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1. Introduction

The objective of linear fractional programming (LFP) is to find the optimal (maximum or minimum) value
of a linear fractional objective function subject to linear constraints on the given variables. The constraints
may be either equality or inequality constraints. From the point of view of real world applications, LFP
possesses as many nice and extremely useful features, as linear programming (LP). If we have a problem
formulated as an LP, we can reformulate this problem as LFP by replacing an original linear objective
function with a ratio (fraction) of two linear functions (Bajalinov, 2003).

The fractional programming problems are particularly useful in the solution of economic problems in
which various activities use certain resources in various proportions, while the objective is to optimize a
certain indicator (Nawkhass and Sulaiman, 2022). Usually the most favorable return on allocation ratio
subject to the constraint imposed on the availability of goods. Examples of such situations are financial and
corporate planning, production planning (Stancu-Minasian, 1992). Many proposed methods were
presented to get a solution for fuzzy programming FP issue such as: in (Charness and Cooper, 1962)
showed that by a simple transformation the original LFP problem can be reduced to an (LP) problem that
can therefore be solved using a regular simplex method for a linear programming. In (Sapan and Tarni,
2017) a proposed method with ranking function is presented. In (Malathi and Umadevi, 2018), a new
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technique for solving special type of fuzzy programming is suggested. (Deb and De 2015), introduced a
ranking function for solving fully fuzzy linear fractional programming problem with objective function and
constraints are trapezoidal fuzzy numbers. Also, (Rasha, 2021) solved FLFP problem using a-cut method.
Furthermore, (Deepak at el. 2021), suggested a new ranking function of trapezoidal fuzzy number, for
solving fully fuzzy linear fractional programming problem with the objective function and constraints are
trapezoidal fuzzy numbers. A new method to find a fuzzy optimal solution of FLFP problems with
inequality constraints (Sapan and Tarni, 2017). The objective of this paper is to propose an algorithm on a
new ranking function to solve FLFP problem using triangular and trapezoidal fuzzy numbers. This paper
contains five sections: in section two we review some concepts of fuzzy set theory, in section three a
suggested ranking function was presented for triangular and trapezoidal fuzzy numbers, and study some
properties, in section four a new algorithm for solving this problem was applied, in section five different
numerical examples are applied and compared with some ranking functions Material and methods

2. Preliminaries
In this section, we will give some basic concepts of fuzzy sets and fuzzy numbers.

Definition (1) (Nalla et al., 2020): Let X be universe of discourse. A fuzzy set 4 in X can be defined as a
set of ordered pairs:

A={(x,1z (), x € X},
where pz (x): X — [0,1] and pz (x) is called membership function.
Definition (2) (Hari and Jayakumar, 2014): A fuzzy set 4, which is both convex and normal, 4 is called
fuzzy number.

Definition (3) ( Al Thabhawi 2019): A fuzzy number A = (r;,15,13), 17 < 1, < 13 with (1,75, 73 = 0) is
called a triangular fuzzy number (TFN) if membership function pz (x) is describe as:

X — T
u, n<x<rn
(rp—m)
1, X=T

pa(x) =

r3— X
g, n<x<r;
(r; —12)
0, Otherwise .

Definition (4) (Rasha, 2016): A fuzzy number A = (r;,715,75,14), 11 < 1y < 13 < 1, with (1, 75,73, 73 = 0)
is called a trapezoidal fuzzy number (TrFN) if membership function pz (x) is describe as:

X —T
—( 1) , n<x<n
(r, — 1)
1, I <x< 3
pa(x) =
T, — X
M’ B<x<n
(ry —13)
0, Otherwise.

3. Ranking Function of Triangular and Trapezoidal Fuzzy Numbers by Geometric Average

Several approaches for the ranking of fuzzy numbers have been proposed in the literatures. An efficient
approach for comparing the fuzzy numbers is by the use of a ranking function. We defined the geometric
average in descriptive statistics for triangular and trapezoidal fuzzy numbers A as following

Let A = (ry,15,73) Where 1,7, 73 = 0 and r;, < 1, < 13, be a triangular fuzzy numbers defined the
ranking function GA(A4) as:

- 1
GA(4) = ([T, (1 +7))5 -1 (1)
Let A = (11,715,713, 14) Where 1,15, 15,1, = 0 and r; < 7, < 73 < 13, be a trapezoidal fuzzy numbers defined
the ranking function GA(A) as:

GA(A) = (T (1 +7) i—1 @)
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Let A and B be two arbitrary fuzzy numbers the ranking is:
a) GA(A)> GA(B)ifandonlyif 4> B
b) GA(A) < GA(B)ifandonlyif A < B
c) GA(A) =GA(B)ifandonlyif A~ B

Remark 1: Our ranking function is able to rank the crisp fuzzy numbers, whereas Cheng’s Distance method
(Cheng, 1998), (Wang et al., 2006), and (Chu and Tsao, 2002) do not.

3.1 Proposition 1

1. If GA(A) is a ranking function of 4 then GA(A) belongs to A
2. If inf supp(A) > 0 then GA(A) > 0
3. If inf supp(A) > sup supp(B) then A > B.

Proof: part (1). Let A = (1,73, 73,7,) be trapezoidal fuzzy number. By definition (4) we have r; < 1, <
3 <rnyandry, 1y, 13,1, = 0.
Hence, we getr, <r, 1y <1y, 1y <myandr <, sincer; = 0 for all i=1,2,...,4, and by the property of
inequality, add 1 to both sides of inequalitiesr;, + 1 <r+1,n+1<n+1,n+1<n+1,n+1<
n+lad (n+D).(m+D.M+D.+D<A+r).(n+1D.03+1).(n+1) [by a<cb<
d-ab<cd)]so, (r; + D* <A +r1y).(r; + 1).(r; + 1). (ry + 1). Take the fourth root (4™) for both
sides of the inequality.

1
Getry +1 < ((1+1).(ry + 1).(r3 + 1). (ry + 1))3, subtract both side by (-1), then 7, < ((1 +1,). (r, +

1
1).(s+1).(+1)*—1 and by equation (2), r, <GA(A). By analogue manner GA(A) <, .
Therefore, 7, < GA(A) <7,. m

Example 1: Consider two triangular fuzzy numbers A = (0.1,0.4,1) and B = (0.1,0.7,1)
~ 1 1
GA(A) = ([TI.;(1+7) 3] —1) = (1 + 0.1)(1 + 0.4)(1 + 1))s — 1 = 0.4595
1

GA(B) = ([TT.,(1 + ) §] -1)=((1+0.1)(1+0.7)(1+1))s —1=0.5522
Since GA(A) < GA(B) therefore 4 < B.

Example 2: Consider two trapezoidal fuzzy numbers A = (1,3,4,5) and B = (2,2,2,2)
~ 1 1
GA(A) = ([TT:(1 +71) 31— 1) = (1 + 1)(1 + 3)(1 + 4)(1 + 5))a — 1 = 2.9359

GA(B) = ([T (1+1) 5] - 1) = (1+ (A +2)(A +2)(1 +2))i— 1 =2
Since GA(A) > GA(B) therefore 4 > B.

4. Algorithm to Solve FLFP Problem using Proposed Ranking Function

The technique is suggested to solve a problem of fuzzy fractional programming utilizing fuzzy
programming technique where the coefficients of the objective function are fuzzy numbers. The ranking
approach based on geometric average which is used for fuzzy linear fractional programming problem
(FLFPP). The technique converts it to a crisp linear fractional programming (CLFP) problem. The
following are summarizes of the algorithm. Consider FLFP problem

. cX+a
Maximize Z(X) = Frav
s.t.

Ax < b,
x =0,

where A = (44, 4,, ..., A,) isan m by n matrix, ¢,d and x € R™, b, and 8 are scalars.
The ideas can be summarized as follows:
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Step 1: Convert the FLFP problem into the following LFP problem by a new ranking function of fuzzy
number

Maximize Z(X) = == ;
Subject to,

Ax < b,

x = 0.

Step 2: Transform the obtained LFP problem into a LP problem by using Charnes-Cooper
transformation method

Maximize Z(X) = cy + at

s.t.

dy +ft=1,

Ay — bt <0,

y=0,t=0.

Step 3: Find the optimal solution y in Step 2.

Step 4: Obtain the optimal solution x using the value y in Step 2.

Step 5: Compare the optimal solution with other exiting ranking functions.

5. Numerical Examples

In this section, we illustrate two numerical FLFP problems with triangular and trapezoidal fuzzy numbers,
with the help of the recommended ranking functions. The FLFP problem is transformed into a crisp
programming problem.

Example 3: Consider the fuzzy linear fractional programming problem
(3.3,4,5.2)x; + (5.3,6,7.2)x,

MaxZ = :
e =143,5,62)%, + (33,4,52)x, + (0.3,1,2.2)

s.t.

2x; +x, <10
3x; +4x, < 26
X1,%Xy = 0.

Apply the proposed algorithm:

Step 1: Convert objective function from fuzzy numbers to crisp value by proposed ranking function
as:

GA(A) = (A +r)A+r)(A+13) To1.

The objective function becomes FLP problem (Triangular)
4.1083x; + 5.8221x,

5.1176x; + 4.1083x, + 1.0263

Max Z =

s.t.

2x, +x, £10
3x; +4x, <26
X1, %, = 0.

Step 2: Transformed this LFP problem into LP problem by using transformation of Charnes Cooper, the
model programming problem is:

MaxZ = 4.1083y, + 5.8221y,

s.t.
5.1176y; + 4.1083y, + 1.0263t =1
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2y, +y, —10t <0
V1,¥2, £ = 0.

Step 3: The problem is in standard form of programming problem and we can find optimal solution by
using simplex method, the optimal solution here is y, = 0,y, = 0.2344 and t =0.0361.

Step 4: Find the optimal solution x using the value y as: x, = yTl =0andx, = YTZ = 6.4930. Now, the

value of Z = 1.3647.

Step 5: Using ranking function (Rasha, 2021), and (Iden and Anfal, 2015) for comparison with the
proposed method, from Table 1

Table 1: Comparison proposed method with existing triangular ranking methods

Ranking Method Rasha Method Iden and Anfal Proposed Method
Method
Optimal Solution Z = 13434 Z =1.3369 Z = 1.3647

Example 4: Consider the FLFP problem (Trapezoid)

_ (5,6,7,8)x; + (3,5,6,Dx,

Max Z =
e =1,2,3, ), + (55,7,85,9)

s.t

2x, +3x, <4
3x; +3x, <6
X1,%, = 0.

Apply the proposed algorithm:
Step 1: Convert objective function from fuzzy numbers to crisp value by proposed ranking function
as:

GA(A) =(A+r)A+r)A+1r3)(1+mn)) P 1.
The objective function becomes LFP problem

6.4155x, + 5.0548x,

MaxZ =
X & =75 3097x, + 7.3836

s.t.

2x1 +3x, < 4
3, +3x, <6
X1,%Xy = 0.

Step 2: Transformed this LFP problem into linear programming problem by using transformation of
Charnes-Cooper, the model programming problem as:

Max Z = 6.4155y, + 5.0548y,
s.t,

2.3097y, +7.3836t =1

Vi, Y2, t = 0.

Step 3: the problem is standard form of linear programming problem and we can find optimal solution by
using simplex method, optimal solution here is y; = 0.1666,y, = 0 and t = 0.0833.
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Step 4: find the optimal solution x using the value y as: x, = yTl =2andx, = yTz = 0. Now, Z= 1.069.

Step 5: Using ranking function (Yager, 1981), and (Deepak and Priyank 2021). Compare with proposed
method.

Table 2: Comparison proposed method with existing trapezoidal ranking methods

Ranking Method Yager Method Deepak at. el Method Proposed Method

Optimal Solution Z = 1.0400 Z =1.0277 Z=1.0690.

6. Conclusion

In this paper, we presented a new algorithm to convert the FLFP problem to crisp FLP problem and
solving crisp FLP problems by steps of the proposed algorithm. Also, we introduced a new ranking
function method to covert the objective function of FLFP problem to crisp FLP problem with only the
objective function is fuzzy numbers. The advantage of the ranking method is for using triangular and
trapezoidal fuzzy numbers. Finally, the numerical examples and their result show clearly the usefulness of
the proposed method.
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