results in poor 

detection performance. 

[40] 

Obtaining the physical properties of the 

soil from the A-scan and then inverting 

these parameters using the FDTD and 

IPSO methods in the B-scan 

Simulations were obtained with different values 

of cross-sectional radius, depth, and conductivity. 

It is required with many simulated cases in 

different cross-sectional areas. 

[41] 

A new method for detecting unexploded 

ordnance using machine learning 

techniques of artificial neural networks, 

transmitter frequency (1-2.3) GHz. 

Both ANN and logistic regression algorithms 

estimate the location of a buried object and ANN 

is more accurate in the results. 

Results are limited by specific experimental 

design options such as GPR image patches' size 

and a particular cross-validation procedure. 

[42] 

The coupling of the IPSO algorithm to 

the FDTD analysis method to identify 

and localize the underground object. 

A B-scan image with the algorithm was used to 

locate and identify buried objects (plastic and 

metal) at different depths. 

The error rate is inversely proportional to the 

iteration number of algorithms. 

[43] 

• Automatically detects a landmine or 

unexploded ordnance (UXO) using a 

neural network (NN) and a logistic 

regression at the transmitter frequency (1-

2.3 GHz). 

Neural networks and logistic regression 

algorithms distinguish between targets and 

clutter, where neural networks have more 

accurate results. 

The system is trained on one type of soil, and a 

more extensive set of training samples is needed 

to distinguish between different targets and 

chaos. 

[44] 

Determining the hyperbolic pattern in 

GPR images and locating buried objects 

using neural networks and curve-fitting 

techniques. 

Automatic detection and location of buried 

objects by using the neural network is used to 

detect a buried object after estimating the position 

of the buried objects using curve fitting. 

Error rate increase when the threshold value is 

close or higher than the reflection signal and 

accurate result techniques are required. 
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Conclusion 

 

This paper summarizes the different algorithms used in detecting buried 

objects based on the ground-penetrating radar (GPR) as well as the 

interpretation of GPR images using four stages of the detection process 

which are preprocessing, feature extraction, feature reduction, and 

classification stages. It also distinguishes between an unwanted reflected 

signal such as noise and a direct wave from the desired signal of a buried 

target. Then compare A, B, and C scans, while B-scan is the most 

common type of detection. 

The paper concluded that the intelligent smart algorithm is the most 

efficient and accurate compared to other algorithms. Whoever is searching 

for new intelligent algorithms to improve the detection and recognition 

process. Most research papers also rely on a single buried object, while 

more research is needed to discover more than one target. 
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