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A B S T R A C T 

Designing an aircraft involves a lot of stages, however, airfoil selection remains one of the most crucial 

aspects of the design process. The type of airfoil chosen determines the lift on the aircraft wing and the drag 

on the aircraft fuselage. When a potential airfoil is identified, one of the first steps in deciding its optimality 

for the aircraft design requirements is to obtain its aerodynamic lift and drag coefficients. In the early stages 

of trying to select a candidate airfoil, which a whole part of the design process rests on, the conventional 

method for acquiring the aerodynamic coefficients is through Computational Fluid Dynamics Simulations 

(CFDs). However, CFD simulation is usually a computationally expensive, memory-demanding, and time-

consuming iterative process; to circumvent this challenge, a data-driven model is proposed for the prediction 

of the lift coefficient of an airfoil in a transonic flow regime. Convolutional Neural Networks (CNNs) and 

Multi-Layer Perceptrons (MLPs) were used to develop a suitable model which can learn a set of usable 

patterns from an aerodynamic data corpus for the prediction of the lift coefficients of airfoils. Findings from 

the training revealed that the models (MLPs and CNNs) were able to accurately predict the lift coefficients 

of the airfoil. 

 

 

© 2023 University of Al-Qadisiyah. All rights reserved. 

    

1. Introduction

Over the past few years, the rapid development of artificial intelligence, 

specifically neural networks (NN) and several machine learning algorithms 

has fostered the growth and application of some prediction methods in fluid 

mechanics. Several airfoils have been developed and designed to date each 

with its aerodynamic coefficients that significantly affect flight 

performance and flight safety. The development of airfoils is an important 

aspect of aircraft aerodynamics. Aerodynamic forces (lift and drag) and 

motion are created by an airfoil-shaped body traveling through air. Lift is  
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the force that is perpendicular to the motion direction while drag refers to 

the force component that is parallel to the motion direction. An 

aerodynamicist will utilize airfoil shape to compute experimental lift, drag, 

and moment coefficients, as well as the pressure distribution, aerodynamic  

center, and other significant features during the airplane design stages. 

These computations are then extended to generate the aerodynamic 

properties of a finite wing so that its operation may be evaluated. As a 

result, aviation engineers place a high value on the numerical search for the 

best shape of airfoil/wing geometry. 

A very crucial aspect of airfoil design is the calculation of the aerodynamic 

coefficients. The traditional systems of obtaining the aerodynamic 

coefficients are mainly through laboratory experiments and computational 

fluid dynamics [1]  

The Computational simulation of deep learning models to gust detection in 

unsteady aerodynamics using surface pressure measurements from the 

wing surface was investigated [2]. The pioneering work about the 

convolutional neural networks (CNN) model was done by Sekar et al. [3] 

which defined the inverse design of airfoils.  The model generated an airfoil 

geometry that showed a very similar pattern to the original airfoil with an 

error margin of less than 2% in most cases. Singh et al. [4] studied the 

viability of using deep neural networks to augment the Spalart-Allmaras 

turbulence model for better prediction of flow separations over airfoils. 

Their outcomes exhibited that when the CNN model generated is 

augmented with the Spalart-Allmaras model, the accuracy for the 

prediction of surface pressures improved significantly.  

Yilmaz and German [5] presented results of the applications of deep 

learning for training predictors for airfoil performance. Their work centred 

around exploring the significance of deep learning over computational fluid 

dynamics simulations and surrogate modelling methods. Their deep 

learning approach was able to predict the aerodynamic coefficients of 

airfoils with over 80% accuracy when tested on real airfoil data.  

Zhang et al. [6] adapted the CNN method for aerodynamic meta-modeling 

tasks involving variable flow conditions and geometry of an airfoil. Their 

newly proposed CNN technique was found to be comparable with existing 

Multi-Layer Perceptron (MLP) techniques in learning capabilities.  Zhu et 

al. [7] studied machine learning models for low Reynolds (Re) number 

flows based on direct numerical simulation has been seen to give very high 

accuracy and generalization abilities; but the flow around the airfoils 

increases in Reynolds number, the machine learning models are unable to 

generalize and often leads to high inaccuracies due to scaling effects. Rehan 

and Javed [8] in their study, compared two techniques in predicting the 

aerodynamic coefficients of flow past a supersonic missile. CFD and 

Missile DATCOM were employed for the analysis and prediction of the 

aerodynamic coefficients for supersonic speeds of Mach 2, 3, and 4 with 

angles of attack varying from -20º to +20º.  Their work showed that the 

values for the coefficient of lift obtained from CFD and Missile DATCOM 

were very similar for smaller angles of attack (less than 10°), however for 

large values of angles of attack (beyond 10°) the difference in the values 

increases. Also, the coefficient of drag increases smoothly at smaller angles 

of attack (less than 10°).  

Viquerat and Hachem [9] investigated the application of deep learning of 

low Reynolds numbers on laminar flow regimes for predicting the drag 

coefficients of arbitrary 2D shapes. 

Kutz [10] explored the various applications of deep learning techniques to 

fluid dynamics. He opined that turbulent flows exhibit multi-scale physics 

with the presence of rotational and translational intermittent structures. 

Santos et al. [11] examined the application of NN in forecasting 

aerodynamic coefficients of airfoils for varying Mach numbers and angles 

of attacks. They reported that the error for the drag and lift coefficients are 

still beyond practical use in multidisciplinary design and optimization 

applications, but the errors could reduce significantly by increasing the 

nodes and neurons of the network and training with a larger database.  

Miyanawala and Jaiman [12] proposed an efficient deep-learning technique 

for the Navier-Stokes equation for the purpose of applying it to unsteady 

flow dynamics. Using the convolutional neural network and stochastic 

gradient descent methods, they were able to predict the force coefficients 

of bluff body geometries up to a relative error rate of less than 5%. Their 

results proved that it is possible to use deep learning methods to train the 

output of force coefficients for any perturbed bluff body geometry input.  

 

Sun and Wang [13] in their investigation of Artificial Neural Network 

surrogate modelling (ANNSM) in aerodynamic design showed that 

ANNSM has an edge over other existing modelling methods in terms of 

economic computational capabilities and accurate generalization 

capabilities. Morimoto et al. [14] in their study of convolutional neural 

networks for fluid flow analysis posited that the convolutional neural 

network model is not only robust to dimension reduction operations but also 

sensitive to dimension extension methods. Li et al. [15] proposed a new 

sampling method for airfoils and wings to reduce abnormalities of both 

initial and infill samples based on a deep convolutional generative 

adversarial network. They observed that the network was able to generate 

sample airfoils that are notably more realistic than those generated by other 

sampling methods. Tompson et al. [16] studied the application of 

convolutional neural networks to accelerate Eulerian fluid simulation. They 

observed that the data-driven approach can solve the Navier-Stokes 

equation or fluid flow significantly faster than CFD methods. Wang et al. 

[17] proposed a data-driven shape encoding and generating method that can 

automatically learn existing airfoil geometries and use it to generate new 

airfoils. Their experiments showed that the model learns compact and 

comprehensive features encoding shape information of airfoils and can 

automatically generate novel airfoils. Haizhou et al. [18] presented a newer 

technique for data augmented Generative Adversarial Network (daGAN) 

that is capable of rapid and accurate flow field prediction, the model also 

readily adapts to tasks with sparse data. Duru et al. [19] presented a 

convolutional neural network system that works on the encoder-decoder 

technique for predicting the pressure fields formed around an airfoil. 

Thirumalainambi and Bardina [20] demonstrated the efficiency and 

reliability of using neural networks to predict aerodynamic coefficients 

modelled as a function of angle of attack, speed brake deflection angle, 

Mach number, and sideslip angle. They also experimented on the number 

of training data points and the type of transfer function to be used between 

the input-hidden layer and the hidden-output layer required to produce an 

efficient neural network prediction. While proposing a different technique 

for predicting the aerodynamic coefficients of airfoils using a convolutional 

neural network (ConvNet) as well as a signed distance function (SDF), 

Yuan et al. [21] opined that one of the major downsides to traditional 

surrogate-based prediction methods is its limitations when it comes to the 

dimensions of design variables, and it is also inefficient for strong nonlinear 

engineering problems. Their results represent one of the early steps in the 

development of machine-learning-based aerodynamic coefficient 

prediction tools. Karali et al. [22] investigated the use of a deep learning-

based surrogate model to determine the non-linear characteristics of 

unmanned aerial vehicles. It was demonstrated that the model is cable of 

predicting the aerodynamic properties of different unmanned aerial vehicle 

design parameters quickly by using only the geometric configuration 

parameters without the need for any special input data or pre-process phase.  
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Fukami et al. [23] assessed the use of supervised machine learning methods 

for fluid flows, after examining four machine learning architectures in 

terms of their accuracy, costs of computations, and robustness for flow 

problems. Hui et al. [24] studied the application of convolutional neural 

networks in predicting the pressure distribution over an airfoil. Given 

unseen airfoils from the validation dataset, their model predicted pressure 

coefficients in seconds and had less than 2% mean square error. Kim and 

Lee [25] investigated the application of convolutional neural networks in 

modelling turbulent heat transfer. 

Sun et al. [26] developed a deep learning-based prediction approach for 

supercritical airfoils at transonic speeds. The methods used in the study 

require the geometric parameters of the airfoil which are then represented 

and parameterized with various shape functions. The present methodology 

feeds the airfoil images directly into the prediction model as input and is 

therefore commonly referred to as the graphical prediction method. 

Compared with the parametric method, there are three advantages. First, 

the airfoil image can accurately represent the airfoil geometry. Second, the 

inputs of the prediction model are airfoil images and flow conditions, and 

no geometric parameters of the airfoil are needed. Third, the training time 

of the prediction model increases linearly with the number of samples. 

A Multi-Input Network aerodynamic-coefficient prediction method of 

airfoils based on CNN and MLP is proposed in this paper. This method 

belongs to the graphical method, when compared with the work of Sun et 

al. [26], there are two differences, first the number and types of input and 

output of the prediction models are different. The prediction model 

established in this paper is a multi-input and single-output regression. The 

input includes the airfoil image and flow condition, and the output is only 

the lift coefficient CL. Second, in this paper, the airfoil image is tilted by 

the corresponding angle of attack, this process can keep the basic shape of 

the airfoil and makes it comfortable for CNN to extract image features. 

Hence, from the literature search conducted, no similar work employing the 

same methodology had been previously reported for supercritical airfoils 

under a transonic flow regime. Therefore, the current investigation attempts 

to bridge the identified gaps above. 

2. Methodology 

This research uses a deep learning approach to solve regression issues in 

which the algorithm is trained using labeled inputs to extract the data's 

underlying properties. The algorithms selected for this research are CNN 

Rikiya and Nishio [27] and MLP Marius-Constantin et al. [28] and there 

are 3 major advantages of utilizing CNN instead of other competing 

networks. First, there is very little dependence on pre-processing, 

decreasing the need for human effort to develop its functionalities. Second, 

it is easy to understand and fast to implement. Third, it has the highest 

accuracy among all algorithms Rikiya and Nishio [27]. The information on 

the MLP, CNNs, and the details of how the aerodynamic data was generated 

is explained succinctly. 

2.1. Aerodynamic Data Generation 

To create the aerodynamic coefficient data used in this work, it was 

necessary to calculate by means of computation the velocity and pressure 

distribution of flows surrounding airfoils. These simulations were 

performed over a wide range of Mach numbers (0.94≤Ma≤1.4) and 

angles of attack in the range of (-20°≤α≤20°). The input data was 

created by taking random samples of freestream circumstances from the 

range specified above in conjunction with ten (10) distinct airfoil shapes 

taken from the UIUC database (Selig, 1996). The RANS simulations were 

carried out using the k SST two-equation turbulence model, and the 

solutions were derived using the widely used ANSYS Fluent 

Computational Fluid Dynamics Software. The mesh used in this calculation 

is a body-fitted triangular mesh with refinement near the airfoil. 

 

Figure 1. Body Fitted Triangle Mesh Around Airfoil 

 

Parameters such as Reynolds number, angle of attack, and airfoil were 

randomly chosen from the aforementioned ranges to run the simulation. 

Since the learning algorithm relies on this data, the dataset was split into a 

training set, test set, and validation set.  A 70/15/15 split was used for 

training, testing, and validation sets respectively. Testing sets are a good  

Figure 2. Full mesh around the airfoil. 

 

way to find out if the trained model has any bias. If it is overfitting, the 

model is fine-tuned and retrained on the training set. The validation data set 

that was used comprises 15% of the dataset that was not included in the 

training and testing data. To assess the trained models' accuracy, parameters 

such as Reynolds number, angle of attack, and airfoil were randomly 

chosen from the parameter ranges earlier specified to run the simulations. 

The final model’s performance on the validation set is a representation of 

the model’s performance when deployed for practical cases. 

2.2. Multilayer Perceptron (MLP) 

The most popular kind of neural network is the multilayer perceptron 

type [28]. It is made up of numerous neurons that are intricately coupled to 

form a network [3]. MLP is a kind of perceptron that consists of many 

perceptrons. They are made up of an input layer that accepts incoming 

signals and an output layer that makes a prediction based on the input, with 

an arbitrary number of hidden layers in between that act as the MLP's true 

computational engine. MLPs may approximate any continuous function 

and can approximate any function with only one hidden layer.  

Multilayer perceptrons are commonly employed in supervised machine 

learning; they learn to represent the relationship (or correlations) between 

a set of input-output pairs by training on them. Multilayer perceptrons are 

also used in unsupervised deep learning. The process of training involves 
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altering the parameters of the model, such as the weights and biases, to 

decrease error. Backpropagation is used to conduct such weight and bias 

modifications in proportion to the error, and the error may be measured 

using a variety of ways, including the root mean squared error (RMSE).   

The power of the multi-layer perceptron (MLP) network stems precisely 

from non-linear activation functions, of which neurons are the most 

significant elements. This technique works well with most non-linear 

functions, excluding polynomial functions. The sigmoid function in 

equation (1) is the most prevalent operation. 

 

 

 

  

 

• Linear Threshold Units (LTUs) 

 

Multilayer perceptron networks are built from linear threshold units (see 

Figure 3), which typically consist of a single-value input x with n values 

and a single-value output y, with some mathematical operations in between 

to estimate the linear function of the inputs and their scales and use the 

activation function to evaluate the mathematical operation [29]. 

Figure 3. Linear Threshold Unit (LTU) 

 

• Multilayer Perceptions (MLPs) 

 

A perceptron is a basic artificial neural network with a single layer of LTUs 

that is coupled to all the inputs and the bias vector. An input layer with at 

least one hidden layer of LTUs, and an output layer of LTUs make up a 

Multi-Layer Perceptron (MLP). A deep neural network (DNN) is one that 

has two or more hidden layers.  The neuron contains n inputs x1, x2,…xn 

and associated weights w1,w2,…wn, as illustrated in Figure 4. The weighted 

input for MLP network is given by equation (2) 

 

 

     𝑊𝑒𝑖𝑔ℎ𝑡 𝑖𝑛𝑝𝑢𝑡 = ∑ 𝑤𝑖𝑥𝑖 + 𝑏𝑛
𝑖=1                                                           (2) 

 

The weighted input is called signal to the neuron z, where b is a bias term. 

The output is obtained by passing the input signal through a nonlinear 

activation function σ (⋅). As a result, the neuron output is expressed by 

equation (3): 

 

𝑎(𝑥) =  𝜎(∑ 𝑤𝑖𝑥𝑖 + 𝑏𝑛
𝑖=1 ) =  𝜎(𝑧)                                                      (3)  

 

where a(x) is the activation output (i.e., the neuron output) and z denotes 

the neuron signal.  Figure (4) depicts a typical MLP network. Where b 

indicates the bias term, sigma represents the activation function. 

 Figure 4. A typical MLP network with inputs [x1, x2 ... xn] and 

weights [w1, w2 ... wn] 

 

 Figure 5. An MLP network with a multiple hidden layer 

2.3. Convolutional Neural Networks (CNNs) 

Each input (for example, a pixel in an image) is represented by a single 

perceptron in MLPs and the number of weights quickly becomes 

unmanageable for large images. Since it is fully connected, it has an 

excessive number of parameters. Each node is connected to every other 

node in the preceding and subsequent layers thus resulting in a dense web 

of connections that promotes system redundancy and inefficiencies [30].  

As a result of this, issues may arise during training, and overfitting may 

develop which could impair the ability to generalize the results. Therefore, 

MLPs are not the optimal choice for image processing. One of the primary 

issues is that when a picture is flattened (matrix to vector), spatial 

information is lost.  Thus, a method is required for exploiting the spatial 

correlation of the image features (pixels) in such a way that it is never 

distorted, which is why LeCun et al. [31] introduced the Convolutional 

Neural Networks which effectively addresses this issue.  The CNN adopted 

for the current study is displayed in Figure 6. 

𝑓(𝑠) =
1

1 + 𝑒−𝑠
                                                                                           (1) 
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 Figure 6. CNN architecture used in the current investigation. 

 

CNNs are composed of a variety of layers some of which include the 

convolutional layer, the pooling layer, and the fully connected layer. 

 

• Convolutional layer 

 

Convolutional layers contain most of the computation and they are 

where CNN’s processing focuses. An input data, a filter, and a feature map 

are required to make it work. Assuming the input is a 3D image made up of 

pixels; the input will contain three dimensions, matching Red Green, and 

Blue (RGB) image data.   

A 2-D array of weights is the feature detector, which acts as a proxy for an 

image's portion. There are several different sizes a filter can take, but one 

of the most common ones is a 3x3 matrix, which affects the size of the 

receptive field. The activation map is formed of neurons and is created 

using convolution [32]. In other words, the filter slides across the input in 

both directions and computes dot products in every spatial position. 

Convolutional layers calculate the volume of their output by stacking 

activation maps in the depth dimension. The activation map contains many 

neurons, each of which only has connections to a small local portion of the 

input volume. Figure 7 is a graphical illustration of the convolution 

operation [33]. In conclusion, neurons have tiny receptive fields, which 

match the filter size. 

 Figure 7.  Typical convolution operation in the CNN. 

 

• Pooling layer 

 

In order to reduce the number of parameters, the data is transformed into 

smaller representations, and this is often accomplished using pooling 

layers. The pooling operation, like the convolutional layer, covers the entire 

input with a filter that has no weight, making it different from a 

convolutional layer [34]. The kernel appends input values by applying an 

aggregation function to input values. After each time the input moves, 

Maximum pooling assigns the greatest pixel value to the output array. A 

disadvantage of the pooling layer is that it introduces a considerable deal of 

information loss, yet it offers a few benefits to CNN which include benefits 

in limiting overfitting risk, enhancing efficiency, and reducing complexity. 

 

• Fully Connected layer (FC) 

 

A completely connected network relies on the input values having direct 

ties to the output layer. These input values are not directly linked to the 

output layer in partly connected layers. However, each node in the output 

layer is connected to a node in the preceding layer, whereas each node in 

the fully connected layer links towards another node in the same layer. The 

task of classification in this layer relies on features and different filters for 

features that were extracted by prior layers. FC layers normally use a 

softmax activation function, which is popularly employed for classifying 

inputs correctly and producing a probability between 0 and 1, while ReLu 

functions are used in convolutional and pooling layers [35]. 

3. Results and discussion 

3.1. Multi-Input Network 

To deal with the dataset's diversity, which comprises numerical and image 

data, two primary networks were built. To handle numerical inputs, the 

initial branch of the network uses a simple Multi-layer Perceptron (MLP) 

while a Convolutional Neural Network was used to process the image data 

in the second branch. The final multi-input Keras model was constructed 

by concatenating these branches. The Keras API is utilized by the MLP. 

MLP consists of the following: 

 

•ReLU is used as the activation function in this fully linked input layer. 

•A completely linked hidden layer that also employs ReLU to activate it. 

•Dropout regularization of 0.5 was also added to prevent overfitting. 

Dropout is a term used in machine learning to describe the act of randomly 

disregarding certain nodes in a layer during training.  

•The number of hidden neurons utilized for the study is 16. 

•Lastly, a regression output with linear activation is given. 

 

The network was developed to produce a model for the prediction of lift 

characteristics of airfoils The training database of the models comprises of 

eight (8) supercritical airfoils’ geometries over a wide range of Mach 

numbers ( 0.94≤Ma≤1.4) and angles of attack in the range of (-20°≤α

≤20°), the respective Reynolds number was computed for each of the 

Mach numbers in the database. The CNN architecture is implemented, 

trained, and predicted using the open-source program Tensorflow via the 

Keras Application Programming Interface [36]. The backpropagation 

algorithm is applied to train the weights and biases of the CNN to minimize 

the defined mean square error (MSE). For a batch of n training samples, the 

mean square error (MSE) is calculated using equation (4). 

 

𝑀𝑆𝐸 = 1

𝑛
∑ (𝑦𝑖 − �̃�𝑖)2                                                                               (4)𝑛

𝑖=1   

 

Where yi  are the true data, and �̃�𝑖 is the network prediction. 

 

Additionally, the backpropagation technique computes gradients that are 

then optimized using the ADAM optimizer [37]. Adam is an optimization 

algorithm that, in place of the standard stochastic gradient descent 

procedure, can be used to iteratively update network weights using training 

data.  

In Figure 8, an initial learning rate of 1.0 x 10^(-3) was selected and the 

learning rate scheduler reduced the learning rate in steps when the MSE of 

the validation set shows no significant improvement over several epochs 
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(i.e from the epoch of beyond 400). The weights and biases are adjusted 

after exposing the CNN to one batch of samples in minibatch mode training, 

with an initial batch size of 32. 

 Figure 8. Mean Squared Error training and validation 

convergence history with an input image size of 108x72x2 

3.2. Influence of Input Image Size 

In Figure 9, the effects of the input image size of the airfoils were 

investigated. Two sizes of the input with dimensions 108 × 72 × 2 and 200 

× 133 × 2 were investigated. The figures reveal that though the validation 

convergence is oscillatory, the plots show that the mean squared errors for 

both plots are minimized beyond 200 epoch training; therefore, the image 

size increase helps the convergence profiles. Also, the Mixed Input 

Network (MIN-2) comprising both the Convolutional Neural Networks and 

Multi-Layer Perceptron is proficient in operating in equal input sizes as 

revealed by the convergence errors. 

a b   

Figure 9. (a) Mean Squared Error (MSE) convergence history of MIN-2 

with an image size of 108x72x2 training (left); (b) Mean Squared Error 

(MSE) convergence history of MIN-3 with an image size of 200x133x2. 

validation (right). 

3.3. Influence of Training Parameters 

• Minibatch size 

 

The effects of batch size on convergence were also investigated on MIN-3. 

In this study, three different batch sizes 32, 64, and 128 were selected and 

their effects on training convergence are shown in Figure 10. 

 

a b   

Figure 10. (a) MSE convergence history of MIN-3 with different 

minibatch training (left); (b) MSE convergence history of MIN-3 with 

different minibatch validation (right). 

In Figure 10, MBSs of 32 and 64 outperformed MBSs of 128 in terms of 

convergence. As a result of the convergence histories, an MBS of 64 was 

selected as the best for training. 

 

• Learning rate 

The effects of varying the learning rates on the Mean Squared Error (MSE) 

convergence of MIN-3 are also investigated. Initial learning rates (LRs) of 

1 × 10−2 and 1 × 10−5 were selected and its influence on this study is shown 

in Figure 11. 

a b   

Figure 11. MSE convergence history of MIN-3 with varying learning 

rates. 

As evidenced in Figure 11, choosing a larger learning rate results in 

oscillatory convergence, especially on the validation data, which shows an 

inability of the model to generalize and fit unseen data appropriately. 

Additionally, a learning rate of LR1e-5 was chosen due to its smoother 

convergence and acceptable error range. 

 

• Network Prediction 

The trained MIN-3 architecture was utilized to forecast the airfoils in the 

training and testing sets. The testing dataset comprises airfoils that the 

network did not observe during training. Table 1 shows the equivalent 

needed computational time of MIN-3 for training and predictions. 

Table 1. Network Training and Prediction Time for Min-3. 

Multi-Input Network (Min) Type CPU (Intel R Core i5 at 3.00GHz) 

Time (Hours) 

MIN-3 Training (10332 samples) 8.5277778 

MIN-3 Predictions (2952 samples) 6.16 x 10^(-3), 2.08 x 10^(-6)  per sample 
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As demonstrated in Table 1, MIN-3 predicts the aerodynamic coefficients 

of a given airfoil in less than one second, and Table 2 shows the MSE for 

all the explored MIN architectures in this study. Fig. 12 depicts the 

performance of the training and testing samples. The plots show that the 

Multi-Input Network performed better in predicting the aerodynamic lift 

coefficients of any given supercritical airfoil. 

a b   

Figure 12. (a) Fig. 12: MIN-3 (200 × 133 × 3) prediction of some airfoils 

at attack angles of 20° (left); (b) Fig. 12: MIN-3 (200 × 133 × 3) 

prediction of some airfoils at attack angles of 10° (right). 

 

Table 2. MSE error on different MIN architectures for both training and 

validation. An MBS of 32 and LR of 1e-2 were used unless explicitly 

stated. (es = early stopping). 

MIN Architecture Training Error Validation Error 

MIN-1 0.021406367 0.014135924 

MIN-3 0.024861962 0.014135924 

MIN-3 MBS-64 0.024698643 0.015846226 

MIN-3 MBS-128 0.097584948 0.078603454 

MIN-3 LR1e-5 (es) 0.266813695 0.237168238 

MIN-3 MBS-64 LR1e-5 0.151511803 0.095736757 

MIN-3 MBS-128 LR1e-5 (es) 0.281726569 0.294390082 

 

Fig.13 (left) presents the Mean Squared Error (MSE) from the work of Sun 

et al. [13] while Fig. 13 (right) displays the MSE plot from the present work. 

The trends of both plots are similar despite the difference in the method of 

geometry representation and algorithms. 

a b   

Figure 13. (a) Comparison of Sun et al. [26]; (b) present work. 

4. Influence of input image size 

In this study, a methodology for predicting airfoil aerodynamic coefficient 

based on Convolutional Neural Networks (CNN) and Multi-Layer 

Perceptron (MLP) was developed and effectively applied for the prediction 

of lift coefficients of supercritical airfoils in transonic flow regimes. The 

geometry of the airfoil was fed as input to the CNN, while parameters such 

as Mach Number, and angle of Multi-Input Reynolds Number were fed as 

input to the MLP. The joining of the CNN and MLP formed the Multi-Input 

Network (MIN) and the aerodynamic lift coefficients were obtained as 

output. Several MIN architectures (MIN-1, MIN-2, and MIN-3) with 

varying depths and network parameters were trained. This approach to 

estimating aerodynamic coefficients is faster and can easily be used to 

iterate through multiple airfoils to find the optimal coefficient for a specific 

application before performing the more accurate CFD simulations on the 

selected airfoils. It is obvious from the convergence error that the selected 

designs have comparable error convergence. Also, from the training carried 

out, the models (MLPs and CNNs) were able to accurately predict the lift 

coefficients of the airfoil. Furthermore, the impacts of the input image size, 

mini-batch size, and learning rate on the level of performance using the 

selected MIN-3 architecture were evaluated. The convergence error of 

MIN-3 with two different input image sizes (108 x72 x3 and 200x133x 3) 

shows that increasing the input image size does not enhance the results 

considerably. However, a small batch size of 64 and a learning rate of 1e-5 

greatly improved the model. The level of accuracy predicted by the model 

used for the current investigation needs to be improved upon for it to be 

useful in aircraft design and optimization procedures. 

 

5. Data availability statement 

The authors confirm that the data needed to support the findings in this 

study are available within the article. 

 

Authors’ contribution 

All authors contributed equally to the preparation of this article. 

 

Declaration of competing interest 

The authors declare no conflicts of interest. 

 

Funding source 

This study didn’t receive any specific funds. 

 

REFERENCES 

 

[1] Chen, H., He, L., Qian, W., Wang, S. 2020. Multiple aerodynamic coefficient 

prediction of airfoils using a convolutional neural network. Symmetry, 12, 1-14. 

[2] Hou, W., Darakananda, D., Eldredge, J. D. 2019. Machine-Learning-Based 

Detection of Aerodynamic Disturbances Using Surface Pressure Measurements. 

American Institute of Aeronautics And Astronautics Journal, 57, 5079–5093. 

[3] Sekar, V., Zhang, M., Shu, C., & Khoo, B. C. 2019. Inverse design of airfoil 

using a deep convolutional neural network. American Institute Of Aeronautics 

And Astronautics Journal, 57, 993–1003.  

[4] Singh, A. P., Medida, S., Duraisamy, K. 2017. Machine-learning-augmented 

predictive modeling of turbulent separated flows over airfoils. American Institute 

Of Aeronautics And Astronautics Journal, 55, 2215–2227. 

[5] Yilmaz, E., German, B. J. 2017. A convolutional neural network approach to 

training predictors for airfoil performance. 18th American Institute of 

Aeronautics nnd Astronautics/ISSMO Multidisciplinary Analysis and 

Optimization Conference, 3660. 

[6] Zhang, Y., Sung, W. J., Mavris, D. 2018. Application of convolutional neural 

network to predict airfoil lift coefficient. American Institute of Aeronautics and 

Astronautics/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials 

Conference. 

[7] Zhu, L., Zhang, W., Kou, J., Liu, Y. 2019. Machine learning methods for 

turbulence modeling in subsonic flows around airfoils. Physics of Fluids, 31, 

015105. 

[8] Rehan, M., Javed, A., 2020. Prediction of Aerodynamic Coefficients and 



OLALEKAN OLAYEMI ET AL. /AL-QADISIYAH JOURNAL FOR ENGINEERING SCIENCES   16 (2023) 108–115                                                                                      115 

 

Analysis of Flow Past a Supersonic Missile. Journal of Aeronautics and 

Aerospace Engineering, 9, 1-7. 

[9] Viquerat, J., Hachem, E. 2019. A supervised neural network for drag prediction 

of arbitrary 2D shapes in low Reynolds number flows. arXiv preprint 

arXiv:1907.05090. 

[10] Kutz, J. N. 2017. Deep learning in fluid dynamics. Journal of Fluid Mechanics, 

814, 1–4. 

[11] Santos, M., Mattos, B., Girardi, R., 2008. Aerodynamic coefficient prediction of 

airfoils using neural networks. In 46th AIAA aerospace sciences meeting and 

exhibit (p. 887). 

[12] Miyanawala, T. P., Jaimana, R. K. 2017. An efficient deep learning technique for 

the Navier-Stokes equations: Application to unsteady wake flow dynamics. arXiv 

preprint arXiv:1710.09099. 

[13] Sun, G., Wang, S. 2019. A review of the artificial neural network surrogate 

modeling in aerodynamic design. Proceedings of the Institution of Mechanical 

Engineers, Part G: Journal of Aerospace Engineering, 233, 5863–5872. 

[14] Morimoto, M., Fukami, K., Zhang, K., Nair, A. G., Fukagata, K., 2021. 

Convolutional neural networks for fluid flow analysis: toward effective 

metamodeling and low-dimensionalization. Theoretical and Computational Fluid 

Dynamics, 35, 633-658. 

[15] Li, J., Zhang, M., Martins, J. R. R. A., Shu, C. 2020. Efficient aerodynamic shape 

optimization with deep-learning-based geometric filtering. American Institute Of 

Aeronautics And Astronautics Journal, 58, 4243–4259. 

[16] Tompson, J., Schlachter, K., Sprechmann, P., Perlin, K. 2017. Accelerating 

eulerian fluid simulation with convolutional networks. 34th International 

Conference on Machine Learning, ICML 2017, 7, 5258–5267. 

[17] Wang, Y., Shimada, K., Farimani, A. B. 2021. Airfoil GAN: Encoding and 

Synthesizing Airfoils foraerodynamic-aware Shape Optimization.  arXiv preprint 

arXiv:2101.04757 

[18] Haizhou, W. U., Xuejun, L. I. U., Wei, A. N., Hongqiang, L. Y. U. (2022). A 

generative deep learning framework for airfoil flow field prediction with sparse 

data. Chinese Journal of Aeronautics, 35, 470-484. 

[19] Duru, C., Alemdar, H., Baran, Ö. U. 2020. CNNFOIL: convolutional encoder-

decoder modeling for pressure fields around airfoils. Neural Computing and 

Applications, 33, 6835-6849. Doi:https://doi.org/10.1007/s00521-020-05461-x. 

[20] Thirumalainambi, R., Bardina, J. 2003. Training data requirement for a neural 

network to predict aerodynamic coefficients. Independent Component Analyses, 

Wavelets, and Neural Networks, 5102, 92-103. 

[21] Yuan, Z., Wang, Y., Qiu, Y., Bai, J., Chen, G. 2018. Aerodynamic coefficient 

prediction of airfoils with convolutional neural network. In Asia-Pacific 

International Symposium on Aerospace Technology (pp. 34-46). Springer, 

Singapore. 

[22] Karali, H., Demirezen, M. U., Yukselen, M. A., Inalhan, G. 2020. Design of a 

deep learning based nonlinear aerodynamic surrogate model for uavs. American 

Institute of Aeronautics And Astronautics Scitech 2020 Forum, 1 partf, 1–14. 

[23] Fukami, K., Fukagata, K., Taira, K. 2020. Assessment of supervised machine 

learning methods for fluid flows. Theoretical and Computational Fluid 

Dynamics, 34, 497–519.  

[24] Hui, X., Bai, J., Wang, H., Zhang, Y. (2020). Fast pressure distribution prediction 

of airfoils using deep learning. Aerospace Science and Technology, 105, 105949. 

[25] Kim, J., Lee, C. 2020. Prediction of turbulent heat transfer using convolutional 

neural networks. Journal of Fluid Mechanics, 882, 1-37. 

[26] Sun, D., Wang, Z., Qu, F., Bai, J. 2021. A deep learning based prediction 

approach for the supercritical airfoil at transonic speeds. Physics of Fluids, 33, 1-

10. 

[27] Yamashita, R., Nishio, M., Do, R. K. G., & Togashi, K. (2018). Convolutional 

neural networks: an overview and application in radiology. Insights into 

imaging, 9, 611-629. 

[28] Marius-Constantin, P., Balas, V. E., Perescu-Popescu, L., Mastorakis, N. 2009. 

Multilayer perceptron and neural networks. WSEAS Transactions on Circuits 

and Systems, 8, 579–588. 

[29] H, D. 2019. Mathematical Representation of a Perceptron Layer (with example 

in tensorflow). https://medium.com/@daniel.hellwig.p/mathematical-

representation-of-a-perceptron-layer-with-example-in-tensorflow-

754a38833b44 

[30] Dinesh. 2019. CNN vs MLP for Image Classification. Medium. 

https://medium.com/analytics-vidhya/cnn-convolutional-neural-network-

8d0a292b4498 

[31] Lecun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, R. E., Hubbard, W., 

Jackel, L. D. (1989). Backpropagation Applied to Handwritten Zip Code 

Recognition. Neural Computation, 1, 541–551. 

[32] Ke, Q., Liu, J., Bennamoun, M., An, S., Sohel, F., Boussaid, F. 2018. Computer 

vision for human-machine interaction. In Computer Vision For Assistive 

Healthcare. Elsevier Ltd.  

[33] Colaboratory, G. 2021. Deep Learning Workshop. 

https://colab.research.google.com/github/rojiark/deeplearningworkshop/blob/m

aster/deeplearningworkshop.ipynb 

[34] IBM. 2020b. Pooling Layer. https://www.ibm.com/cloud/learn/convolutional-

neural-networks 

[35] IBM. 2020a. Fully-Connected Layer. 

https://www.ibm.com/cloud/learn/convolutional-neural-networks 

[36] Chollet, F. 2018. Keras: The Python Deep Learning library. Astrophysics Source 

Code Library. 

[37] Kingma, D. P., Ba, J. 2014. Adam: A Method for Stochastic Optimization.  arXiv 

preprint arXiv:1412.6980.  


