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1. Introduction

Fuzzy multi-objective scheduling problems are mainly focused on two criteria and they are occur oftenly
in the real life situations. Solving multi-objective functions is difficult in the sense that we must deal with
two various objectives without possessing any prior knowledge of their respective importance. Finding
efficient solutions (Pareto set) is one of the approaches that solves this type of problems. From this set the
decision maker will select one of these solutions (Heide and David, 2008). In the literature the Pareto set
has been studied in the field of the optimization theory by many authors. In convex optimization, Ward
looked at the construction of efficient sets (Ward, 1989) Lowe et al. Characterized the set of quasi-
efficient solutions to a multiple objective problem (Lowe et al., 1984). For the minimum spanning tree
problem, Steiner and Radzik determined all efficient solutions (Steiner and Radzik, 2008). In scheduling
problems, the paper of Van Wassenhove and Gelders was the first one that dealt with finding the efficient
solutions (Van Wassenhove and Gelders, 1980). Zinchenko studied the structure of Pareto set of some

vector problems in scheduling (Zinchenko, 2002). Using the standard boundary intersection technique,
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Jia and Ierapetritou found Pareto optimum solutions for scheduling difficulties (Jia and Ierapetritou,
2007)). For equal processing times Lazarev et al. Found the Pareto set for jobs with respect of two criteria
(Lazarev, 2015), and for a shop scheduling problem Nguyen and Bao computed an efficient solution by
using genetic algorithm (Nguyen and Bao, 2016). Some papers are related to this direction, starting with
the non-fuzzy case Jabbar and Ramadhan firstly introduced such relation. Later Ramadan and Begard
introduced a relatin regarding the bi-criteria problem namely maximum tardines and maximum
earliness ( Amin and Ramadan, 2021). Hassan et al., generlized the idea to three criteria to minimize the
sum of total completion time, maximum earliness and maximum tardiness ( Dara et al., 2022). In the
fuzzy environment Ramadan presented the same idea to minimize the sum of total fuzzy completion
time and maximum earliness in addition to find all the efficient solutions ( Ramadan, 2021).

The focus of this paper is on the structure of efficient solutions where The processing times and deadlines
are triangular, fuzzy numbers. The multi-objective problem is to minimize total fuzzy completion time
and maximum fuzzy tardiness. We introduce a new definition for fuzzy numbers which is called g-
strongly positive fuzzy numbers, and a theorem which finds a relation between the fuzzy lower bound
and the fuzzy optimal solution with number of efficient solutions. This relation restricts the fuzzy lower

bound through number of efficient solutions.

1. Definitions and Notations
Definition 1: A triangular fuzzy number K = (k% k, kY) can be represented by three components , where
kU represents the lower bound of the fuzzy number, k" the upper bound for the number. Mg(x) specifies

a membership function for a triangular fuzzy number K, where

[0 , x < kb
X—kL L

pR() = {ic K =xsk
kY —x
P k < x < kU.

Assume K and G be two triangular fuzzy numbers, with K = (k% k,kV) and G = (g* g g"), then the
addition of two fuzzy nymbers is
3) K G= (k" + gL, k+g kY + gU), which is also triangular fuzzy number,
and the subtraction is
i) KO G = (k" — g¥,k— g kV — gb), which is also triangular fuzzy number (Hsien, 2010).
Definition 2: The procedure that converts a fuzzy number to its crisp value is called defuzzification. For

a triangular fuzzy number K = (k;,Kk,,k3). A triangular fuzzy number's centroid point is D(K) =

kq+kz+ks3

225 (Cheng, 1998).

Consider two triangular fuzzy production time P, and p, ( due dates) where p; = (p¥, p;,pY) and
P, = (p%, P2, pY). Using this method we say that p; < P, if D(;) < D(P,). A special case will occur
when pY < p%, in this case the two numbers are comparable and there is no need to use ranking methods
to map them to crisp values. The majority of defuzzification procedures result in a rational number, So,
let d be the rational number's denominator, which plays an important part in this paper. Consider a

problem p with two any criteria f and g to be minimized simultaneously, then
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Definition 3: A sequence 1" € Il is efficient solution for p if 3 no 7 € II s.t. f(m) < f(n*) and h(m) <
h(m*), where at least one relation holds with dtrict inequality.

Definition 4: A set of all the efficient solutions for a problem is called Pareto set.

The notations used in this paper are as follows:

N: {1,2,3,..,n},

[1: all possible schedules,

pj = (ij, D) ij): fuzzy processing time for job j, and they are triangular fuzzy number (TFN),

a]- = (djL, dj, d]!J ): fuzzy due date for job j, and they are triangular fuzzy number (TFN),

€j: fuzzy completion time for job j,

Ej =G0 d~j: fuzzy lateness for job j,

"IV‘]- = rﬁ‘a’x{ﬁj e aj, (~)}: fuzzy tardiness of job j, where 0 = (0,0,0),

Toax = nTéx{Tj}: maximum fuzzy tardiness,

K€: the crisp value of the fuzzy number K,

d: the denominator of a rational number,

EDD (early due date): tasks are arranged in ascending order of d;,

SPT (Shortest processing time): tasks are sequenced in ascending order of p;,

The fuzzy lower bound (LB) is a value of the objective function that is less than or equal to the fuzzy

optimum value.

UB (Fuzzy upper bound): an objective function value larger than or equal to the fuzzy optimum value.

2. Background of the Problem

A set N of n jobs to be processed on a one- machine. Each one has a fuzzy processing time p; which is a

triangular fuzzy number p; = (p]-L, p]-,p]-U), and a triangular fuzzy due date aj = (d]!“, dj,dlp), for j =
1,2,...,n. At time zero, all jobs are accessible, and the machine can only process one task at a time, and a
job's execution cannot be stopped. A schedule is made by placing tasks in a certain sequence such that the
fuzzy completion time T; of each job j may be calculated. In fact, employment processing timelines are
unpredictable. As a result, each job's completion time is unknown.

Smith proposed an approach for solving a single machine scheduling issue that reduced overall
completion time while ensuring that all tasks were finished on time (Smith, 1965). Van Wassenhove
extended the idea to find the Pareto set of the simultaneous problem 1//F(y!,y?) which is a function of
two cost criteria where y! = Y, ¢ and y? = Tmax and without constrants on jobs. The solution of this
problem is difficult and sometimes is not possible, this means, there is in general no T which minimizes
y! and y?, as a result, we're looking for a sequence that provides a fair solution to both goals. (if such a
sequence exists). To define such a sequence, Van Wassenhove and Gelders introduced the concept of

efficiency in scheduling problems (Van Wassenhove and Gelders, 1980).
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3. Needed Calculations
Consider a scheduling problem with n-jobs with one machine and processing times that are considered to
be fuzzy. Let P; be the job j fuzzy processing time. The following formulas can be used to compute the
fuzzy completion time of jobs:
¢ =Py,
G, =¢ @ P )]

G =1 EBf)]-, for j=1,...,n.
A penalty is charged if a task is done beyond its due date; nevertheless, if a job is performed before its
due date, it is deemed early (Hsien, 2010). The difference between the fuzzy completion time and the
fuzzy due date of this job is a fuzzy maximum of zero, and the fuzzy tardiness of a work in a given
sequence is a fuzzy maximum of zero, which implies

Tj = max{t; © d;, 0}, 2

where the fuzzy completion time & = (cf, ¢, ¢

i, C, ¢ ), (1) may be achieved for each job j, and maximum

fuzzy tardiness is

Tonax = miax {mi2x(t; © 4, 0} 3)

4. Efficient Solutions and Optimal Solution

With the number of effective solutions, Jabbar and Ramadhan discovered a relationship between the
lower bound and the optimization method for a problem which was minimizing total completion time and
maximum tardiness (Jabbar and Ramadhan, 2006). In the case where all the inputs data are are fuzzy

numbers, we generalized the case by introducing new definition. The problem is
1//F(hy?), @

where y! = Z]'n=1 ¢j and v? = T, ax. This problem is in simultaneously form and has efficient solutions,
one of the efficient solutions will be fuzzy optimal for the sum of the problem, i.e.,

1//(Z1 & + Tmax)- &)
For the problem (5) let the fuzzy lower bound LB = 21 G(SPT) © Trax(EDD) , the fuzzy upper bound
UB = ¥, §(SPT) @ Tpnax(SPT) and opt be the fuzzy optimal value. To find our results we introduce
the following.
Definition 5: If (K“+k+k") — (g"+g+g") > m, where m may be any positive integer greater than or equal
to one, two fuzzy numbers K = {k' k, kY} and G = {g", g, g"} are g-strongly positive.
Think of the sets of maximum fuzzy tardiness S = {Tmax(ni)} and total fuzzy completion time S; =
{Zjnzl G (ni)}, where m; is an efficient solution for each i = 1,...,k, and both sets have two components
that are g-strongly positive. Implying that Ty, (7;) and Tyax(7i41) are g-strongly positive numbers, and
Yjt1 €(miyq) and Y51, €(my) are g-strongly positive numbers too.
Theorem 1 ( New): If the problem has 3-strong positive numbers efficient solutions for problem (4),

then there exists a fuzzy number ¥ such that LB @ = opt and r¢ € [Q, — 1, (Q, GB%)C] where

Q,=number of efficient solutions and Q, = Ty < (SPT) © Tax(EDD).
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Proof. Since LB < 6pt , so there exists ¥ such that LB @ ¥ = opt this proves the first part. Now, to show

that r° € [Q; = 1,(Q, ® D or Q; =1 <1 < (Q, B ). Wehave F=opt O LE< UBO [
= Trnax (SPT) © Tax(EDD)

= Qz = Qz 52 % >

implies that r° < (Q, @ %)C.

For Q; — 1 < r€ use mathematical induction on Q;.

If Q; = 1, In other words, there is just one effective solution, which is SPT then

n n

F= ) GEPT) @ Tax(SPT) © ) §(SPT) © Typay (EDD),

=1 j
= Trhax (SPT) © T,ax(EDD), since Ti,ax(SPT) and Ty, (EDD) are equal , so r€ = 0.
Thus r¢ = 0 = Q; — 1, which proves the case Q; = 1.
If Q; = 2, Such that, there are only two effective solutions, that are SPT and o, instance. Since Q; = 2,
so Q; — 1 = 1. The following are two scenarios:
3 - If SPT is optimal then
=2 G(SPT) @ Tnax(SPT) © XL, &(SPT) © Trnax (EDD),
= T.pax (SPT) © Tiax (EDD), since Tyax(SPT) and T,.x(EDD) are 3-strongly positives , so the
difference between Ty, (SPT) and T, (EDD) is = 1. Thus r® = 1 = Q; — 1, As a result, the theorem
holds for Q; = 2.
b- If o is optimal then
F =30, 5(0) © Tax(0) © Ly (SPT) © Topay (EDD),
=2iL1 ¢(o) © XjL1 §(SPT), since they are 3-strongly positives , so 1°>22>Q; — 1,
so it is true for Q; = 2.
If Q; = 3, means we have three efficeient solutions namelly, SPT, ¢ and o;. Since Q; = 3, so Q; —

1 = 2. We have the following three cases:

3 - If SPT is optimal then

n n

F= ) GEPT) @ Tax(SPT) © )| §(SPT) © Typay (EDD),
j=1

j=1 =
= Toax (SPT) © Tinax (EDD), since Tiax(SPT) and Ty.x(EDD) are 3-strongly positives , so the
difference between T, (SPT) and Tg,.x (EDD) is = 2. Thus r® > 2 > Q, — 1, so it is true for Q; = 3.
b- If ¢ is optimal then

= Zjnzl Gj (o) ® Tmax(o-) S Zjn=1 Ej(SPT) S Tmax(EDD)'
=2t ¢(o) © XjL; §(SPT) @ Tnax(0) © Trax(EDD), since each of the difference is 3-strongly
positive , sor¢ = 2 > Q; — 1, so it is true for Q; = 3.

c- If 0, is optimal then

n n

F= ) 5(0) ® Tax(0) © ) G(SPT) © T (EDD),

j=1 1=
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=YL, §(01) © XLy &(SPT) @ Trax(01) © Trmax(EDD),

= Y1 §(o1) © XjL4 &(SPT), since they are 3-strongly positives , so

r¢°>=2=>Q; —1,soitis true for Q; = 3.

Assume that the theorem holds for Q; = k, such that, for the k most efficient solutions SPT, o, o4, ...,
Ox—». Let Q; =k+ 1 , that means , there are k+ 1 efficient solutions SPT, o, 0y, ..., Ox_2, Ox_1-
Whether any of the first k optimal processes is the optimum, and the theorem holds fo Q; = k then we
getQ —1<r

If o_4 is the most efficient solution, then

n n

=) §(01) B Tnax(@1) © ). G(SPT) © Tynax(EDD),
j 1

j=1 =
implies that
F =% §(ox-1) © Xjq §(SPT), and then r¢ > k. Thus it is true for Q; =k + 1. m

Corollary 1: If the efficient solutions are not 3-strongly positive for the problem (4), then 3 a fuzzy

number ¥ s.t. LB@ T = opt and r€ € [Qld_l, Q, ® %)C] where Q= number of efficient solutions and
Q2 = Tnax(SPT) © Tinax(EDD).

Proof. We prove only the second part whichis Q; —1 < r€.

This will be done by the same way of the above theorem. Since they are not q-strongly positive, so the
difference between each of any two one is less than m. If m = 1 which is the worst case, then r¢ > K; —
1L,vii=1,...,k

It's vital to note that the q and d values are the same, so the theorem depends strongly on the

defuzzification method. m

To illustrate the theorem we give here an example.

Consider the following data. For simple calculation we have the due dates as cris number.

—
—_
N
w

(2,3,4) | 457 | (459

| 3

There are three efficient solutions for the problem, and by using the mentioned defuzzification method
the fficient solutions for this problem are: sequence (1, 2, 3) with Z]-3=1 = (18, 26, 35) and Toax = (8, 13,
18) which is SPT- rule, sequence (1, 3, 2) with Zj3=1 ¢= (18, 28, 37) and Tmax = (5, 10, 15), and
sequence (3, 2, 1)) with 3, &= (22, 34, 45) and Ty = (3, 8, 13). Now

LB = Zle Gi(SPT) @ Tmax(EDD)= (18,26, 35) @ (3.8, 13)= (21, 34, 48),

UB = Zle Gi(SPT) & Tmax(SPT) = (18,26, 35) @ (8,13, 18)= (26, 39, 53),

opt= (18, 28, 37) @ (5, 10, 15) = (23, 38, 52), it is the sum of one the efficient solutions for YL, & ©

Tiax Which is the sequence (1, 2, 3), and ¥ = opt — LB=(23, 38, 52) © (21, 34, 48)=(-25,4, 31), F = ?
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. Q;= number of efficient solutions, Q;-1=3-1=2, and Q,= T;,ax(SPT)- Tmax (EDD)= (8, 13, 18) © (3, 8,
13)=(-5,5,15). (@ ®7)°=(

—-14 16 46

—,—,— )= 2 So, for this example Ye [2, E].
3°3’3 3 3 3

5. Conclusions

The fuzzy lower bound and the fuzzy optimum solution with the number of efficient solutions were
discovered to have a significant relationship in this paper. This relationship conceptually explains the
difference between a fuzzy optimum solution and a fuzzy lower bound, allowing new algorithms and
approaches to be developed to discover heuristic solutions to these issues. Furthermore, the
defuzzification approach has an important role in limiting the gap between the fuzzy optimum solution

and the fuzzy lower bound. For a given theorem, multiple approaches provide different intervals.

References

1. Amin, B. A., and Ramadan, A. M. (2021). Novel Heuristic Approach for Solving Multi-objective
Scheduling Problems. Ibn AL-Haitham Journal For Pure and Applied Sciences, 34(3), 50-59.
https://doi.org/10.30526/34.3.2677.

2. Cheng, CH. (1998). A New Approach for Ranking Fuzzy Numbers by Distance Method. Fuzzy Sets
and Systems, 95, 307-317.

3. Hassan, D. A., Amiri, N. M., and Ramadan, A. M. (2022). A heuristic Approach to Minimize Three
Criteria using Efficient Solutions. Indonesian Journal of Electrical Engineering and Computer Science,
26 (1), 334-341.

4. Heide, A. H., and David, W. C. (2008). Multi-objective Scheduling Problems: Determination of
Pruned Pareto Sets. Jornal IIE Transcations, 40 (5), 552-564.

5. Hsien, Ch. (2010). Solving the Fuzzy Earliness and Tardiness in Scheduling Problems by Using
Genetic Algorithms. Expert Systems with Applications, 37, 860-866.

6. Jabbar, A. K., and Ramadan, M. R. (2006). Techniques of Finding Lower Bounds in Multi Objective

Functions. AL-Rafidain Journal of Computer Sciences and Mathematics, 3(2), 23-29.

7. Jia, Z, and lerapetritou, M. G. (2007). Generate Pareto Optimal Solutions for Scheduling Problems

using Normal Boundary Intersection Technique, Computers and Chemical Engineering, 31, 268-280.

8. Lazarev, A., Arkhipov, D., and Werner, F. (2015). Single Machine Scheduling: Finding the Pareto
Set for Jobs with Equal Processing Times with Respect to Criteria Ly, and Cpay. 70 Multidisciplinary

International Conference on Scheduling: Theory and Applications, 25-28.

9. Lowe, J., Thisse, J. F., Ward, J., and Wendell, R. E. (1984). On Efficient Solutions to Multiple-
Objective Mathematical Programs. Management Science, 30, 1346-1349.

10. Nguyen, V., and. Bao, H. P. (2016). An Efficient Solution to the Mixed Shop Scheduling Problem
Using A Modified Genetic Algorithm. Procedia Computer Science, 95, 475-482.

11. Ramadan, A. M. (2021). On Pareto Set for a Bi-criterion Scheduling Problem Under Fuzziness. Iraqi



Iraqi Journal of Statistical Sciences, Vol. 20, No. 1,2023, Pp. (1-8)

Journal of Statistical Science, 33, 64-71.

12. Smith, W. E. (1965) Various Optimizers for Single-Stage Production. Naval Research Logistics
Quarterly, 3, 59-66.

13. Steiner, S., and Radzik, T. (2008). Computing all Efficient Solutions of the Bi-Objective Minimum
Spanning Tree Problem. Computers and Operations Research, 35, 198-211.

14. Van Wassenhove, N., and Gelders, L. F. (1980). Solving a Bi-criterion Scheduling Problem.
European Journal of Operational Research, 4, 42-48.

15. Ward, J. (1989). Structure of Efficient Sets for Convex Objectives. Mathematics of Operations
Research, 14, 249-257.

16. Zinchenko, A. B. (2002). Structure of Pareto Set of Some Vector Problems in Scheduling. Russian
Mathematics, 46(7), 79-82.

Anlodall Aganl) Jiluea (B A aal) B3 paail Ll

Ol 2 b Olabe Cliogl Lise  agana 38 S Cpun 3B s bl
Ghad) ¢ (Goull ughailly 1oV agae ¢ GhayS Ayl Aalal) duppaall ¢ Ayl Bl
Glad) ¢ LS ald) ¢ layS daala ¢ aghell LS ¢ cilualil) pud”

Al ¢ QUwyS alB) ¢ Gl Arala ¢ Al BS ¢ il aud”

bl ¢ QlmyS palf) ¢ Liilasbudl dxals ¢ aghall AAS ¢ claalyl) pud’

LAY

Jue¥) e dae S - oli¥) ligly ead) iligY Adha Aulaca Se) ma Aubuall SLY) Algoa Allae Al 5 i Va8
Ay a:l‘)Lu‘g k_ﬁzl‘)’-"l ;&Lb ‘)\Sﬁ\}!\ ey Liasc Aé)ﬂ.aén QE}S\ @ ;A.\ﬂ E‘),«al; UJSE K] ELL:L\\ O E&ab sk L.A; b
Y Sy ppene et ally el Jglall sie e Alaall el Y1 Jally ol (A sl o dDe

el Algaall bt Ayl Lol Laal S ek i) Liad L la b L) 5 el

Jslall ¢ Laall sgandl ¢ oluall palll V1 aal) ¢ daalsll pe laia) sl ¢ dylucall dalledl il AN clalsl)

LAl



