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 The purpose of this research is to present a new model for the nonlocal reductions of the 

multi-component discrete Manakov system. In particular, the focusing solution is 

determined based on a special condition of the potential function. This study includes: 

solving the spectral problem and finding the eigenfunctions and the scattering data. The 

importance of our study lies in examining the conditions distinguishing the solution called 

a soliton. There are two cases of the potential functions: single and double excitations, if the 

Lax operator has no spectrum neither outside nor inside the unit circle then, there is no 

soliton solution, this happens with a single site case. On the other hand, the two-site case 

gives two soliton solutions. It is shown that the soliton is more likely to occur at the discrete 

eigenvalues outside or inside the unit circle, as the excitations are more than one. Each case 

introduced is supported by numerical simulations.  
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Introduction 

 

In applied mathematics and physics, wave dynamics is one of the most engaging and intriguing problems, where modern 

mathematical physics has been conducted to study solitary wave solutions and the related theory of integrable nonlinear 

evolution equations in one-dimensional physical systems  [1]–[4], which began with the physical observation of the integrable 

Korteweg–de Vries (KdV) equation: 

𝒫𝑡 + 𝒫𝑥𝑥𝑥 − 6𝒫𝑥𝒫(𝑥, 𝑡) = 0,                                                                                                                  (1) 

 

where, 𝒫(𝑥, 𝑡) is the travelling wave solution. Also, the scalar nonlinear Schrödinger equation (NLS)  

is attracted researchers in recent years. Respectively, the local and nonlocal have the following form: 

 

i 𝒫𝑡(𝑥, 𝑡) = −𝒫𝑥𝑥(𝑥, 𝑡) − 2𝜎 |𝒫|2𝒫(𝑥, 𝑡),                                                                                             (2) 

 

i 𝒫𝑡(𝑥, 𝑡) = −𝒫𝑥𝑥(𝑥, 𝑡) − 2𝜎 𝒫∗(−𝑥, 𝑡) 𝒫2(𝑥, 𝑡),                                                                                (3) 

 

where, a complex value 𝒫(𝑥, 𝑡) is a function with two real variables 𝑥 and 𝑡, the symbol |  | called the norm of a function and 

in equation (2) represents 𝒫(𝑥, 𝑡)𝒫∗(𝑥, 𝑡) = |𝒫|2(𝑥, 𝑡). When σ = +1, equation (2 or 3)  corresponds to the focusing case 

solution, while the defocusing case solution is when 𝜎 = −1, and (∗), represents the conjugate of a function. The nonlinear term 

in the NLS equation  𝒩 (𝑥, 𝑡)  = 𝒫(𝑥, 𝑡)𝒫∗ (−𝑥, 𝑡), represents a self-induced potential that satisfies the 𝑃𝑇-symmetry condition 

𝒩 (𝑥, 𝑡)  =  𝒩∗ (−𝑥, 𝑡). Replacing 𝑥 →  −𝑥 and 𝑡 →  −𝑡, the complex conjugate on equation (3) remains invariant [5]. This 
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applies to the field of 𝑃𝑇 symmetry of quantum mechanics, 𝑃𝑇-symmetric of optics, and research activities are currently taking 

place in these areas [6]–[8].  

The discrete NLS (DNLS) equation has two types local and nonlocal are presented in books and papers in the following form 

[9]–[12]: 

i 
𝑑

𝑑𝜏
𝒫𝑛 =  −(𝒫𝑛+1 − 2𝒫𝑛 + 𝒫𝑛−1) − 𝜎|𝒫𝑛|2(𝒫𝑛+1 + 𝒫𝑛−1),                                                    (4) 

 

i 
𝑑

𝑑𝜏
𝒫𝑛 =  −(𝒫𝑛+1 − 2𝒫𝑛 + 𝒫𝑛−1) − 𝜎𝒫𝑛𝒫−𝑛

∗ (𝒫𝑛+1 + 𝒫𝑛−1),                                                  (5) 

 

where, 𝒫𝑛(𝜏) is a complex function in equation (4-5). Here 𝜏 is the variable related to time and 𝑛 ∈ ℕ represents an infinite 

lattice. The nonlocal nonlinear term in equation (5)  𝒫𝑛𝒫−𝑛
∗  is replaced by the local nonlinear term |𝒫𝑛|2 in equation (4) [5]. The 

DNLS equation is also in the group of  𝑃𝑇-symmetric model  [13], where the self-induced potential 𝒩𝑛  =  𝒫𝑛𝒫−𝑛
∗ . According 

to classical optics, this condition guarantees that the equation is invariant under parity and time symmetry [14]. The DNLS 

equation is over a century old  [15]–[20], but it is still actively studied by mathematicians and physicists, where it is a 

fundamental equation of quantum mechanics and is at the heart of several research areas, including nonlinear optics, quantum 

computing, and theoretical physics. It is a nonlinear, dispersive partial differential equation that describes the evolution of a 

wave function in time and space which means that small changes in its parameters can lead to changes in its solutions. A multi-

component system (MCS) of partial differential equations (PDEs) that serves as a generalization of the scalar NLS equation is 

called the Manakov vector NLS system (MVNLS) [21]. This system is a member of a family of integrable systems. It has 

become a prominent model due to its wide range of applications in various fields of physics and mathematics, such as optical 

fiber propagation, plasma physics, and Bose-Einstein condensate [22], [23].  

Solitary wave solution and also called soliton is a type of solution that can be obtained from an integrable system. Soliton is 

experimentally discovered in many fields for instance chemistry, biology, and physics phenomenon: plasma and nonlinear optics 

and many others.  Bright and dark solitons are some types of solutions such as NLS, DNLS, and MVNLS. Numerical and 

analytical methods are used to find the soliton solution, like the variational iteration method and inverse scattering method [24] 

[25]. 

 

In this paper, we obtained another type of nonlocal MCS which is also a member of the family of discrete MVNLS 

(DMVNLS).  

The paper is arranged as follows: Section 2 includes an exposition of the Lax representations, compatibility condition, the 

general class of the DMNKS type equations, and the nonlocal symmetry (involution) case. The direct scattering problem is 

discussed in section 3, which covers the Jost solutions and the scattering matrix. We conclude in Section 3 with two examples, 

corresponding to the nonlocal DMVNLS equation symmetrically and asymmetrically concerning the potential of barriers. 

1. Preliminaries  

a. Lax representation 

It is possible to represent the DMVNLS as a compatibility condition for two linear operators known as the Lax pair 𝐿𝑛 and 

𝑀𝑛, where the first operator 𝐿𝑛, which is also called the spectral problem: 

 

Ψ𝑛+1 = 𝐿𝑛Ψ𝑛 ,    𝐿𝑛 = (𝑍 + 𝑄𝑛),                                                                                                            (6) 

here, 

𝑍 = (
𝓏 0 0
0 𝓏−1 0
0 0 𝓏−1

),       𝑄𝑛 = (

0 𝒫1,𝑛 𝒫2,𝑛

ℛ1,𝑛 0 0

ℛ2,𝑛 0 0
),                                                                  (7) 

 

where 𝒫𝑖,𝑛  and ℛ𝑖,𝑛, 𝑖 = 1,2 are complex value functions. The second operator is 𝑀𝑛 , so the time evolution is the second 

operator of Ψ𝑛,𝑡, where, Ψ𝑛 is eigenfunctions of 𝑀𝑛 and 𝐿𝑛: 

 

𝑀𝑛 = (
𝓏 − 𝓏−1

2
)

2

𝒟 +
𝒟

2
(𝑍−1𝑄𝑛 − 𝑍𝑄𝑛−1) −

1

2
𝒟𝑄𝑛𝑄𝑛−1,                                                              (8) 

where, 
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𝒟 = (
−1 0 0
0 1 0
0 0 1

),                                                                                                                                      (9) 

 

then, the compatibility condition between the two operators 𝐿𝑛 and 𝑀𝑛 is: 

 

𝑀𝑛+1𝐿𝑛 = 𝐿𝑛,𝑡 + 𝐿𝑛 𝑀𝑛                                                                                                                               (10) 

 

2.2 The eigenvalue problem 

The eigenfunctions are defined by the following boundary conditions, when −∞ < 𝑛 < ∞, the functions 𝒫𝑖,𝑛 and ℛ𝑖,𝑛 , tends to 

zero, as a result, equation (6) satisfies: 

 

Ψ𝑛(𝓏)~ (
𝓏𝑛 0 0
0 𝓏−𝑛 0
0 0 𝓏−𝑛

) ,       as     𝑛 → +∞                                                                                        (11) 

 

Φ𝑛(𝓏)~ (
𝓏𝑛 0 0
0 𝓏−𝑛 0
0 0 𝓏−𝑛

) .     as     𝑛 → −∞                                                                                         (12) 

 

The pairs Φ𝑛(𝓏) = (𝜙𝑛
+, 𝝓𝑛

−) and Ψ𝑛(𝓏) = (𝜓𝑛
−, 𝝍𝑛

+) have linear combinations,  

Φ𝑛(𝓏) = Ψ𝑛(𝓏)𝑇(𝓏),   𝑇(𝓏) = (
𝑎+(𝓏) − 𝒃−(𝔃) 

 𝒃+(𝔃) 𝒂−(𝔃)
)      when    |𝓏| = 1                                        (13) 

 

the coefficients of these linear combinations depend on 𝓏 , with the relation holding on |𝓏| = 1 , the coefficients 

𝑎+(𝓏), 1 × 1, 𝒂−(𝔃), 2 × 2, 𝒃+(𝔃), 2 × 1 and 𝒃−(𝔃), 1 × 2 matrices. They called the scattering dates. The first component of 

equation (13) is  

 

(Φ1)𝑛 = 𝑎+(𝓏)(Ψ1)𝑛 + 𝒃+(𝔃)(𝚿𝟐)𝒏,                                                                                                    (14) 

 

here(Φ1)𝑛  is the first component of the Φ𝑛  matrix. Similarly, we can define  (Ψ1)𝑛  and (𝚿𝟐)𝒏 = 2 × 2  matrix. As we 

mentioned before, Φ𝑛~𝑍𝑛 𝑎𝑠 𝑛 approches − ∞, then (Φ1)𝑛~𝓏𝑛(1,0,0)𝑇, where 𝑇 denotes the matrix transpose. For decay, 

(Φ1)𝑛 approaches 0 when 𝑛 approaches − ∞, we require|𝓏| > 1. Also, we can write equation (13) when 𝑛 approches + ∞. 

 

Ψ𝑛 = ((Ψ1)𝑛, (𝚿𝟐)𝒏 )~ (
𝓏𝑛 𝟎
𝟎 𝔃−𝒏),                                                                                                       (15) 

 

where, 𝔃−𝒏 = 2 × 2  matrix.  Hence, if |𝓏| > 1  then (Ψ1)𝑛 approaches + ∞  and (𝚿𝟐)𝒏 approaches  0  ,as 𝑛 → +∞ . Now, 

from equation (13), this leads to (Φ1)𝑛 approaches + ∞ as 𝑛 approaches + ∞ , with one condition, when 𝑎+(𝓏) = 0.  

Now, for 𝑁 ∈ ℕ, let 𝓏1, 𝓏2, … , 𝓏𝑁 be solutions of the following equation  

 

𝑎+(𝓏𝑘) = 0,    𝑘 = 1,2, … , 𝑁                                                                                                                       (16) 

 

such that |𝓏𝑘| > 1 . Then, (Φ1)𝑛(𝓏𝑘) = 𝒃+(𝔃𝒌)(𝚿𝟐)𝒏(𝔃𝒌), 𝑘 = 1,2, … , 𝑁 . From this, it follows that (Φ1)𝑛(𝓏𝑘)  decays 

((Φ1)𝑛(𝓏𝑘) approches  0 𝑎𝑠 𝑛 approches ± ∞) . Then, we can approve that (Φ1)𝑛(𝓏𝑘)  is an eigenfunction with the 

corresponding eigenvalue 𝓏𝑘. Same discussion for 𝒂−(𝔃), but in this case, we can calculate it by taking the det (𝒂−(𝔃)) because 

it is a matrix of 2 × 2. 

 

2. The multi-component discrete system 

In this section, the MC discrete system was presented first for the continuous case (scalar) (17-18). Generalization of equations 

(2-3) are the two-component vector NLS equation of the local and nonlocal scalar MVNLS systems respectively [21], [26]–[28] 
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i 𝒫𝑡(𝑥, 𝑡) =   −𝒫𝑥𝑥(𝑥, 𝑡) − 2𝜎 (|𝒫|2 + |ℛ|2)𝒫(𝑥, 𝑡),                                                                  (17) 

 

i ℛ𝑡(𝑥, 𝑡) =   −ℛ𝑥𝑥(𝑥, 𝑡) − 2𝜎 (|𝒫|2 + |ℛ|2)ℛ(𝑥, 𝑡),                                                                (18) 

 

i 𝒫𝑡(𝑥, 𝑡) =   −𝒫𝑥𝑥(𝑥, 𝑡) − 2𝜎 (𝒫(𝑥, 𝑡)𝒫∗(−𝑥, 𝑡) + ℛ(𝑥, 𝑡)ℛ∗(−𝑥, 𝑡))𝒫(𝑥, 𝑡),                   (19) 

 

i ℛ𝑡(𝑥, 𝑡) =   −ℛ𝑥𝑥(𝑥, 𝑡) − 2𝜎 (𝒫(𝑥, 𝑡)𝒫∗(−𝑥, 𝑡) + ℛ(𝑥, 𝑡)ℛ∗(−𝑥, 𝑡))ℛ(𝑥, 𝑡),                  (20) 

 

Following the generalization of the NLS equations (15-18), the generalization of the local DMVNLS  system is represented in 

[29] which has this formula 

i 
𝑑

𝑑𝜏
𝒫𝑛 = −

1

2
(𝒫𝑛+1 − 2𝒫𝑛 + 𝒫𝑛−1) − 𝜎 (|𝒫𝑛|2 + |ℛ𝑛|2) (

𝒫𝑛+1 + 𝒫𝑛−1

2
),                                       (21) 

 

i 
𝑑

𝑑𝜏
ℛ𝑛 = −

1

2
(ℛ𝑛+1 − 2ℛ𝑛 + ℛ𝑛−1) − 𝜎 (|𝒫𝑛|2 + |ℛ𝑛|2) (

ℛ𝑛+1 + ℛ𝑛−1

2
),                                   (22) 

 

while the form of the nonlocal generalization of the DMVNLS system (DMVNLS) as a coupled two-components equation is 

[25]: 

i 
𝑑

𝑑𝜏
𝒫𝑛 =  −(𝒫𝑛+1 − 2𝒫𝑛 + 𝒫𝑛−1) − 𝜎 (𝒫𝑛(𝜏)𝒫−𝑛

∗ (𝜏) + ℛ𝑛(𝜏)ℛ−𝑛
∗ (𝜏))(𝒫𝑛+1 + 𝒫𝑛−1),                (23) 

 

i 
𝑑

𝑑𝜏
ℛ𝑛 = −(ℛ𝑛+1 − 2ℛ𝑛 + ℛ𝑛−1) − 𝜎 (𝒫𝑛(𝜏)𝒫−𝑛

∗ (𝜏) + ℛ𝑛(𝜏)ℛ−𝑛
∗ (𝜏))(ℛ𝑛+1 + ℛ𝑛−1).             (24) 

 

The solution of the scalar NLS and DMVNLS is studied in [26] and [25] numerically and analytically.  

 

3. The new reduction nonlocal discrete Manakov system (NE-NDMS) 

We obtained another type of nonlocal two-component equation which is also a member of the family of DMVNLS, and we 

estimate the type of solution based on the location of the discrete eigenvalues. The goal of this work is to apply nonlocal reduction 

and to calculate the necessary condition for the creation of soliton solutions. This requires the evaluation of the discrete 

eigenvalues which correspond to the integrable DMVNLS system. We have introduced different cases of the potential functions 

of barriers concerning nonlocal DMVNLS.  

The NE-NDMS comes from setting the relation as ℛ2,𝑛 = −𝜌𝒫1,−𝑛
∗  and ℛ1,𝑛 = −𝜌𝒫2,−𝑛

∗  on the (1-4), so the matrix 𝑄𝑛  in 

equation (7) becomes          

𝑀𝑛 = (

0 𝒫1,𝑛 𝒫2,𝑛

− 𝜌𝒫2,−𝑛
∗ 0 0

− 𝜌𝒫1,−𝑛
∗ 0 0

) 

Therefore, the NE-NDMS has the form 

i
𝑑𝒫1,𝑛

𝑑𝜏
= −

1

2
(𝒫1,𝑛+1 − 2𝒫1,𝑛 + 𝒫1,𝑛−1) − 𝜌(𝒫1,𝑛𝒫2,−𝑛

∗ + 𝒫2,𝑛𝒫1,−𝑛
∗ ) (

𝒫1,𝑛+1 + 𝒫1,𝑛−1

2
),                    (25) 

 

i
𝑑𝒫2,𝑛

𝑑𝜏
= −

1

2
(𝒫2,𝑛+1 − 2𝒫2,𝑛 + 𝒫2,𝑛−1) − 𝜌(𝒫1,𝑛𝒫2,−𝑛

∗ + 𝒫2,𝑛𝒫1,−𝑛
∗ ) (

𝒫2,𝑛+1 + 𝒫2,𝑛−1

2
),                     (26) 

 

Example 1   

The initial condition for the system (6) corresponds to the two-components 𝓟𝟏,𝐧 𝐚𝐧𝐝   𝓟𝟐,𝐧 of the NE-NDMS equations 

(25-26) (single site) is 

𝒫1,𝑛 = {
𝑈0,       𝑛 = −1
0,    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 ,              𝒫2,𝑛 = {
𝑉0 ,         𝑛 = 1
0,    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 , 

Solution: recall the spectral problem equation (6), 

Ψ𝑛+1 = (𝑍 + 𝑀𝑛)Ψ𝑛 ,     
where, 
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𝑀𝑛 = (

0 𝒫1,𝑛 𝒫2,𝑛

− 𝒫2,−𝑛
∗ 0 0

− 𝒫1,−𝑛
∗ 0 0

) ,       𝑍 = (
𝓏 0 0
0 𝓏−1 0
0 0 𝓏−1

), 

𝑀−1 = (
0 𝑈0 0

−𝑉0 0 0
0 0 0

),    𝑀0 = (
0 0 0
0 0 0
0 0 0

),    𝑀1 = (

0 0 𝑉0

0 0 0
−𝑈0 0 0

), 

 

Ψ−1 = (
1 0 0
0 1 0
0 0 1

),   𝑍 = (
𝓏 0 0
0 𝓏−1 0
0 0 𝓏−1

), 

 

when 𝑛 = −1,  Ψ0 = (𝑍 + 𝑀−1)Ψ−1 

Ψ0 = (

𝓏 𝑈0 0

−𝑉0 𝓏−1 0

0 0 𝓏−1

) (
1 0 0
0 1 0
0 0 1

) = (

𝓏 𝑈0 0

−𝑉0 𝓏−1 0

0 0 𝓏−1

),  

 

when 𝑛 = 0,  Ψ1 = (𝑍 + 𝑀0)Ψ0 

Ψ1 = (
𝓏 0 0
0 𝓏−1 0
0 0 𝓏−1

) (

𝓏 𝑈0 0

−𝑉0 𝓏−1 0

0 0 𝓏−1

) = (

𝓏2 𝓏𝑈0 0

−𝓏−1𝑉0 𝓏−2 0

0 0 𝓏−2

) , 

 

when 𝑛 = 1,  Ψ2 = (𝑍 + 𝑀1)Ψ1 

 Ψ2 = (

𝓏 0 𝑉0

0 𝓏−1 0
−𝑈0 0 𝓏−1

) (

𝓏2 𝓏𝑈0 0

−𝓏−1𝑉0 𝓏−2 0

0 0 𝓏−2

) = (

𝓏3 𝓏2𝑈0 𝓏−2𝑉0

−𝓏−2𝑉0 𝓏−3 0

−𝓏2𝑈0 −𝓏𝑈0
2 𝓏−3

). 

 

To find the 𝑎+(𝓏), we need to compare it with equation (14), then 

 

𝑎+(𝓏) = 1 ≠ 0. 
 

Similarly, when we need to calculate the 𝒂−(𝔃) = 1 ≠ 0. For both functions, there are no eigenvalues which mean there is no 

soliton solution. Figure (1) shows that there are no discrete eigenvalues outside nor inside the unit circle |𝓏| = 1, while Figure 

(2) shows that there is no solitary wave solution (soliton solution). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. The plot of the scattering data 𝑎+(𝓏)  and 𝒂−(𝔃). This figure shows, the dots around the unit circle |𝓏| = 1, which 

are continuous eigenvalues. As a result, we cannot predict a soliton solution. 
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(c) 

 

Figure 2. Figure (a) and Figure (b) represent the plot of the |𝒫1,𝑛(𝑡)| and |𝒫2,𝑛(𝑡)|, respectively. The vision of the figures (a) 

and (b), from the front. While the vision in Figure (c) is from the top of Figure (a). 

 

Example 2 

The initial condition for the system (6) corresponds to the two-components 𝓟𝟏,𝐧 𝐚𝐧𝐝   𝓟𝟐,𝐧 of the NE-NDMS equations 

(25-26) (two site excitations) is 

𝒫1,𝑛 = {
𝑘,   𝑛 = −1
𝑙,    𝑛 = 1

,           𝒫2,𝑛 = {
𝑙,   𝑛 = −1
𝑘,    𝑛 = 1

 

Solution: Recall the scattering problem equation (6) 

Ψ𝑛+1 = (𝑍 + 𝑀𝑛)Ψ𝑛 ,              
where,  

𝑀𝑛 = (

0 𝒫1,𝑛 𝒫2,𝑛

− 𝒫2,−𝑛
∗ 0 0

− 𝒫1,−𝑛
∗ 0 0

) ,     𝑍 = (
𝓏 0 0
0 𝓏−1 0
0 0 𝓏−1

), 

𝑀−1 = (
0 𝑘 𝑙

−𝑘 0 0
−𝑙 0 0

),    𝑀0 = (
0 0 0
0 0 0
0 0 0

),    𝑀1 = (
0 𝑙 𝑘

−𝑙 0 0
−𝑘 0 0

),  𝑀2 = (
0 0 0
0 0 0
0 0 0

),        

 

    Ψ−1 = (
1 0 0
0 1 0
0 0 1

), 

 

when 𝑛 = −1,  Ψ0 = (𝑍 + 𝑀−1)Ψ−1, 

Ψ0 = (
𝓏 𝑘 𝑙

−𝑘 𝓏−1 0
−𝑙 0 𝓏−1

) (
1 0 0
0 1 0
0 0 1

) = (
𝓏 𝑘 𝑙

−𝑘 𝓏−1 0
−𝑙 0 𝓏−1

),  

 

when, 𝑛 = 0,  Ψ1 = (𝑍 + 𝑀0)Ψ0, 
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 Ψ1 = (
𝓏 0 0
0 𝓏−1 0
0 0 𝓏−1

) (
𝓏 𝑘 𝑙

−𝑘 𝓏−1 0
−𝑙 0 𝓏−1

) = (
𝓏2 𝓏𝑘 𝓏𝑙

−𝓏−1𝑘 𝓏−2 0
−𝓏−1𝑙 0 𝓏−2

),   

 

when, 𝑛 = 1,  Ψ2 = (𝑍 + 𝑀1)Ψ1, 

Ψ2 = (
𝓏 𝑙 𝑘

−𝑙 𝓏−1 0
−𝑘 0 𝓏−1

) (
𝓏2 𝓏𝑘 𝓏𝑙

−𝓏−1𝑘 𝓏−2 0
−𝓏−1𝑙 0 𝓏−2

),  

 

       = (
𝓏3 − 2𝑙𝑘𝓏−1 𝓏2𝑘 + 𝑙𝓏−2 𝓏2𝑙 + 𝑘𝓏−2

−𝑙𝓏2 − 𝑘𝓏−2 −𝑙𝑘𝓏 + 𝓏−3 −𝑙2𝓏
−𝑘𝓏2 − 𝑙𝓏−2 −𝑘2𝓏 −𝑘𝑙𝓏 + 𝓏−3

),  

 

when 𝑛 = 2,  Ψ3 = (𝑍 + 𝑀2)Ψ2, 

Ψ3 = (
𝓏 0 0
0 𝓏−1 0
0 0 𝓏−1

) (
𝓏3 − 2𝑙𝑘𝓏−1 𝓏2𝑘 + 𝑙𝓏−2 𝓏2𝑙 + 𝑘𝓏−2

−𝑙𝓏−2 − 𝑘𝓏−2 −𝑙𝑘𝓏 + 𝓏−3 −𝑙2𝓏
−𝑘𝓏−2 − 𝑙𝓏−2 −𝑘2𝓏 −𝑘𝑙𝓏 + 𝓏−3

),  

 

Ψ3 = (
𝓏4 − 2𝑙𝑘 𝓏3𝑘 + 𝑙𝓏−1 𝓏3𝑙 + 𝑘𝓏−1

−𝑙𝓏 − 𝑘𝓏−3 −𝑙𝑘 + 𝓏−4 −𝑙2

−𝑘𝓏 − 𝑙𝓏−3 −𝑘2 −𝑘𝑙 + 𝓏−4

).  

 

The transmission coefficient is 𝑎+(𝓏) = 𝓏−4(𝓏4 − 2𝑙𝑘), for 𝓏−1 ≠ 0, such that 𝑎+(𝓏) = 0 if 𝓏4 − 2𝑙𝑘 = 0 by solving 𝑎+(𝓏) 

for 𝓏, we obtain four roots, 𝓏1,2
+ = ±√+√2𝑙𝑘, 𝓏3,4

+ = ±√−√2𝑙𝑘, under the condition |𝓏| > 1, verify 2𝑙𝑘 > 0, from which 

follows that 𝓏1,2,3,4
+   are discrete eigenvalues, and the transmission coefficient is 𝒂−(𝔃) = 𝓏−8(1 − 2𝑙𝑘𝓏4), such that 𝒂−(𝓏) =

0 if 1 − 2𝑙𝑘𝓏4 = 0, then solving for 𝓏, we get four roots, 𝓏1,2
− = ±√+√

1

2𝑙𝑘
, 𝓏3,4

− = ±√−√
1

2𝑙𝑘
 , from which follows that 𝓏1,2,3,4

+   

are discrete eigenvalues.   In this example, when both values of 𝑙 and 𝑘 are < 1, then we do not have discrete eigenvalues as in 

example 1. So, we do not have soliton solution. However, we have two soliton solutions when either the values of 𝑙 and 𝑘 > 1 

or at least one of them. The following figures display all these cases. 
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                (a) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

        (b) 

Figure 3. Figure (a) and figure (b) shows the discrete eigenvalues outside and inside the unit circle. 
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(c) 

 

Figure 4. Figures (a) and (b) represent the plot of the |𝒫1,𝑛(𝑡)| and |𝒫2,𝑛(𝑡)|. These figures show equations (25-26) have 

breather soliton solutions. Figures (a) and (b), are the vision from the front but Figure (c) is from the top. 

 

4. Discussion 

The discrete eigenvalues of equation (4) are {±𝓏, ±
1

𝓏∗}, this was set in  Ablowitz and Musslimani’s book [20]. The local MS 

equation (21-22) in [29],  shows also some symmetry, but this depends on the number of site excitation in each component. In 

this paper, we present the new nonlocal MS equation (25-26), we obtained 4𝒩 eigenvalues: {𝓏, −𝓏, 𝓏∗, −𝓏∗}.  

In example 1, the excitation of a single site in each component is given as an initial condition. After the calculation, the scattering 

data 𝑎+(𝓏) = 1 and 𝒂−(𝔃) = 1, in this case, we cannot find a 𝓏 which makes the 𝑎+(𝓏) and 𝒂−(𝔃), equals zero. On figure 1 

the plot of the scattering data 𝑎+(𝓏)  and 𝒂−(𝔃). This figure shows, for both cases, when 𝑈0 and 𝑉0 > 1 or < 1,  the 𝑎+(𝓏) and 

𝒂−(𝔃) have no zeroes outside or inside the unit circle. The dots around the unit circle |𝓏| = 1 are continuous eigenvalues. As a 

result, we cannot predict a soliton solution. Figures (2) (a) and (b) represent the plot of the |𝒫1,𝑛(𝑡)| and |𝒫2,𝑛(𝑡)|, respectively. 

These figures show that the integrable discrete lattice has no solitary wave when the values for both  𝑈0 = 1.5 and 𝑉0 = 2 are 

> 1 or 𝑈0 = 0.5 and 𝑉0 = 0.2 are < 1 and even when one of the 𝑈0, 𝑉0 is > 1. 
In example 2, The discrete eigenvalues are clear in Figure (a). When one of the values of  𝑘 = 2 >  1 and 𝑙 = 0.5 < 1 , we have 

4 discrete eigenvalues for 𝑎+(𝓏): 1.189207  , −1.189207  , 1.189207I, −1.189207I  and 4 discrete eigenvalues for 

𝒂−(𝔃): 0.84089, −0.84089, 0.84089I, −0.84089I. Therefore, two soliton solutions have been found. Figure (b) shows, when 

both of the values of  𝑘 = 2 and 𝑙 = 2 > 1, we have also 4 discrete eigenvalues but different than in Figure (a) where, the 

discrete eigenvalues for 𝑎+(𝓏) are: 1.681793, −1.681793  , 1.681793I, −1.681793I  and 4 discrete eigenvalues for 

𝒂−(𝔃): 0.594603, −0.594603, 0.594603I, −0.594603I . Figures (4) (a) and (b) represent the plot of the 

|𝒫1,𝑛(𝑡)| and |𝒫2,𝑛(𝑡)|. These figures show that the integrable discrete lattices (25-26) have two solitary waves, that is mean 

two soliton solutions (breath soliton).  

 

5. Conclusion  

In this paper, it is worth saying that the new nonlocal MS which corresponds to the eigenvalue problem (6), show a symmetry 

case in the potential functions. In the examples, the results indicate that if 𝓏 is the eigenvalue of (6), then −𝓏 is also the 
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eigenvalue of (6). In addition, 𝓏∗ is also eigenvalue because of 𝑎±∗
(𝓏∗) = 𝑎±(𝓏) = 0. Taking into account that the symmetry 

case allows the system to have -𝓏∗ as an eigenvalue too. So, we have 4𝑁 eigenvalues for both outside and inside the unit circle: 

{𝓏, −𝓏, 𝓏∗, −𝓏∗}, which gives us N soliton-type solutions. It is shown that the type of symmetry in the examples allows us to 

study the roots of the equations (25-26). 

The conditions on a special type of initial condition represented in the form of a square-barrier to obtain the soliton type of the 

DMVNLS have been studied. In other words, the scattering matrix calculated the roots for each of 𝑎+(𝓏) and 𝒂−(𝔃) when |𝓏| >
1 and  |𝓏| < 1, respectively, to find the condition which generates the soliton-type solution. This work used the iteration method 

on the equation Ψ𝑛+1 = (𝑍 + 𝑀𝑛)Ψ𝑛, to calculate the zeros for the scattering data 𝑎+(𝓏) and 𝒂−(𝔃) with |𝓏| ≠ 1. 
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 تحديد الشروط الأساسية للحل من نوع سوليتون للنظام الجديد من النوع المتقطع غير المحلي 

 

 2جاسم محمد، امل *1دينا عمار صالح

 1*، 2  قسم الرياضيات، كلية التربية للعلوم الصرفة، الموصل، العراق 

 

 مستخلص: ال
 

على وجه الخصوص ، يتم تحديد حل التركيز بناءً  .الغرض من هذا البحث هو تقديم نموذج جديد للتخفيضات غير المحلية لنظام منكوف المنفصل متعدد المكونات

تكمن أهمية دراستنا في فحص الشروط التي تميز  .تتضمن هذه الدراسة: حل المسألة الطيفية وإيجاد الدوال الذاتية وبيانات التشتت .المحتملةعلى حالة خاصة للدالة 

 داخلها ، فلا يوجد حل هناك حالتان من دالتي القوى: الإثارة الفردية والمزدوجة ، إذا لم يكن لدى لمؤثر لاكس طيف خارج دائرة الوحدة ولا الحل المسمى سوليتون.

يتضح أن السوليتون يحدث على  .من ناحية أخرى ، يعطي الحاجز المربع ذو الموقعين حلين منفصلين .، وهذا يحدث مع حالة الحاجز الواحد من نوع سوليتون

 . كل حالة يتم تقديمها مدعومة بمحاكاة عددية .واحدةقيم الذاتية المتقطعة خارج دائرة الوحدة أو داخلها ، حيث تكون الحواجز أكثر من الالأرجح عند 

 

 


