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Abstract— Semantic segmentation refers to labeling each pixel in the scene to its belonging 

object. It is a critical task for many computer vision applications that requires scene 

understanding because  It attempts to mimic human perceptual grouping. Despite the 

unremitting efforts in this field, it is still a challenge and preoccupies of researchers. 

Semantic segmentation performance improved using deep learning rather than traditional 

methods. Semantic segmentation based on deep learning models requires capturing local 

and global context information, where deep learning models usually can extract one of 

them but is challenging to integrate between them. Deep learning based on attention 

mechanisms can gather between the capturing of local and glopal information, so it is 

increasingly employed in semantic segmentation. This paper gives an introductory survey 

of the rising topic attention mechanisms in semantic segmentation. At first, it will discuss 

the concept of attention and its integration with semantic segmentation requirements. Then, 

it will review deep learning based on attention mechanisms in semantic segmentation. 

Index Terms— attention concept, computer vision, deep learning, semantic 

segmentation. 

I. INTRODUCTION 

Semantic segmentation, scene labeling, or pixel-wise prediction refer to the same task: 

It assigns a semantic label to each pixel of an image see Fig. 1. It is a fundamental and 

challenging problem in computer vision. It is fundamental because it benefits many 

applications in computer vision like self-driving vehicles[1],[2] , pedestrian detection[3], 

[4], defect detection[5],[6], and medical diagnosis[7],[8]. Semantic segmentation is 

challenging because it requires both semantic and spatial accuracy[9],[10]. 

Semantic segmentation differs from classification because it requires classifying each 

pixel in the image, not only the base class of an image[11]. It differs from object 

localization[12] because it entails localizing all objects in an image, not only primary 

objects. It differs from object detection [13] because it detects all borders of objects in the 

image, not only detecting and bounds the primary object. Because of these differences and 

requirements, semantic segmentation is a complex and critical task. 

Before the revolutionary deep learning era, traditional methods were employed in 

semantic segmentation [14], [15]. The success of deep learning in solving different 

computer vision problems[16]-[22] encouraged using it with semantic segmentation. Deep 

learning was used in semantic segmentation were led to a boom in its performance [23]. 

Convolutional neural networks have improved semantic segmentation performance because 

pre-trained features give better results than hand-crafted features [24]-[26]. 
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Semantic segmentation based on deep learning faces Fundamental difficulties: it needs 

an unmanageably extensive convolutional network, consecutive pooling operations or 

convolution striding reduces feature resolution and localization accuracy, multiple scales of 

object existence, and it requires global and local context information [24], [25],[26], [27], 

[28].  

 

 

 

 

 

 

 

FIG. 1. AN EXAMPLE OF A SEMANTIC SEGMENTATION TASK [29]. 

Many types of deep learning architectures are proposed to deal with previously 

mentioned difficulties. Fully convolutional networks (FCN) [21]  induced the growth of 

deep convolution neural networks( DCNN) based methods that are utilized for semantic 

segmentation and have shown surprising performance improvements [30], [31]. 

FCN adapted classification networks into the segmentation task adding skip connection 

to enhance feature extracted, which concatenate shallow and high-level layers that integrate 

spatial and semantic features to improve semantic segmentation performance [23]. U-Net 

[32] and its later extensions [33]-[35] mainly depend on u-shaped architecture where it 

consists of a down-sampling (encoder)path and an up-sampling (decoder) path that uses 

skip connection from the corresponding down-sampling feature map. This architecture 

allows the U-Net to extract more semantic information, which costs more memory for skip 

connection. SegNet [36] costs less memory than U-Net, although it uses encoder_ decoder 

architecture without the skip connection. 

Many architectures based on dilated convolutions are proposed for semantic 

segmentation. Dilated convolution supports the exponential enlargement of the receptive 

field with no increase in the number of parameters or the cost of computation [1], [24], [37]. 

Image pyramid [27],[38],[39], and Feature Pyramid [40]-[42] are employed in semantic 

segmentation to aggregate features at different scales. Wherein image pyramid methods 

feed the multi-scaled versions of the input image to the network, and Feature Pyramid takes 

a single-scale image as input and outputs multiple levels feature maps in a fully 

convolutional fashion. Deep learning based on attention mechanisms achieved successes 

widely in computer vision[40],Many researching areas are employed attention mechanisms 

like: machine translation[41], natural language processing(NLP)tasks [43], object 

detection[44], classification[45], robotics[46], Super-resolution imaging [47]. Semantic 

segmentation is one of the research areas that lately benefited from deep learning based on 

attention mechanisms. It appears a promising area in semantic segmentation where it 

improved semantic segmentation performance[9],[48]. Attention mechanisms achieve what 

semantic segmentation needs. It aggregates local and global contextual information[9], [48]. 
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This introductory survey discusses and lists deep learning based on attention 

mechanisms used in semantic segmentation. At first, it will introduce the attention concept 

and its roots in computer vision and then focus on how it is employed in semantic 

segmentation. Some surveys presented attention mechanisms in different research areas, 

like in[43], which discusses the various attention mechanisms employed to handle NLP 

tasks. The survey proposed in[49] provides an introductory summary of attention 

mechanisms in computer vision. As far as we know, no survey expanded discussed this area 

in semantic segmentation, Although there are brief references to it in some other 

surveys[50],[51]. 

II. ATTENTION MECHANISMS 

Attention is the main characteristic of all perceptual and cognitive operations. All 

senses of humans employ the attention concept: for example, in a noisy room, a person can 

listen and understand whose talking with him. In a crowded place, a person can get 

attention selectively to what he needs at that moment and ignore all other details [52]. 

Due to limited resources, attentional mechanisms select and focus on the information 

most relevant for behavior [53]. At every moment, a human is surrounded by hundreds of 

information that cannot be processed simultaneously. So the attention concept is helped 

humans to balance they are processing resources with coming information by choosing the 

most relevant information at that moment [52]. 

Visual attention refers to the attention mechanisms in the visual system. The primate 

visual system utilizes an attention mechanism, where it can think attention as fuse visual 

features into relatively long-stable explanations of objects [54].Psychologists [55], [56] and 

Neurophysiologists [57], [58] have studied visual attention. each of them has studied visual 

attention from his side of science. They are studying a set of cognitive operations that 

decide the relevant and irrelevant information from visual scenes. Guided by these studies, 

computer vision scientists [59] and roboticists [60] have tried to model attention. 

These efforts led to a good integration of the attention with the deep learning models 

[61], so it led to growing interest in deep learning based on attention mechanisms that 

improve results and save computation cost in many research areas in computer vision [49]. 

III. ATTENTION IN SEMANTIC SEGMENTATION 

 Since the revolutionary approach of the fully convolutional network (FCN) in 

semantic segmentation, extensive endeavors based on deep convolutional neural networks 

have been presented [51]. They aim to produce a more accurate feature map that leads to a 

more accurate result. Attention mechanisms in deep learning are a new class of neural 

networks [62] that aims to aggregate the context information and employ this information 

with spatial information from regular convolution layers to get more accurate semantic 

segmentation. 

“Attention Is All You Need” that title is what researchers chose for their research [63], 

which proved its credibility, where attention presented there became a revolutionary jump 

in translation and NLP later [43]. After that, the attention mechanism integrates with deep 

learning in many computer vision problems [44]-[47]. Semantic segmentation used this 

integration as compatible with its requirement and presented many variations of attention 

mechanisms[64]-[67]. It can divide the attention mechanisms in semantic segmentation into 
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two models: self-attention executes in one phase, and dual attention executes within two 

phases. 

A. Self Attention 

Self Attention(SA) aggregates the context of one position from its other dependence 

positions that constitute the input data (e.g., a sentence or an image) no matter what 

distance among them [46], [48], [68]. Although improvements have occurred when using 

Self-attention, it is based on the simple idea presented in [57]. Equation 1 represents this 

idea where Attention is mapping query (Q), key(K), and value(V) to output. 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝐾

√𝑑𝑘
)𝑉                             (1) 

What Q, K, and V represent depends on application applies the self-attention, dk is the 

dimension of K. Non-local block [68] is a merging Equation 1 with non-local means 

algorithm [62], where it is first applying the self-attention in computer vision. The non-local 

block is a flexible structure that can easily combine with any existing deep learning 

architecture see Fig. 2. These simple blocks improved the baseline, but they were costly in 

semantic segmentation tasks because they usually require high-resolution input [69]. Self-

attention is essentially an affinity matrix generated by calculating the interdependence 

between each pixel and other pixels; it is costly in higher resolution input. In general, the 

improvements in the primary form of attention progressed in two directions: capturing 

richer contextual information and decreasing computational complexity. 

Many researchers have proposed various methods To get richer context information 

from self-attention, where context information is a primary key to good semantic 

segmentation performance. Several authors [70]-[74] used self-attention in more than one 

place in the deep network to boost context information from different layers or scales. In 

[66], it was shown that self-attention allows capturing contextual information from co-

occurrent features by applying it over co-occurrent probabilities. In [57], it was shown that 

using self-attention over soft object regions, which is the regions of the same category, 

instead of over the whole scene enhances capturing context information, reducing noisy and 

redundant features. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIG. 2. NON-LOCAL BLOCK, T×H×W IS FEATURE MAPS FOR CHANNELS (1024 OR 512), “⊗” AND “⊕” SYMBOLIZE MATRIX 

MULTIPLICATION AND ELEMENT-WISE SUM. 1×1×1 SYMBOLIZE 1×1×1 CONVOLUTIONS [68]. 
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The drawback of self-attention in semantic segmentation is computation cost and 

memory consumption. Self-attention requires a dense relation matrix that costs computation 

and memory in high-resolution inputs usually required in semantic segmentation problems. 

To decrease the computation cost of self-attention Interlaced sparse self-attention was used 

[65],[75]. It used sparse relation rather than the dense relation in an array of self-attention, 

see Fig. 3. Sparse relation follows the interlacing method to evaluate the relation among 

pixels. [67] Interlaced Sparse with region-wise attention that approved capturing long-range 

contextual category information. 

 

 

FIG. 3. INFORMATION PROPAGATION PATH OF (A) SELF-ATTENTION AND (B) INTERLACED SPARSE SELF-ATTENTION [69]. 

B. Dual Attention 

Dual attention(DA) was presented to improve capturing long-range contextual information 

prepared to enhance semantic segmentation results. Dual attention captures contextual information 

within two parallel operations: position attention and channel attention [9] ,[76], see Fig. 4. position 

attention captures the long-range spatial contexts among positions of the features map. while channel 

attention captures global long-range contexts among channels [9] , [77],[78]. Although the dual 

attention idea of splitting the capturing of context information with two phases improves accuracy, that 

is expensive at computation and memory[9] , [77], [79]. 

 

 

 

FIG. 4. THE DETAILS OF PAM AND CAM [9]. 
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The position attention module (PAM) [9] aggregates the spatial contexts by generating a spatial 

attention matrix that computes how each position impacts another position in the feature map. Some 

research used only position attention and got global context (channel attention goal) from the other 

parts of the deep network. These decrease computational complexity and give more flexibility to the 

dual idea in capturing context information [80],[81]. 

The channel attention focuses on channel interdependencies [9]. It generates a channel map 

representing the degree of interdependencies between channels, filtering channels to get the most 

discriminative channel [81]. In general, it can divide the channel attention method into two different 

structures: first channel attention module (CAM) proposed in [9], second Squeeze-and- Excitation 

module(SE) proposed in [81]. 

Usually, the CAM integrates with the PAM as dual attention in the networks, which are used 

together [9],[77], [78]. CAM evaluates the interdependencies between channel maps, pays more 

attention to the more informative channel, and reduces redundancy to improve semantic segmentation 

[79],[82]. 

SE recalibrates channels to pay attention to channels that have more interdependencies [83]. SE 

block is not expensive in computation or memory. It consists of two phases: squeeze phase uses 

global average pooling operation, excitation phase uses two fully connected layers followed by 

scaling operation [84], see Fig. 3. This advantage makes it a good addition for many network models. 

It was used with U-Net [85]-[87] , used with FCN [88],[89], Used with ResNet  [84]and Used with 

DeepLab [90].SE improved semantic segmentation with a minimal increase in model complexity. 

Table I is summarized the most prominent deep network models based on attention that boosts 

semantic segmentation performance. 

 

 

FIG. 5. A SQUEEZE-AND-EXCITATION MODULE [83]. 
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TABLE I. SUMMARY OF NOTABLE DEEP NETWORK MODELS EMPLOYED ATTENTION MECHANISMS IN 

SEMANTIC SEGMENTATION 

Name of model 
Year of 

publication 

Type of 

attention 
Contribution on Attention 

OCNet[65] 2018 SA Interlaced sparse self- attention(reduced complexity) 

DAF 

Model [74] 
2018 SA 

Deep attentional Features(suppressing noise at shallow layers, add 

more details into features at deep layers. ) 

DANet[9] 2019 DA 
Dual    attention  network(capture context information within two-

phase, increase accuracy) 

CFNet [66] 2019 SA 
Build Aggregated Co-occurrent Feature(capture the context-aware 

information through the co- occurrent features) 

USE-Net [85] 2019 SE Improving UNET model by using SE 

CANet [78] 2020 DA 
Co-attention Network (color and Depth features fused in dual 

attention net) 

NSE- 

Deeplab[90] 2020 SE Improving Deeplab model by using SE 

RSANet[48] 2021 SA Regional Self-Attention(reduces noisy and redundant features) 

HMANet [67] 2021 DA 
Region-wise representations (capture long-range contextual 

category information, reduce computation time) 

PTANet[91] 2021 DA Triple Attention Block (using dual attention with region attention) 

LAANet[92] 2022 DA 
Efficient Asymmetric Bottleneck (proposed  lightweight attention-

guided model) 

AGLNet[93] 
2022 SA 

global attention pooling (identifies a semantic descriptor's implicit 

information) 

ESSNet[94] 
2022 DA 

self-attention distillation scheme( adaptively moves long-range 

context knowledge from teacher to  student networks.) 

 

IV.   CONCLUSIONS 

 

This paper is the first survey in the literature that focuses on deep learning based on 

attention mechanisms in semantic segmentation. The attention mechanisms improve the 

semantic segmentation results by capturing the local and global context information. A 

concise overview of the attention mechanisms is discussed that classifies mechanisms into 

two types: Self Attention and Dual attention.  

Self Attention aggregates the context of one location from its other dependent positions 

that comprise the picture, regardless of the distance between them. It helps get richer 

context information, which improves semantic segmentation results, but it has a 

computational cost. Dual attention captures long-contextual information by splitting 

attention into positions and channeling attention. It improves semantic segmentation results 

but also costs computation and memory. 

 Attention mechanisms are a good and simple addition to many semantic segmentation 

based on deep learning models that do not require a change in the basic model. It is 

integrated with semantic segmentation requirements and boosts performance, dividing basic 

variations of attention mechanisms employed in semantic segmentation. A summary of 

notable deep network models that employed attention mechanisms to boost semantic 

segmentation is shown In Table I. 
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