Determination of some hematological, biochemical parameters and vitamin D receptor gene polymorphism in Kurdish patients with COVID-19 in Erbil city | ||
Kirkuk University Journal-Scientific Studies | ||
Articles in Press, Accepted Manuscript, Available Online from 30 June 2023 PDF (311.52 K) | ||
Document Type: Research Paper | ||
DOI: 10.32894/kujss.2023.137833.1093 | ||
Authors | ||
Ashna Talaat galaly* 1; Kalthum Asaaf Maulood2 | ||
1Department of Biology, College of Education, Salahaddin University, Erbil, Iraq. | ||
2Depatment of Biology, College of Education, University of Salahaddin, Erbil, Iraq. | ||
Abstract | ||
Coronavirus infection a new infectious illness brought on by the SARS-COV-2 virus has infected people worldwide as of 2019, a covid-19 disease is associated with hematological and biochemical parameters changes. The present study aimed to evaluate the possible relationship between patient parameters and disease severity. A total of 200 nasopharyngeal swabs and whole blood specimens were collected from individuals suspected of CoV-2 and healthy volunteers as control of both sexes, grouped into four groups:50 patients for each mild, moderate, and severe patients and 50 healthy volunteers. The current study demonstrated that female 82(55%) was more frequently affected than male 68(45%). Hematological parameters including white blood cell count (WBC), granulocyte count, and Red blood cell distribution width (RDW%) (increased significantly p < 0.05, while Lymphocyte count decreased significantly when compared with a control group. Significant differences in hemoglobin concentration, packed cell volume, red blood cell count, and indices of red blood cell count were shown when compared with a control group in both sexes. Regarding biochemical parameters including serum vitamin D, ferritin, D-dimer, procalcitonin (PCT), and liver function tests, serum vitamin D decreased significantly, while serum ferritin, D-dimer, procalcitonin and liver enzymes increased significantly in the covid-19 patients group compared to the control group. According to vitamin D receptor ,gene polymorphism in covid-19 patients genotype Bb was most likely associated and strongly related to getting infected with CoV-2 virus with all the three known stages of infection.Severity of CoV-2 was associated with leukocytosis, lymphopenia and biomarkers are the best predictors of severe CoV-2, with a strong relation of VDR gene polymorphism BsmI with the severity of CoV-2 patients | ||
Keywords | ||
SARS-CoV-2; Hematological parameter; Vitamin D; Procalcitonin; Vitamin D receptor BsmI | ||
References | ||
[1] Organization WH., interim guidance. World Health Organization, 2020.
[2] II. Bogoch, A. Watts, A. Thomas-Bachli, C. Huber, MU. Kraemer, and K. Khan. Pneumonia of unknown aetiology in wuhan, china: potential for international spread via commercial air travel. Journal of travel medicine, 27(2):taaa008, 2020, doi:10.1093/jtm/taaa008.
[3] B. Abdulqadir Ali. Epidemiological approach of sarscov2 in the first month of appearance in the kurdistan region of iraq. European Journal of Molecular Clinical Medicine, 7(11): 2853–65, 2020. [4] Organization WH., Living guideline, Retrieved. World Health Organization, 2023.
[5] M. Narasimhan JM. Crawford T. McGinn KW. Davidson S. Richardson, JS. Hirsch and et al. Presenting characteristics, comorbidities, and outcomes among 5700 patients hospitalized with covid-19 in the new york city area. Journal of the American Medical Association, 323(20): 2052–9, 2020, doi:10.1001/jama.2020.6775.
[6] G. Grasselli, A. Zangrillo, A. Zanella, M. Antonelli, L. Cabrini, A. Castelli, and et al. Baseline characteristics and outcomes of 1591 patients infected with sars-cov-2 admitted to icus of the lombardy region, italy. Journal of the American Medical Association, 323(16): 1574–81, 2020, doi:10.1001/jama.2020.5394. [7] A. Khalid, M. Ali Jaffar, T. Khan, R. Abbas Lail, S. Ali, G. Aktas, and et al. Hematological and biochemical parameters as diagnostic and prognostic markers in sarscov-2 infected patients of pakistan: a retrospective comparative analysis. Hematology, 26(1): 529–42, 2021, doi:10.1080/16078454.2021.1950898.
[8] C. Qin, L. Zhou, Z. Hu, S. Zhang, S. Yang, Y. Tao, and et al. Dysregulation of immune response in patients with coronavirus 2019 (covid-19) in wuhan, china. clinical infectious diseases. An official publication of the Infectious Diseases Society of America, 71(15): 762–8, 2020, doi:10.1093/cid/ciaa248.
[9] B. Zhu, X. Feng, C. Jiang, S. Mi, L. Yang, Z. Zhao, and et al. Correlation between white blood cell count at admission and mortality in covid-19 patients: a retrospective study. BMC infectious diseases, 21(1): 574, 2021, doi:10.1186/s12879-021-06277-3.
[10] S. Jandaghian, A. Vaezi, A. Manteghinejad, M. Nasirian, G. Vaseghi, and S. Haghjooy Javanmard. Red blood cell distribution width (rdw) as a predictor of in hospital mortality in covid-19 patients; a cross sectional study Archives of academic emergency medicine, 9(1): e67, 2021, doi:10.22037/aaem.v9i1.1325.
[11] D. Bikle. Nonclassic actions of vitamin d. The Journal of clinical endocrinology and metabolism, 94(1): 26–34, 2009, doi:10.1210/jc.2008-1454.
[12] HA. Dissanayake, NL. de Silva, M. Sumanatilleke, SDN. de Silva, Gamage, C. Dematapitiya, and et al. Prognostic and therapeutic role of vitamin d in covid-19: Systematic review and meta-analysis. The Journal of Clinical Endocrinology Metabolism, 107(5): 1484–502, 2022, doi:10.1210/clinem/dgab892.
[13] R. Ghasemian, A. Shamshirian, K. Heydari, M. Malekan, R. Alizadeh-Navaei, MA. Ebrahimzadeh, and et al. The role of vitamin d in the age of covid-19: A systematic review and meta-analysis. International journal of clinical practice, 75(11): e14675, 2021, doi:10.1111/ijcp.14675.
[14] M. Pereira, A. Dantas Damascena, LM. Galvao Azevedo, ˜T. de Almeida Oliveira, and J. da Mota Santana. Vitamin d deficiency aggravates covid-19: systematic review and meta-analysis. Critical reviews in food science and nutrition, 62(5): 1308–16, 2022, doi:10.1080/10408398.2020.1841090.
[15] S. Zelzer, F. Pruller, P. Curcic, Z. Sloup, M. Holter, ¨M. Herrmann, and et al. metabolites and clinical outcome in hospitalized covid-19 patients. Nutrients, 13(7): 2129, 2021, doi:10.3390/nu13072129.
[16] V. Contreras-Bol´ıvar, B. Garc´ıa-Fontana, C. Garc´ıaFontana, and M. Munoz Torres. Vitamin d and covid-19: ˜where are we now? Postgraduate Medicine, 1-13, 2021, doi:10.1080/00325481.2021.2017647.
[17] K. Kaushal, H. Kaur, Sarma, A. Bhattacharyya, DJ. Sharma, M.Prajapat, and et al. Serum ferritin as a predictive biomarker in covid-19. a systematic review, metaanalysis and meta-regression analysis. Journal of critical care, 67: 172–81, 2022, doi: 10.1016/j.jcrc.2021.09.023.
[18] P. Mehta, DF. McAuley, M. Brown, E. Sanchez, RS. Tattersall, and JJ. Manson. Covid-19: consider cytokine storm syndromes and immunosuppression. The lancet, 395(10229): 1033–4, 2020, doi: 10.1016/S0140-6736(20)30628-0.
[19] S. Shah, K. Shah, SB. Patel, FS. Patel, M. Osman, P. Velagapudi, and et al. Elevated d-dimer levels are associated with increased risk of mortality in coronavirus disease 2019: A systematic review and meta-analysis. Cardiology in Review, 28(6).
[20] A. Farasani. Biochemical role of serum ferratin and d-dimer parameters in covid 19 diagnosis. Saudi journal of biological sciences, 28(12): 7486–90, 2021, doi: 10.1016/j.sjbs.2021.08.040.
[21] J. Thachil, M. Cushman, A. Srivastava, and P. Angchaisuksiri. A proposal for staging covid19 coagulopathy. Research and practice in thrombosis and haemostasis, 4(5): 731–6, 2020, doi: 10.1002/rth2.12372.
[22] C. Vanhomwegen, I. Veliziotis, S. Malinverni, D. Konopnicki, P. Dechamps, M. Claus, and et al. Procalcitonin accurately predicts mortality but not bacterial infection in covid-19 patients admitted to intensive care unit. Irish Journal of Medical Science, 190(4): 1649–52, 2021, doi:10.1007/s11845-020-02485-z.
[23] JB. Xu, C. Xu, RB. Zhang, M. Wu, CK. Pan, XJ. Li, and et al. Associations of procalcitonin, c-reaction protein and neutrophil-to-lymphocyte ratio with mortality in hospitalized covid-19 patients in china. Scientific reports, 10(1): 15058, 2020, doi:10.1038/s41598-020-72164-7.
[24] WJ. Guan, WH. Liang, Y. Zhao, HR. Liang, ZS. Chen, YM. Li, and et al. Comorbidity and its impact on 1590 patients with covid-19 in china: a nationwide analysis. The European respiratory journal, 55(5).
[25] MN. Bangash, J. Patel, and D. Parekh. Covid-19 and the liver: little cause for concern. The lancet Gastroenterology hepatology, 20205(6): 529–30, 2020, doi: 10.1016/S2468-1253(20)30084-4.
[26] PP. Bloom, EA. Meyerowitz, Z. Reinus, M. Daidone, J. Gustafson, AY. Kim, and et al. Liver biochemistries in hospitalized patients with covid-19. Hepatology, 73(3): 890–900, 2021, doi: 10.1002/hep.31326.
[27] Y. Li, Y. Hu, J. Yu, and T. Ma. Retrospective analysis of laboratory testing in 54 patients with severe- or criticaltype 2019 novel coronavirus pneumonia. Laboratory Investigation, 100(6): 794–800, 2020, doi: 10.1038/s41374-020-0431-6.
[28] Q. Cai, D. Huang, H. Yu, Z. Zhu, Z. Xia, Y. Su, and et al. Covid-19: Abnormal liver function tests. Journal of Hepatology, 73(3): 566–74, 2020, doi:10.1016/j.jhep.2020.04.006.
[29] H. Zhang, H. Han, T. He, KE. Labbe, AV. Hernandez, H. Chen, and et al. Clinical characteristics and outcomes of covid-19–infected cancer patients: a systematic review and meta-analysis. Journal of the National Cancer Institute, 113(4): 371–80, 2021, doi:10.1093/jnci/djaa168.
[30] S. Zheng, J. Yang, X. Hu, M. Li, Q. Wang, RCA. Dancer, and et al. Vitamin d attenuates lung injury via stimulating epithelial repair, reducing epithelial cell apoptosis and inhibits tgf-β induced epithelial to mesenchymal transition. Biochemical Pharmacology, 177: 113955, 2020, doi:10.1016/j.bcp.2020.113955.
[31] K. Baynes, B. Boucher, E. Feskens, and D. Kromhout. Vitamin d, glucose tolerance and insulinaemia in elderly men. Diabetologia, 40(3): 344–7, 1997, doi:10.1007/s001250050685.
[32] S. Raimondi, E. Pasquali, P. Gnagnarella, D. Serrano, D. Disalvatore, HA. Johansson, and et al. Bsmi polymorphism of vitamin d receptor gene and cancer risk: a comprehensive meta-analysis. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 769: 17–34, 2014, doi:10.1016/j.mrfmmm.2014.06.001.
[33] KA. Maulood. Estimation of vitamin d receptor gene polymorphism in type 2 diabetes mellitus patients in erbil city. Cellular and Molecular Biology, 67(3): 76–84, 2021, doi:10.14715/cmb/2021.67.3.10.
[34] H. A. Dissanayake, N. L. De Silva, M. Sumanatilleke, S. D. N. De Silva, K. K. K. Gamage, C. Dematapitiya, D. C. Kuruppu, P. Ranasinghe, S. Pathmanathan, and P. Katulanda. Prognostic and therapeutic role of vitamin d in covid-19: Systematic review and meta-analysis. The Journal Of Clinical Endocrinology Metabolism, 107: 1484–1502, 2022, doi:10.1210/Clinem/Dgab892.
[35] R. Abdollahzadeh, MH. Shushizadeh, M. Barazandehrokh, S. Choopani, A. Azarnezhad, S. Paknahad, and et al. Association of vitamin d receptor gene polymorphisms and clinical/severe outcomes of covid-19 patients. infection. Genetics and Evolution, 96: 105098, 2021, doi:10.1210/Clinem/Dgab892.
[36] D. Akdogan, M. Guzel, D. Tosun, and O. Akpinar. Diagnostic and early prognostic value of serum crp and ldh levels in patients with possible covid-19 at the first admission. The Journal of Infection in Developing Countries, 15(06): 766–72, 2021, doi:10.3855/jidc.14072.
[37] T. Wiggill, E. Mayne, J. Vaughan, and S. Louw. Overview of the haematological effects of covid-19 infection. Clinical, Biological and Molecular Aspects of COVID-19, 163-72.
[38] L. Tan, Q. Wang, D. Zhang, J. Ding, Q. Huang, Y-Q. Tang, and et al. Lymphopenia predicts disease severity of covid-19: a descriptive and predictive study. Signal transduction and targeted therapy, 5(1): 1–3, 2020, doi:10.1038/s41392-020-0148-4.
[39] X. Yang, Y. Yu, J. Xu, H. Shu, H. Liu, Y. Wu, and et al. Clinical course and outcomes of critically ill patients with sars-cov-2 pneumonia in wuhan, china: a single-centered, retrospective, observational study. The Lancet Respiratory Medicine, 8(5): 475–81, 2020, doi:10.1016/S2213-2600(20)30079-5.
[40] H. Xu, L. Zhong, J. Deng, J. Peng, H. Dan, X. Zeng, and et al. High expression of ace2 receptor of 2019-ncov on the epithelial cells of oral mucosa. International journal of oral science, 12(1): 1–5, 2020, doi:10.1038/s41368-020-0074-x.
[41] IA. I. Abdullah and ZC. ZC Chapanduka. The pathophysiology of the haematological manifestations of covid-19: a review. The Journal of Medical Laboratory Science and Technology of South Africa, 2(2): 54–8, 2020.
[42] B. Bai, Z. Xu, Y. Hu, M. Qu, J. Cheng, S. Luo, and et al. Patient hematology during hospitalization for viral pneumonia caused by sars-cov-2 and non-sars-cov-2 agents: a retrospective study. European Journal of Medical Research, 26(1): 1–11, 2021, doi:10.1186/s40001-021-00515-9.
[43] M. Alshahawey, M. Raslan, and N. Sabri. Sex-mediated effects of ace2 and tmprss2 on the incidence and severity of covid-19; the need for genetic implementation. Current Research in Translational Medicine, 68(4): 149–50, 2020, doi:10.1016/j.retram.2020.08.002. [44] A. D’Avolio, V. Avataneo, A. Manca, J. Cusato, A. De Nicolo, R. Lucchini, and et al. 25-hydroxyvitamin `d concentrations are lower in patients with positive pcr for sars-cov-2. Nutrients, 12(5): 1359, 2020, doi:10.3390/nu12051359.
[45] A. Alunno, F. Carubbi, and J. Rodr´ıguez-Carrio. Storm, typhoon, cyclone or hurricane in patients with covid19? beware of the same storm that has a different origin. Rheumatic Musculskeletal Diseases, 6(1): e001295, 2020, doi:10.1136/rmdopen-2020-001295.
[46] I. Huang, R. Pranata, MA. Lim, A. Oehadian, and B. Alisjahbana. C-reactive protein, procalcitonin, d-dimer, and ferritin in severe coronavirus disease2019: a meta-analysis. Therapeutic advances in respiratory disease, 14: 1753466620937175, 2020, doi:10.1177/1753466620937175.
[47] Y. Yao, J. Cao, Q. Wang, Q. Shi, K. Liu, Z. Luo, and et al. D-dimer as a biomarker for disease severity and mortality in covid-19 patients: a case control study. Journal of intensive care, 8(1): 1–11, 2020, doi:10.1186/s40560-020-00466-z.
[48] D. Agnes, LYC. JM, L. Kreuziger, M. Murphy, T. Gernsheimer, Y. Lin, and et al. Covid-19 and coagulopathy: frequently asked questions. American Society of Hematology, COVID-19 Resources COVID-19 and Coagulopathy Version, 7.
[49] BS. Joly, V. Siguret, and A. Veyradier. Understanding pathophysiology of hemostasis disorders in critically ill patients with covid-19. Intensive care medicine, 46(8): 1603–6, 2020, doi:10.1007/s00134-020-06088-1.
[50] B. Mouhat, M. Besutti, K. Bouiller, F. Grillet, C. Monnin, F. Ecarnot, and et al. Elevated d-dimers and lack of anticoagulation predict pe in severe covid-19 patients. European Respiratory Journal, 56(4).
[51] S. Ventura-D´ıaz, JV. Quintana-Perez, A. Gil-Boronat, ´M. Herrero-Huertas, L. Gorospe-Sarasua, J. Montilla, ´and et al. A higher d-dimer threshold for predicting pulmonary embolism in patients with covid-19: a retrospective study. Emergency Radiology, 27(6): 679–89, 2020, doi:10.1007/s10140-020-01859-1.
[52] SE. Johnson, E. Pai, A. Voroba, NW. Chen, and A. Bahl. Examining d-dimer and empiric anti-coagulation in covid19-related thrombosis. Cureus, 14(7): e26883, 2022, doi:10.7759/cureus.26883.
[53] W j. Guan, Z y. Ni, Y. Hu, W h. Liang, C q. Ou, J x. He, and et al. Clinical characteristics of coronavirus disease 2019 in china. New England journal of medicine, 382(18): 1708–20, 2020, doi:10.1056/NEJMoa2002032.
[54] J. Thachil, N. Tang, S. Gando, A. Falanga, Cattaneo, M. Levi, and et al. Isth interim guidance on recognition and management of coagulopathy in covid-19. Journal of Thrombosis and Haemostasis, 18(5): 1023–6, 2020, doi:10.1111/jth.14810. [55] JJ. Choi and MW. McCarthy. Novel applications for serum procalcitonin testing in clinical practice. Expert Review of Molecular Diagnostics, 18(1): 27–34, 2018, doi:10.1080/14737159.2018.1407244.
[56] A. Rodr´ıguez, LF. Reyes, J. Monclou, B. Suberviola, M. Bod´ı, G. Sirgo, and et al. Relationship between acute kidney injury and serum procalcitonin (pct) concentration in critically ill patients with influenza infection. Medicina Intensiva, 42(7): 399–408, 2018, doi:10.1016/j.medin.2017.12.004.
[57] JJ. Zhang, X. Dong, YY. Cao, YD. Yuan, YB. Yang, YQ. Yan, and et al. Clinical characteristics of 140 patients infected with sars-cov-2 in wuhan, china. Allergy, 75(7): 1730–41, 2020, doi:10.1111/all.14238.
[58] A. Kumar, E. Karn, K. Trivedi, P. Kumar, G. Chauhan, A. Kumari, and et al. Procalcitonin as a predictive marker in covid-19: A systematic review and meta-analysis. PloS one, 17(9): e0272840, 2022, doi:: 10.1371/journal.pone.0272840.
[59] S. Gautam, AJ. Cohen, Y. Stahl, P. Valda Toro, GM. Young, R. Datta, and et al. Severe respiratory viral infection induces procalcitonin in the absence of bacterial pneumonia. Thorax, 75(11): 974, 2020, doi:10.1136/thoraxjnl-2020-214896.
[60] Y. Shen, C. Cheng, X. Zheng, Y. Jin, G. Duan, M. Chen, and et al. Elevated procalcitonin is positively associated with the severity of covid-19: A meta-analysis based on 10 cohort studies. Medicina, 57(6): 594, 2021, doi:10.3390/medicina57060594.
[61] A. Bertolini, IP. van de Peppel, FA. Bodewes, H. Moshage, A. Fantin, F. Farinati, and et al. Abnormal liver function tests in patients with covid-19: relevance and potential pathogenesis. Hepatology, 72(5): 1864–72, 2020, doi:10.1002/hep.31480.
[62] Y. Wang, S. Liu, H. Liu, W. Li, F. Lin, L. Jiang, and et al. Sars-cov-2 infection of the liver directly contributes to hepatic impairment in patients with covid19. Journal of hepatology, 2020;73(4): 807–16, 2020, doi:10.1016/j.jhep.2020.05.002.
[63] F. Zhou, T. Yu, R. Du, G. Fan, Y. Liu, Z. Liu, and et al. Clinical course and risk factors for mortality of adult inpatients with covid-19 in wuhan, china: a retrospective cohort study. The lancet, 395(10229): 1054–62, 2020, doi:10.1016/S0140-6736(20)30566-3.
[64] Z. Fan, L. Chen, J. Li, X. Cheng, J. Yang, C. Tian, and et al. Clinical features of covid-19-related liver functional abnormality. Clinical Gastroenterology and Hepatology, 18(7): 1561–6, 2020, doi:10.1016/j.cgh.2020.04.002.
[65] H-Y. Lei, Y-H. Ding, K. Nie, Y-M. Dong, JH. Xu, M-L. Yang, and et al. Potential effects of sars-cov-2 on the gastrointestinal tract and liver. Biomedicine Pharmacotherapy, 133: 111064, 2021, doi:10.1016/j.biopha.2020.111064.
[66] MN. Bangash, JM. Patel, D. Parekh, N. Murphy, RM. Brown, AM. Elsharkawy, and et al. Sars-cov2: Is the liver merely a bystander to severe disease? Journal of Hepatology, 73(4): 995–6, 2020, doi:10.1016/j.jhep.2020.05.035. | ||
Statistics Article View: 25 PDF Download: 23 |