A Review of Extended Spectrum β-Lactamases: Definition and Types | ||
Kirkuk University Journal-Scientific Studies | ||
Article 6, Volume 18, Issue 1, March 2023, Pages 44-61 PDF (289.18 K) | ||
Document Type: Review Paper | ||
DOI: 10.32894/kujss.2023.137295.1090 | ||
Authors | ||
Mahmood Zeki Al-Hasso* 1; Zahraa Khairialdeen Mohialdeen2 | ||
1Medical Physics Dept., College of Science, Mosul University, Mosul, Iraq | ||
2Biology Department, College of Science, Mosul University, Mosul, Iraq | ||
Abstract | ||
Extended-spectrum β-lactamases (ESBLs) are defined as those bacterial enzymes which are capable to hydrolyze most beta-lactam antibiotics, including penicillins, cephalosporins, and the monobactam aztreonam and especially expanded spectrum cephalosporins such as ceftriaxone, cefotaxime, ceftazidime. Worldwide, ESBLs are considered to be a serious threat, especially in hospitalized and immunocompromised patients. There is a growing prevalence and dissemination of ESBLs in bacterial isolates all over the world. Individuals at high risk are those exposed to bacterial species harboring ESBLs as they result in treatment failure in many cases. Thus, there is an urgent need to detect ESBLs producers with the formulation of strategic initiatives that participate in controlling their prevalence and dissemination. The current review aims to illustrate the importance of ESBLs and give a simple definition of their major types emphasizing on their substrate profiles and characteristics. | ||
Keywords | ||
Extended-Spectrum β-lactamase; Review; Antimicrobial resistance | ||
References | ||
[1] J.M. Willey, K.M. Sandman, , and D.H. Wood. Prescott’s Microbiology. McGraw Hill Education, New York, 11th edition, 2020. [2] M.T. Madigan, K.S. Bender, D.H. Buckley, W.M. Sattley, and D.A. Stahl. Brock Biology of Microorganisms.Pearson Education Ltd., New York, 15th edition, 2019.
[3] C. J. Murray, K. S. Ikuta, F. Sharara, L. Swetschinski, G. R. Aguilar, A. Gray. . . , and M. Naghavi. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. The Lancet, 399(10325): 629–655, 2022, doi:10.1016/S0140-6736(21)02724-0.
[4] M. Gashaw, M. Berhane, S. Bekele, G. Kibru, L. Teshager, Y. Yilma, , and S. Ali. Emergence of high drug resistant bacterial isolates from patients with health are associated infections at jimma university medical center: a cross sectional study. Antimicrobial Resistance Infection Control, 7(1): 1–8, 2018, doi:10.1186/s13756018-0431-0. [5] M. Osman, H. Al Mir, R. Rafei, F. Dabboussi, J. Y. Madec, M. Haenni, , and M. Hamze. Epi- demiology of antimicrobial resistance in Lebanese extra-hospital settings: An overview. Journal of Global Antimicrobial Resistance, 17: 123–129, 2019, doi:10.1016/j.jgar.2018.11.019. [6] N. Tanko, R. O. Bolaji, A. T. Olayinka, and B. O. Olayinka. A systematic review on the prevalence of extended-spectrum β -lactamase-producing gram-negative bacteria in nigeria. Journal of Global Antimicrobial Resistance, 22: 488–496, 2020, doi:10.1016/j.jgar.2020.04.010. [7] P. A. Bradford. Extended-spectrum β -lactamases in the 21st century: characterization, epidemiology, and detection of this important resistance threat. Clinical Microbiology Review, 14(4): 933–951, 2001, doi:10.1128/CMR.14.4.933–951.2001. [8] D. M. Livermore. β -lactamases in laboratory and clinical resistance. Clinical Microbiology Review, 8(4): 557–584, 1995.
[9] K. Bush and G. A. Jacoby. Updated functional classification of β -lactamases. Antimicrobial Agents and Chemotherapy, 54(3): 969–976, 2010, doi:10.1128/AAC.01009-09. [10] E. P. Abraham and E. Chain. An enzyme from bacteria able to destroy penicillin. Nature, 146(3713)837-837, 1940.
[11] J. M. Ghuysen. Serine β -lactamases and penicillin binding proteins. Annual Review Microbiology, 45: 37–67, 1991.
[12] N. Datta and P. Kontomichalou. Penicillinase synthesis controlled by infectious r factors in enterobacteriaceae. Nature, 208: 239–4, 1965, doi:10.1038/208239a0.
[13] A. A. Mederiros. β -lactamases. British Medical Bulletin, 40(1): 18–27, 1984.
[14] M. Castanheira, P. J. Simner, and P. A. Bradford. Extended-spectrum β -lactamases: An update on their characteristics, epidemiology and detection. JAC-antimicrobial Resistance, 3(3): dlab092, 2021, doi:10.1093/jacamr/dlab092. [15] C. de Champs, D. Sirot, C. Chanal, M. C. Poupart, M. P. Dumas, and J. Sirot. Concomitant issemination of three extended-spectrum β -lactamases among different Enterobacteriaceae isolated in a french hospital. Journal of Antimicrobial Chemotherapy, 27: 441–457, 1991.
[16] C. Kliebe, B. A. Nies, J. F. Meyer, R. M. Tolxdorff Neutzling, and B. Wiedemann. Evolution of plasmid coded resistance to broad-spectrum cephalosporins. Antimicrobial Agents and Chemotherapy, 28(2): 302–307,1985.
[17] Mahmood Z. Al-Hasso, S. G. Gergees, and Z. K. Mohialdeen. Molecular characterization of ESBLs and Amp C β -lactamases in bacteria isolated from currency notes circulating in Mosul city, Iraq. Karbala International Journal of Modern Sciences, 8(3): 543–553, 2022, doi:10.33640/2405-609X.3239.
[18] K. Bush, G. A. Jacoby, and A. A. Medeiros. A functional classification scheme for β -lactamases and its correlation with molecular structure. ProbStat Forum, 39(6): 1211–1233, 1995.
[19] B. G. Hall and M. Barlow. Revised ambler classification of β -lactamases. Journal of Antimicrobial Chemotherapy, 55(6): 1050–1051, 2005, doi:10.1093/jac/dki155.
[20] J. Walther-Rasmussen and N. Høiby. Cefotaximases. (CTX-M-ases), an expanding family of extended spectrum β -lactamases. Canadian Journal of Microbiology, 50(3): 137–165, 2004, doi:10.1139/w03-111.
[21] R. Bonnet. Growing group of extended-spectrum β -lactamases: the CTX-M enzymes. Antimicro- bial Agents and Chemotherapy, 48(1): 1–14, 2004, doi:10.1128/AAC.48.1.1–14.2004. [22] Clinical and Laboratory Standards Institute CLSI. Performance Standards for Antimicrobial Susceptibility Testing, CLSI document M100, M02, M07, and M11, in: Thirty first informational supplement update. Clinical and Laboratory Standards Institute, Wayne, PA, 2021, 33th edition, 2021.
[23] G. A. Jacoby and A. A. Medeiros. More extended spectrum β -lactamases. Antimicrobial Agents and Chemotherapy, 35(9): 1697–1704, 1991. [24] L. Martinez-Martinez, S. Hern ́andez-All ́es, S. Albert ́ı, J. M. Tom ́as, V. J. Benedi, and G. A. Jacoby. In vivo selection of porin-deficient mutants of klebsiella pneumoniae with increased resistance to cefoxitin and expanded spectrum-cephalosporins. Antimicrobial Agents and Chemotherapy, 40(2): 342–348, 1996.
[25] B. Pangon. In vivo selection of a cephamycin-resistant, porin-deficient mutant of klebsiella pneumoniae producing a tem-3 β -lactamase. Journal of Infectious Diseases, 159: 1005–1006, 1989.
[26] A. C. Vatopoulos, A. Philippon, L. S. Tzouvelekis, Z. Komninou, and N. J. Legakis. Prevalence of a transferable shv-5 type β -lactamase in clinical isolates of Klebsiella pneumoniae and escherichia coli in greece. Journal of Antimicrobial Chemotherapy, 26(5): 635–648, 1990, doi:10.1093/jac/26.5.635.
[27] B. G. Hall and M. Barlow. Structure-based phylogenies of the serine -lactamases. Journal of Molecular Evolution, 57(3): 255–260, 2003.
[28] M. Barth ́el ́emy, J. Peduzzi, and R. Labia. Distinction between the primary structures of TEM-1 and TEM- 2 β -lactamases. Annales de L’institut Pasteur. Microbiologie, 136(3): 311–321, 1985, doi:10.1016/s07692609(85)80093-4.
[29] W. Sougakoff, S. Goussard, , and P. Courvalin. The TEM-3 β -lactamase, which hydrolyzes broad-spectrum cephalosporins, is derived from the TEM-2 penicillinase by two amino acid substitutions. FEMS Microbiology letters, 56(3): 343–348, 1988.
[30] C. Brun-Buisson, A. Philippon, M. Ansquer, P. Legrand, F. Montravers, and J. Duval. Transferable enzymatic resistance to third-generation cephalosporins during nosocomial outbreak of multi-resistant klebsiella pneumoniae. The Lancet, 330(8554): 302–306, 1987, doi:10.1016/S0140-6736(87)90891-9.
[31] A. Piccirilli, M. Perilli, G. Amicosante, C. Tascini V. Conte, G. M. Rossolini, and T. Giani. TEM-184, a novel TEM-derived extended-spectrum β -lactamase with enhanced activity against aztreonam. Antimicrobial Agents and Chemotherapy, 62(9): e00688–18, 2018, doi:10.1128/AAC.00688-18.
[32] C. Zeil, M. Widmann, S. Fademrecht, C. Vogel, and J. Pleiss. Network analysis of sequence-function relationships and exploration of sequence space of tem β -lactamases. Antimicrobial Agents and Chemotherapy, 60(5): 2709–2717, 2016, doi:10.1128/AAC.02930-15.
[33] J. Wiener, J. P. Quinn, P. A. Bradford, R. V. Goering, C. Nathan, K. Bush, and R. A. Weinstein. Multiple antibiotic–resistant klebsiella and Escherichia coli in nursing homes. The Journal of the American Medical Association, 281(6): 517–523, 1999.
[34] M.J. Soilleux, A.M. Morand, and G.J. Arlet. Survey of klebsiella pneumoniae producing extended-spectrum β -lactamases: prevalence of TEM-3 and first identifycation of TEM-26 in france. Antimicrobial Agents and Chemotherapy, 40: 1027–1029, 1996.
[35] C.Urban, N. Marino, N. Rahman, A. M. Queenan, D. Montenegro, K. Bush, and J. J. Rahal. Detection of multiresistant ceftazidime-susceptible Klebsiella pneumoniae isolates lacking tem-26 after class restriction of cephalosporins. Microbial Drug Resistance, 6(4):297–303, 2000, doi:10.1089/mdr.2000.6.297.
[36] K. Shannon, P. Stapleton, X. Xiang, A. Johnson, H. Beattie, F. El Bakri, and G. French. Extended-spectrum β -lactamase-producing Klebsiella pneumoniae strains causing nosocomial outbreaks of infection in the united kingdom. Journal of Clinical Microbiology, 36(10):3105–3110, 1998.
[37] J. D. D. Pitout, K. S. Thomson, N. D. Hanson, A. F. Ehrhardt, E. S. Moland, and C. C. Sanders. β -lactamases responsible for resistance to expanded-spectrum cephalosporins in Klebsiella pneumoniae, escherichia coli, and Proteus mirabilis isolates recovered in South Africa. Antimicrobial Agents and Chemotherapy, 42(6): 1350–1354, 1998. [38] K. M. Kazmierczak, B. L. de Jonge, G. G. Stone, and D. F. Sahm. Longitudinal analysis of ESBL and carbapenemase carriage among enterobacterales and pseudomonas aeruginosa isolates collected in Europe as part of the international network for optimal resistance monitoring (INFORM) global surveillance programme, 2013–17. Journal of Antimicrobial Chemotherapy, 75(5): 1165–1173, 2020, doi:10.1093/jac/dkz571.
[39] R. Bonnet, C. De Champs, D. Sirot, C. Chanal, R. Labia,, and J. Sirot. Diversity of TEM mutants in Proteus mirabilis. Antimicrobial Agents and Chemotherapy, 43(11): 2671–2677, 1999.
[40] T. Palzkill, K. S. Thomson, C. C. Sanders, E. S. Moland, W. Huang, , and T. W. Milligan. New variant of TEM-10 β -lactamase gene produced by a clinical isolate of proteus mirabilis. Antimicrobial Agents and Chemotherapy, 39(5): 1199–1200, 1995.
[41] M. Perilli, B. Segatore, M. Rosaria De Massis, M. L. Riccio, C. Bianchi, A. Zollo, and G. Amicosante. TEM-72, a new extended-spectrum β -lactamase detected in proteus mirabilis and Morganella morganii in Italy. Antimicrobial Agents and Chemotherapy, 44(9): 2537–2539, 2000. [42] F. Tessier, C. Arpin, A. Allery, and C. Quentin. Molecular characterization of a TEM-21 β -lactamase in a clinical isolate of Morganella morganii. Antimicrobial Agents and Chemotherapy, 42(8): 2125–2127, 1998.
[43] P. Mugnier, P. Dubrous, I. Casin, G. Arlet, and E. Collatz. A TEM-derived extended-spectrum β -lactamase in pseudomonas aeruginosa. Antimicrobial Agents and Chemotherapy, 40(11): 2488–2493, 1996.
[44] P. Nordmann and M. Guibert. Extended-spectrum β -lactamases in pseudomonas aeruginosa. Journal of Antimicrobial Chemotherapy, 42(2): 128–131, 1998.
[45] A. Rosenau, B. Cattier, N. Gousset, P. Harriau, A. Philippon, and R. Quentin. Capnocytophaga ochracea: characterization of a plasmid-encoded extended-spectrum TEM-17 β -lactamase in the phylum Flavobacter Bacteroides. Antimicrobial Agents and Chemotherapy, 44(3): 760–762, 2000.
[46] S. Ghafourian, N. Sadeghifard, S. Soheili, and Z. Sekawi. Extended spectrum β -lactamases: definition, classification and epidemiology. Current Issues in Molecular Bi- ology, 17(1): 11–22, 2015, doi:10.21775/cimb.017.011. [47] A. Huletsky, J. R. Knox, and R. C. Levesque. Role of Ser-238 and Lys-240 in the hydrolysis of third-generation cephalosporins by SHV-type β -lactamases probed by site-directed mutagenesis and three-dimensional modeling. Journal of Biological Chemistry, 268(5): 3690–3697, 1993.
[48] S. Neubauer, S. Madzgalla, M. Marquet, A. Klabunde, B. B ̈uttner, A. G ̈ohring, and O. Makarewicz. A genotypephenotype correlation study of SHV β -lactamases offers new insight into SHV resistance profiles. Antimicrobial Agents and Chemotherapy, 64(7): e02293–19, 2020, doi:10.1128/AAC.02293-19. [49] L. S. Tzouvelekis and R. A. Bonomo. SHV-type betalactamases. Current Pharmaceutical Design, 5(11): 847–864, 1999.
[50] G. A. Jacoby. Extended-spectrum β -lactamases and other enzymes providing resistance to oxyimino-β -lactams. Infectious Disease Clinics of North America, 11(4): 875–887, 1997.
[51] G.A. Jacoby and L. Sutton. Properties of plasmids responsible for production of extended-spectrum β -lactamases. Antimicrobial Agents and Chemotherapy, 35(1): 164–169, 1991.
[52] E. E. Prinarakis, V. Miriagou, E. Tzelepi, M. Gazouli, and L. S. Tzouvelekis. Emergence of an inhibitorresistant β -lactamase (SHV-10) derived from an SHV-5 variant. Antimicrobial Agents and Chemotherapy, 41(4):838–840, 1997.
[53] M. Perilli, E. Dell’Amico, B. Segatore, M. R. De Massis, C. Bianchi, F. Luzzaro, and G. Amicosante. Molecular characterization of extended-spectrum β -lactamases produced by nosocomial isolates of Enterobacteriaceae from an italian nationwide survey. Journal of Clinical Microbiology, 40(2): 611–614, 2002.
[54] J. J. Yan, S. M. Wu, S. H. Tsai, J. J. Wu, and I. J. Su. Prevalence of SHV-12 among clinical isolates of Klebsiella pneumoniae producing extended-spectrum β -lactamases and identification of a novel Amp C enzyme (CMY-8) in southern taiwan. Antimicrobial Agents and Chemotherapy, 44(6): 1438–1442, 2000.
[55] P. A. Bradford, C. Urban, A. Jaiswal, N. Mariano, B. A. Rasmussen, S. J. Projan, and K. Bush. SHV-7, a novel cefotaxime-hydrolyzing β -lactamase, identified in escherichia coli isolates from hospitalized nursing home patients. Antimicrobial Agents and Chemotherapy, 39(4):899–905, 1995.
[56] Z. El Harrif-Heraud, C. Arpin, S. Benliman, and C. Quentin. Molecular epidemiology of a nosocomial outbreak due to SHV-4-producing strains of citrobacter diversus. Journal of Clinical Microbiology, 35(10): 2561–2567, 1997.
[57] T. Naas, L. Philippon, L. Poirel, E. Ronco, and P. Nordmann. An SHV-derived extended-spectrum β -lactamase in pseudomonas aeruginosa. Antimicrobial Agents and Chemotherapy, 43(5): 1281–1284, 1999.
[58] J. K. Rasheed, C. Jay, B. Metchock, F. Berkowitz, L. Weigel, J. Crellin, and F. C. Tenover. Evolution of extended-spectrum β -lactam resistance (SHV-8) in a strain of escherichia coli during multiple episodes of bacteremia. Antimicrobial Agents and Chemotherapy, 41(3): 647–653, 1997.
[59] Z. M. Huang, P. H. Mao, Y. Chen, L. Wu, and J. Wu. Study on the molecular epidemiology of SHV type β -lactamase-encoding genes of multiple-drug-resistant Acinetobacter baumannii. Zhonghua liuxingbingxue zazhi, 25(5): 425–427, 2004.
[60] L. Poirel, E. Lebessi, M. Castro, C. F `evre, M. Foustoukou, and P. Nordmann. Nosocomial outbreak of extended-spectrum β -lactamase SHV-5-producing isolates of pseudomonas aeruginosa in athens, greece.Antimicrobial Agents and Chemotherapy, 48(6): 2277–2279, 2004, doi:10.1128/AAC.48.6.22772279.2004.
[61] T. M. Coque, F. Baquero, and R. Canton. Increasing prevalence of ESBL-producing Enterobacteriaceae in Europe. Eurosurveillance, 13(47): 19044–54, 2008.
[62] R. E. Mendes, M. Castanheira, L. N. Woosley, G. G. Stone, P. A. Bradford, and R. K. Flamm. Characterization of β -lactamase content of ceftazidime-resistant pathogens recovered during the pathogen-directed phase 3 reprise trial for ceftazidime-avibactam: correlation of efficacy against β -lactamase producers. Antimicrobial Agents and Chemotherapy, 63(6): e02655–18, 2019, doi:10.1128/AAC.02655-18. [63] L. S. Tzouvelekis, E. Tzelepi, P. T. Tassios, and N. J. Legakis. CTX-M-type β -lactamases: an emerging group of extended-spectrum enzymes. International Journal of Antimicrobial Agents, 14(2): 137–142, 2000.
[64] M. Radice, P. Power, J. Di Conza, and G. Gutkind. Early dissemination of CTX-M-derived enzymes in South America. Antimicrobial Agents and Chemotherapy, 46(2): 602–604, 2002.
[65] A. Bauernfeind, S. Schweighart, and H. Grimm. A new plasmidic cefotaximase in a clinical isolate of escherichia coli. Infection, 18(5): 294–298, 1990.
[66] R. C. Picao, L. Poirel, A. C. Gales, and P. Nordmann. Diversity of β -lactamases produced by ceftazidime-resistant pseudomonas aeruginosa isolates causing bloodstream infections in brazil. Antimicrobial Agents and Chemotherapy, 53(5): 3908–3913, 2009, doi:10.1128/AAC.00453-09.
[67] G. Celenza, C. Pellegrini, M. Caccamo, B. Segatore, G. Amicosante, and M. Perilli. Spread of blaCTX-M type and blaper-2 β -lactamase genes in clinical isolates from bolivian hospitals. Journal of Antimicrobial Chemotherapy, 57(5): 975–978, 2006, doi:10.1093/jac/dkl055. [68] J. Walther-Rasmussen and N. Høiby. Cefotaximases (CTX-M-ases), an expanding family of extended-spectrum β -lactamases. Canadian Journal of Microbiology, 50(3): 137–165, 2004, doi:10.1139/w03-111.
[69] C. M. Liu, M. Stegger, M. Aziz, T. J. Johnson, K. Waits, L. Nordstrom, and L. B. Price. Escherichia coli ST131-H 22 as a foodborne uropathogen. MBio, Peer-reviewed journal, 9(4): e00470–18, 2018, doi:10.1128/mBio.00470-18. [70] P. A. Bradford, Y. Yang, D. Sahm, I. Grope, D. Gardovska, and G. Storch. CTX-M-5, a novel cefotaxime-hydrolyzing β -lactamase from an outbreak of salmonella typhimurium in Latvia. Antimicrobial Agents and Chemotherapy, 42(8): 1980–1984, 1998.
[71] M. Gazouli, N. J. Legakis, and L. S. Tzouvelekis. Effect of substitution of asn for arg-276 in the cefotaxime-hydrolyzing class a β -lactamase CTX-M-4. FEMS Microbiology Letters, 169(2): 289–293, 1998. [72] L. Ma, Y. Ishii, M. Ishiguro, H. Matsuzawa, and K. Yamaguchi. Cloning and sequencing of the gene encoding toho-2, a class a β -lactamase preferentially inhibited by tazobactam. Antimicrobial Agents and Chemotherapy, 42(5): 1181–1186, 1998. [73] M. Sabat ́e, R. Tarrago, F. Navarro, E. Mir ́o, C. Verg ́es, J. Barb ́e, and G. Prats. Cloning and sequence of the gene encoding a novel cefotaxime-hydrolyzing β -lactamase (CTX-M-9) from escherichia coli in Spain. Antimicrobial Agents and Chemotherapy, 44(7): 1970–1973, 2000. [74] G. Peirano, T. Lynch, Y. Matsumara, D. Nobrega, T. J. Finn, R. DeVinney, and J. D. Pitout. Trends in population dynamics of escherichia coli sequence type 131, calgary, alberta, canada, 2006–2016. Emerging Infectious Diseases, 26(12): 2907–2915, 2020, doi:10.1128/mBio.00470-18. [75] C. Colmenarejo, M. Hern ́andez-Garc ́ıa, J. R. Mu ̃nozRodr ́ıguez, N. Huertas, F. J. Navarro, A. B. Mateo, and R. Del Campo. Prevalence and risks factors associated with ESBL-producing faecal carriage in a single long-term-care facility in Spain: emergence of CTX-M-24 and CTX-M-27-producing escherichia coli ST131-H 30R. Journal of Antimicrobial Chemotherapy, 75(9): 2480–2484, 2020, doi:10.1093/jac/dkaa219. [76] H. Ghosh, S. Doijad, L. Falgenhauer, M. Fritzenwanker, C. Imirzalioglu, and T. Chakraborty. blaCTX-M-27 encoding escherichia coli sequence type 131 lineage C1-M27 clone in clinical isolates, germany. Emerging Infectious Diseases, 75(9): 1754–1756, 2017, doi:10.3201/eid2310.170938. [77] Y. Matsumura, J. D. Pitout, R. Gomi, T. Matsuda, T. Noguchi, M. Yamamoto, and S. Ichiyama. Global escherichia coli sequence type 131 clade with blaCTX-M-27 gene. Emerging Infectious Diseases, 22(11): 1900–1907, 2016, doi:10.3201/eid2211.160519. [78] S. C. Flament-Simon, V. Garc ́ıa, M. Duprilot, N. Mayer, M. P. Alonso, I. Garc ́ıa-Meni ̃no, , and J. Blanco. High prevalence of st131 subclades C2-H30Rx and C1-M27 among extended-spectrum β -lactamase-producing Escherichia coli causing human extraintestinal infections in patients from two hospitals of Spain and France during 2015. Frontiers Cellular and Infection Microbiology, 10(125): 1–9, 2020, doi:10.3389/fcimb.2020.00125. [79] A. Oliver, J. C. Perez-Dıaz, T. M. Coque, F. Baquero, and R. Canton. Nucleotide sequence and characterization of a novel cefotaxime-hydrolyzing β -lactamase (CTX-M-10) isolated in Spain. Antimicrobial Agents and Chemotherapy, 45(2): 616–620, 2001, doi:10.1128/AAC.45.2.616–620.2001. [80] C. Humeniuk, G. Arlet, V. Gautier, P. Grimont, R. Labia, and A. Philippon. β -lactamases of kluyvera ascorbata, probable progenitors of some plasmid-encoded CTX-M types. Antimicrobial Agents and Chemotherapy, 46(9): 3045–3049, 2002, doi:10.1128/AAC.46.9.3045–3049.2002. [81] J. W. Decousser, L. Poirel, and P. Nordmann. Characterization of a chromosomally encoded extended-spectrum class a β -lactamase from kluyvera cryocrescens. Antimicrobial Agents and Chemotherapy, 45(12): 3595–3598, 2001, doi:10.1128/AAC.46.9.3045–3049.2002. [82] L. Poirel, P. Kampfer, and P. Nordmann. Chromosome-encoded ambler class a β -lactamase of kluyvera georgiana, a probable progenitor of a subgroup of CTX-M extended-spectrum β -lactamases. Antimicrobial Agents and Chemotherapy, 46(12): 4038–4040, 2002, doi:10.1128/AAC.46.12.4038–4040.2002. [83] R. A. Bonomo, S. A. Rudin, and D. M. Shlaes. Tazobactam is a potent inactivator of selected inhibitor-resistant class a β -lactamases. FEMS Microbiology Letters, 148(1): 59–62, 1997. [84] S. Vimont, L. Poirel, T. Naas, and P. Nordmann. Identification of a chromosome-borne expanded-spectrum class a β -lactamase from Erwinia persicina. Antimicrobial Agents and Chemotherapy, 46(11): 3401–3405, 2002, doi:10.1128/AAC.46.11.3401–3405.200. [85] S. Bellais, L. Poirel, N. Fortineau, J. W. Decousser, and P. Nordmann. Biochemical-genetic characterization of the chromosomally encoded extended-spectrum class a β -lactamase from rahnella aquatilis. Antimicrobial Agents and Chemotherapy, 45(10): 2965–2968, 2001, doi:10.1128/AAC.45.10.2965–2968.2001. [86] SL. Poirel, M. Gniadkowski, and P. Nordmann. Biochemical analysis of the ceftazidime-hydrolysing extended-spectrum β -lactamase CTX-M-15 and of its structurally related β -lactamase CTX-M-3. Journal of Antimicrobial Chemotherapy, 50(6): 1031–1034, 2002, doi:10.1093/jac/dkf240. [87] Y. Chen, J. Delmas, J. Sirot, B. Shoichet, and R. Bonnet. Atomic resolution structures of CTX-M β -lactamases: extended spectrum activities from increased mobility and decreased stability. Journal of Molecular Biology, 348(2): 349–362, 2005, doi:10.1016/j.jmb.2005.02.010. [88] G. M. Rossolini, M. M. Dandrea, and C. Mugnaioli. The spread of CTX-M-type extended-spectrum β -lactamases. Clinical Microbiology and Infection, 14: 33–41, 2008. [89] R. Bonnet, C. Recule, R. Baraduc, C. Chanal, D. Sirot, C. De Champs, and J. Sirot. Effect of d240g substitution in a novel esbl CTX-M-27. Journal of Antimicrobial Chemotherapy, 52(1): 29–35, 2003, doi:10.1093/jac/dkg256. [90] L. Poirel, J. M. O. De la Rosa, A. Richard, M. Aires de Sousa, and P. Nordmann. CTX-M-33 is a CTX-M-15 derivative conferring reduced susceptibility to carbapenems. Antimicrobial Agents and Chemotherapy, 63(12): e01515–19, 2019, doi:10.1128/AAC.01515-19. [91] M. Gazouli, S. V. Sidorenko, E. Tzelepi, N. S. Kozlova, D. P. Gladin, and L. S. Tzouvelekis. A plasmid-mediated β -lactamase conferring resistance to cefotaxime in a salmonella typhimurium clone found in st petersburg, Russia. Journal of Antimicrobial chemotherapy, 41(1): 119–121, 1998. [92] M. Gniadkowski, I. Schneider, A. Pałucha, R. Jungwirth, B. Mikiewicz, and A. Bauernfeind. Cefotaxime-resistant Enterobacteriaceae isolates from a hospital in Warsaw, Poland: identification of a new CTX-M-3 cefotaxime-hydrolyzing β -lactamase that is closely related to the CTX-M-1/MEN-1 enzyme. Antimicrobial Agents and Chemotherapy, 42(4): 827–832, 1998. [93] R. C. Picao, L. Poirel, A. C. Gales, and P. Nordmann. Further identification of CTX-M-2 extended-spectrum β -lactamase in pseudomonas aeruginosa. Antimicrobial Agents and Chemotherapy, 53(9): 2225–2226, 2009, doi:10.1128/AAC.01602-08. [94] L. S. Tzouvelekis, M. Gazouli, N. J. Legakis, and E. Tzelepi. Emergence of resistance to third-generation cephalosporins amongst Salmonella typhimurium isolates in Greece: report of the first three cases. Journal of Antimicrobial Chemotherapy, 42(2): 273–275, 1998. [95] F. Doucet-Populaire, J. C. Ghnassia, R. Bonnet, and J. Sirot. First isolation of a CTX-M-3-producing enterobacter cloacae in France. Antimicrobial Agents and Chemotherapy, 44(11): 3239–3240, 2000. [96] A. Bauernfeind, M. Holley, R. Jungwirth, P. Mangold, T. R ̈ohnisch, S. Schweighart, and M. Goldberg. A new plasmidic cefotaximase from patients infected with salmonella typhimurium. Infection, 20(3): 158–163, 1992. [97] M. Gazouli, E. Tzelepi, A. Markogiannakis, N. J. Legakis, and L. S. Tzouvelekis. Two novel plasmid-mediated cefotaxime-hydrolyzing β -lactamases (CTX-M-5 and CTX-M-6) from salmonella typhimurium. FEMS Microbiology Letters, 165(2): 289–293, 1998. [98] D. M. Livermore. Defining an extended-spectrum β - lactamase. Clinical Microbiology and Infection, 14: 3–10, 2008. [99] E. J. Yoon and S. H. Jeong. Class d β -lactamases. Journal of Antimicrobial Chemotherapy, 76(4): 836–864, 2021, doi:10.1093/jac/dkaa513. [100] J. Vila, M. Navia, J. Ruiz, and C. Casals. Cloning and nucleotide sequence analysis of a gene encoding an OXA-derived β -lactamase in Acinetobacter baumannii. Antimicrobial Agents and Chemotherapy, 41(12): 2757–2759, 1997. [101] B. A. Evans and S. G. Amyes. OXA β -lactamases. Clinical Microbiology Reviews, 27(2): 241–263, 2014, doi:10.1128/CMR.00117-13. [102] L. N. Philippon, T. Naas, A. T. Bouthors, V. Barakett,and P. Nordmann. OXA-18, a class d clavulanic acid inhibited extended-spectrum β -lactamase from pseudomonas aeruginosa. Antimicrobial Agents and Chemotherapy, 41(10): 2188–2195, 1997.
[103] A. Beceiro, S. Maharjan, T. Gaulton, M. Doumith, N. C. Soares, H. Dhanji, and N. Woodford. False extended-spectrum β -lactamase phenotype in clinical isolates of escherichia coli associated with increased expression of OXA-1 or TEM-1 penicillinases and loss of porins. Journal of Antimicrobial Chemotherapy, 66(9): 2006–2010, 2011, doi:10.1093/jac/dkr265. [104] L. K. Siu, J. Y. C. Lo, K. Y. Yuen, P. Y. Chau, M. H. Ng, and P. L. Ho. β -lactamases in shigella flexneri isolates from Hong Kong and Shanghai and a novel OXA-1-like β -lactamase, OXA-30. Antimicrobial Agents and Chemotherapy, 44(8): 2034–2038, 2000. [105] V. Dubois, C. Arpin, C. Quentin, J. Texier-Maugein, L. Poirel, and P. Nordmann. Decreased susceptibility to cefepime in a clinical strain of Escherichia coli related to plasmid-and integron-encoded OXA-30 β -lactamase. Antimicrobial Agents and Chemotherapy, 47(7): 2380–2381, 2003, doi:10.1128/AAC.47.7.2380–2381.2003. [106] D. A. Boyd and M. R. Mulvey. OXA-1 is oxa-30 is OXA-1. Journal of Antimicrobial Chemotherapy, 58(1): 224–225, 2006, doi:10.1093/jac/dkl149. [107] D. M. Livermore, M. Day, P. Cleary, K. L. Hopkins, M. A. Toleman, D. W. Wareham, and N. Woodford. Oxa-1 β -lactamase and non-susceptibility to penicillin/β -lactamase inhibitor combinations among ESBL-producing Escherichia coli. Journal of Antimicrobial Chemotherapy, 74(2): 326–333, 2019, doi:10.1093/jac/dky453. [108] D. Aubert, L. Poirel, J. Chevalier, S. Leotard, J. M. Pages, and P. Nordmann. Oxacillinase-mediated resistance to cefepime and susceptibility to ceftazidime in Pseudomonas aeruginosa. Antimicrobial Agents and Chemotherapy, 45(6): 1615–1620, 2001, doi:10.1128/AAC.45.6.1615–1620.2001. [109] L. Poirel, M. Castanheira, A. Carr ̈er, C. P. Rodriguez, R. N. Jones, J. Smayevsky, and P. Nordmann. OXA-163, an OXA-48-related class D β -lactamase with extended activity toward expanded-spectrum cephalosporins. Antimicrobial Agents and Chemotherapy, 55(6): 2546– 2551, 2011, doi:10.1128/AAC.00022-11. [110] L. Dortet, S. Oueslati, K. Jeannot, D. Tand ́e, T. Naas, and P. Nordmann. Genetic and biochemical characterization of OXA-405, an OXA-48-type extended-spectrum β - lactamase without significant carbapenemase activity. Antimicrobial Agents and Chemotherapy, 59(7): 3823– 3828, 2015, doi:10.1128/AAC.05058-14. [111] F. Danel, L. M. Hall, B. Duke, D. Gur, and D. M. Livermore. OXA-17, a further extended-spectrum variant of OXA-10 β -lactamase, isolated from Pseudomonas aeruginosa. Antimicrobial Agents and Chemotherapy, 43(6): 1362–1366, 1999. [112] C. L. Tooke, P. Hinchliffe, E. C. Bragginton, C. K. Colenso, V. H. Hirvonen, Y. Takebayashi, and J. Spencer. β -lactamases and β -lactamase inhibitors in the 21st Century. Journal of Molecular Biology, 431(18): 3472–3500, 2019, doi:10.1016/j.jmb.2019.04.002. [113] P. A. Bradford, S. Bratu, C. Urban, M. Visalli, N. Mariano, D. Landman, and J. Quale. Emergence of carbapenem-resistant klebsiella species possessing the class a carbapenem-hydrolyzing KPC-2 and inhibitorresistant TEM-30 β -lactamases in New York City. Clinical Infectious Diseases, 39(1): 55–60, 2004. [114] S. D. Lahiri, P. A. Bradford, W. W. Nichols, and R. A. Alm. Structural and sequence analysis of class a β -lactamases with respect to avibactam inhibition: impact of ω-loop variations. Journal of Antimicrobial Chemotherapy, 71(10): 2848–2855, 2016, doi:10.1093/jac/dkw248. [115] E. B. Chaibi, D. Sirot, G. Paul, and R. Labia. Inhibitorresistant TEM β -lactamases: phenotypic, genetic and biochemical characteristics. Journal of Antimicrobial Chemotherapy, 43(4): 447–458, 1999. [116] R. A. Bonomo, C. Currie-McCumber, and D. M. Shlaes. OHIO-1 β -lactamase resistant to mechanism-based in-activators. FEMS Microbiology Letters, 92(1): 79–82,1992.
[117] L. Bret, E. B. Chaibi, C. Chanal-Claris, D. Sirot, R. Labia, and J. Sirot. Inhibitor-resistant TEM (IRT) β -lactamases with different substitutions at position 244. Antimicrobial Agents and Chemotherapy, 41(11): 2547– 2549, 1997. [118] L. Bret, C. Chanal, D. Sirot, R. Labia, and J. Sirot. Characterization of an inhibitor-resistant enzyme IRT-2 derived from TEM-2 β -lactamase produced by Proteus mirabilis strains. Journal of Antimicrobial Chemotherapy, 38(2): 183–191, 1996. [119] J. Lemozy, D. Sirot, C. Chanal, C. Huc, R. Labia, H. Dabernat, and J. Sirot. First characterization of inhibitor-resistant TEM (IRT) β -lactamases in Klebsiella pneumoniae strains. Antimicrobial Agents and Chemotherapy, 39(11): 2580–2582, 1995. [120] K. Bush and G. Jacoby. Nomenclature of TEM β - lactamases. Journal of Antimicrobial Chemotherapy, 39(1): 1–3, 1997.
[121] R. Canton, M. I. Morosini, O. Martin, S. De la Maza, and E. G. G. De La Pedrosa. IRT and CMT β -lactamases and inhibitor resistance. Clinical Microbiology and Infection, 14: 53–62, 2008. [122] V. Dubois, L. Poirel, C. Arpin, L. Coulange, C. Bebear, P. Nordmann, and C. Quentin. SHV-49, a novel inhibitor-resistant β -lactamase in a clinical isolate of Klebsiella pneumoniae. Antimicrobial Agents and Chemotherapy, 48(11): 4466–4469, 2004, doi:10.1128/AAC.48.11.4466–4469.2004. [123] V. Dubois, L. Poirel, F. Demarthe, C. Arpin, L. Coulange, L. A. Minarini, and C. Quentin. Molecular and biochemical characterization of SHV-56, a novel inhibitorresistant β -lactamase from Klebsiella pneumoniae. Antimicrobial Agents and Chemotherapy, 52(10): 3792–3794, 2008, doi:10.1128/AAC.00387-08. [124] N. Mendonc ̧ a, E. Ferreira, D. Louro, and M. Cani c ̧ a. Molecular epidemiology and antimicrobial susceptibility of extended-and broad-spectrum β -lactamase-producing Klebsiella pneumoniae isolated in Portugal. International Journal of Antimicrobial Agents, 34(1): 29–37, 2009, doi:10.1016/j.ijantimicag.2008.11.014. [125] P. D. Stapleton, K. P. Shannon, and G. L. French. Construction and characterization of mutants of the TEM-1 β -lactamase containing amino acid substitutions associated with both extended-spectrum resistance and resistance to β -lactamase inhibitors. Antimicrobial Agents and Chemotherapy, 43(8): 1881–1887, 1999. [126] D. Sirot, C. Recule, E. B. Chaibi, L. Bret, J. Croize, C. Chanal-Claris, , and J. Sirot. A complex mutant of TEM-1 β -lactamase with mutations encountered in both IRT-4 and extended-spectrum TEM-15, produced by an Escherichia coli clinical isolate. Antimicrobial Agents and Chemotherapy, 41(6): 1322–1325, 1997. [127] F. Robin, J. Delmas, C. Schweitzer, O. Tournilhac, O. Lesens, C. Chanal, and R. Bonnet. Evolution of TEM-type enzymes: biochemical and genetic characterization of two new complex mutant TEM enzymes, TEM-151 and TEM-152, from a single patient. Antimicrobial Agents and Chemotherapy, 51(4): 1304–1309, 2007, doi:10.1128/AAC.01058-06.
[128] S. D. Lahiri and R. A. Alm. Identification of novel VEB β -lactamase enzymes and their impact on avibactam inhibition. Antimicrobial Agents and Chemotherapy, 60(5): 3183–3186, 2016, doi:10.1128/AAC.00047-16.
[129] K. S. Kaye, H. S. Gold, M. J. Schwaber, L. Venkataraman, Y. Qi, P. C. De Girolami, and F. C. Tenover. Variety of β -lactamases produced by amoxicillin-clavulanate-resistant Escherichia coli iso- lated in the northeastern United States. Antimicrobial Agents and Chemotherapy, 48(5): 1520–1525, 2004, doi:10.1128/AAC.48.5.1520–1525.2004. [130] P. Nordmann, E. Ronco, T. Naas, C. Duport, Y. Michel-Briand, and R. Labia. Characterization of a novel extended-spectrum β -lactamase from Pseudomonas aeruginosa. Antimicrobial Agents and Chemotherapy, 37(5): 962–969, 1993, doi:10.1128/AAC.48.5.1520–1525.2004. [131] G.A. Jacoby. β -lactamase nomenclature. Antimicrobial Agents and Chemotherapy, 50(4): 1123–1129, 2006, doi:10.1128/AAC.50.4.1123–1129.2006. [132] H. Vahaboglu, L. M. C. Hall, L. Mulazimoglu, S. Dodanli, I. Yildirim, and D. M. Livermore. Resistance to extended-spectrum cephalosporins, caused by PER-1 β -lactamase, in M Salmonella typhimurium from Istanbul, Turkey. Journal of Medical Microbiology, 43(4): 294–299, 1995. [133] H. Vahaboglu, S. Dodanli, C. Eroglu, R. Ozt ̈urk, G. Soyletir, I. Yildirim, and V. Avkan. Characterization of multiple-antibiotic-resistant Salmonella typhimurium stains: molecular epidemiology of PER-1-producing isolates and evidence for nosocomial plasmid exchange by a clone. Journal of Clinical Microbiology, 34(12): 2942–2946, 1996. [134] H. Vahaboglu, R. Ozt ̈urk, G. Ayg ̈un, F. Co s ̧ kunkan, A. Yaman, A. Kaygusuz, and M. Otkun. Widespread detection of per-1-type extended-spectrum β -lactamases among nosocomial Acinetobacter and Pseudomonas aeruginosa isolates in Turkey: a nationwide multicenter study. Antimicrobial Agents and Chemotherapy, 41(10): 2265–2269, 1997. [135] F. Kolayli, G. Gacar, A. Karadenizli, A. Sanic, and H. Vahaboglu. Per-1 is still widespread in turkish hospitals among pseudomonas aeruginosa and Acinetobacter spp. FEMS Microbiology Letters, 249(2): 241–245, 2005, doi:10.1016/j.femsle.2005.06.012. [136] K. Ranellou, K. Kadlec, A. Poulou, E. Voulgari, G. Vrioni, S. Schwarz, and A. Tsakris. Detection of Pseudomonas aeruginosa isolates of the international clonal complex 11 carrying the bla PER-1 extended-spectrum β -lactamase gene in Greece. Journal of Antimicrobial Chemotherapy, 67(2): 357–361, 2012, doi:10.1093/jac/dkr471.
[137] A. Bauernfeind, I. Stemplinger, R. Jungwirth, P. Mangold, S. Amann, E. Akalin, and J. M. Casellas. Characterization of β -lactamase gene blaPER-2, which encodes an extended-spectrum class a β -lactamase. Antimicrobial Agents and Chemotherapy, 40(3): 616–620, 1996.
[138] J. M. Ortiz de la Rosa, P. Nordmann, and L. Poirel. esbls and resistance to ceftazidime/avibactam and ceftolozane/tazobactam combinations in Escherichia coli and Pseudomonas aeruginosa. Journal of Antimicrobial Chemotherapy, 74(7): 1934–1939, 2019, doi:10.1093/jac/dkz149. [139] M. Ruggiero, K. M. Papp-Wallace, F. Brunetti, M. D. Barnes, R. A. Bonomo, G. Gutkind, and P. Power. Structural insights into the inhibition of the extended-spectrum β -lactamase PER-2 by avibactam. Antimicrobial Agents and Chemotherapy, 63(9): e00487–19, 2019, doi:10.1128/AAC.00487-19. [140] N. Kohira, M. A. Hackel, Y. Ishioka, M. Kuroiwa, D. F. Sahm, T. Sato, and Y. Yamano. Reduced susceptibility mechanism to cefiderocol, a siderophore cephalosporin, among clinical isolates from a global surveillance programme (SIDERO-WT-2014). Journal of Global Antimicrobial Resistance, 22: 738–741, 2020, doi:10.1016/j.jgar.2020.07.009.
[141] L. Poirel, T. Naas, M. Guibert, E. B. Chaibi, R. Labia, and P. Nordmann. Molecular and biochemical characterization of VEB-1, a novel class a extended-spectrum β -lactamase encoded by an Escherichia coli integron gene. Antimicrobial Agents and Chemotherapy, 43(3):573–581, 1999. [142] T. Naas, L. Poirel, A. Karim, and P. Nordmann. Molecular characterization of In50, a class 1 integron encoding the gene for the extended-spectrum β -lactamase VEB-1 in Pseudomonas aeruginosa. FEMS Microbiology Letters, 176(2): 411–419, 1999. [143] S. Mushtaq, M. Warner, and D. M Livermore. In vitro activity of ceftazidime+ NXL104 against Pseudomonas aeruginosa and other non-fermenters. Journal of Antimicrobial Chemotherapy, 65(11): 2376–2381, 1999, doi:10.1093/jac/dkq306. [144] T. Naas, L. Poirel, and P. Nordmann. Minor extended-spectrum β -lactamases. Clinical Microbiology and Infection, 14: 42–52, 2008. [145] R. Li, L. Ye, Z. Zheng, E. W. C. Chan, and S. Chen. Genetic Characterization of a blaVEB-2 Carrying plasmid in Vibrio parahaemolyticus. Antimicrobial Agents and Chemotherapy, 60(11),: 6965–6968, 2016, doi:10.1128/AAC.01749-16.
[146] S. Jain, R. Gaind, C. Kothari, R. Sehgal, A. Shamweel, S. S. Thukral, and H. K. Chellani. VEB-1 extended-spectrum β -lactamase-producing multidrug-resistant Proteus mirabilis sepsis outbreak in a neonatal intensive care unit in India: clinical and diagnostic implications. JMM Case Reports, 3(4): 1–7, 2016, doi:10.1099/jmmcr.0.005056. [147] L. Poirel, I. Le Thomas, T. Naas, A. Karim, and P. Nordmann. Biochemical sequence analyses of GES-1, a novel class a extended-spectrum β -lactamase, and the class 1 integron In52 from Klebsiella pneumoniae. Antimicrobial Agents and Chemotherapy, 44(3): 622–632, 2000. [148] A. N. Zeka, L. Poirel, O. R. Sipahi, R. A. Bonnin, B. Arda, M. ̈Ozinel, and P. Nordmann. GES type and OXA-23 carbapenemase-producing Acinetobacter baumannii in Turkey. Journal of Antimicrobial Chemotherapy, 69: 1145–1153, 2014, doi:10.1093/jac/dkt465. [149] R. A. Bonnin, P. Nordmann, A. Potron, H. Lecuyer, J. R. Zahar, and L. Poirel. Carbapenem-hydrolyzing ges-type extended-spectrum β -lactamase in Acinetobacter baumannii. Antimicrobial Agents and Chemotherapy, 55(1): 349–354, 2011, doi:10.1128/AAC.00773-10. [150] M. Castanheira, R. E. Mendes, T. R. Walsh, A. C. Gales, and R. N. Jones. Emergence of the extended-spectrum β -lactamase GES-1 in a Pseudomonas aeruginosa strain from Brazil: report from the SENTRY antimicrobial surveillance program. Antimicrobial Agents and Chemotherap, 48(6): 2344–2345, 2004, doi:http://dx.doi.org/10.1128/AAC.48.6.2344–2345.2004. [151] M.Castanheira, S. E. Costello, L. N. Woosley, L. M. Deshpande, T. A. Davies, and R. N. Jones. Evaluation of clonality and carbapenem resistance mechanisms among Acinetobacter baumannii-Acinetobacter calcoaceticus complex and Enterobacteriaceae isolates collected in European and Mediterranean countries and detection of two novel β -lactamases, GES-22 and VIM-35. Antimicrobial Agents and Chemotherapy, 58(12): 7358–7366, 2014, doi:10.1128/AAC.03930-14. [152] P. Giakkoupi, L. S. Tzouvelekis, A. Tsakris, V. Loukova, D. Sofianou, and E. Tzelepi. IBC-1, a novel integron associated class a β -lactamase with extended-spectrum properties produced by an Enterobacter cloacae clinical strain. Antimicrobial Agents and Chemotherapy, 44(9): 2247–2253, 2000. [153] L. Poirel, G. F. Weldhagen, T. Naas, C. De Champs, M. G. Dove, and P. Nordmann. Ges-2, a class a β -lactamase from pseudomonas aeruginosa with increased hydrolysis of imipenem. Antimicrobial Agents and Chemotherapy, 45(9): 2598–2603, 2001, doi:10.1128/AAC.45.9.2598–2603.2001. [154] A. Mavroidi, E. Tzelepi, A. Tsakris, V. Miriagou, D. Sofianou, and L. S. Tzouvelekis. An integron- associated β -lactamase (IBC-2) from Pseudomonas aeruginosa is a variant of the extended-spectrum β - lactamase IBC-1. Journal of Antimicrobial Chemotherapy, 48(5): 627–630, 2001. [155] H. S. Sader, P. R. Rhomberg, R. K. Flamm, R. N. Jones, and M. Castanheira. WCK 5222 (cefepime/zidebactam) antimicrobial activity tested against Gram-negative organisms producing clinically relevant β -lactamases. Journal of Antimicrobial Chemotherapy, 72(6): 1696–1703, 2017, doi:10.1093/jac/dkx050. [156] S. Bontron, L. Poirel, and P. Nordmann. In vitro prediction of the evolution of GES-1 β -lactamase hydrolytic activity. Antimicrobial Agents and Chemotherapy, 59(3):1664–1670, 2015, doi:10.1128/AAC.04450-14. [157] Z. G. Nanakali and Z. F. Ahmad. Antibiotic resistance study and detection of virulence gene among uropathogenic E. coli. Kirkuk University Journal-Scientific Studies, 10(3): 205–29, 2015, doi:10.32894/kujss.2015.104995. [158] Mahmood. Z. Al-Hasso and Z. K. Mohialdeen. Phenotypic and molecular detection of CTX-M β -lactamases in Salmonella enterica local isolates from different origins in mosul. Malaysian Journal of Microbiology, 19(2): 1–10, 2023, doi:10.21161/mjm.220019. [159] F. S. Al Mayahi and S. M. Jaber. A preliminary study of multiple antibiotic resistance (MAR) and extensively drug-resistant (XDR) of bacterial causing typhoid fever isolated from stool specimens in Al-Diwaniya, Iraq. EurAsian Journal of Biosciences, 14(1): 2369–2378, 2020. [160] H. A. Salman, A. M. Abdulmohsen, M. N. Falih, and Z. M. Romi. Detection of multidrug-resistant Salmonella enterica subsp. enterica serovar Typhi isolated from Iraqi subjects. Veterinary World, 14(7): 1922–1928, 2021, doi:10.14202/vetworld.2021.1922-1928. [161] Z. S. Shallal, A. S. K. AL-Suraifi, and A. H. Hadil. Detection of extended spectrum β -lactamase (ESBL) among Gram-negative bacteria isolates from workers in a restaurant in Wasit province, Iraq. Journal of Pharmaceutical Sciences and Research, 11(4): 1602–1609,2019. [162] Mahmood. Z. Al-Hasso and S. H. Khalaf. Comparison of five methods for detection of extended spectrum β -lactamases in Gram negative enteric bacteria. Karbala International Journal of Modern Science, 6(1): 62–68, 2020. [163] C. Fevre, M. Jbel, V. Passet, F. X. Weill, P. A. Grimont, and S. Brisse. Six groups of the OXY β -lactamase evolved over millions of years in Klebsiella oxytoca. Antimicrobial Agents and Chemotherapy, 49(8): 3453–3462, 2005, doi:10.1128/AAC.49.8.3453–3462.2005. [164] M. Castanheira, S. E. Farrell, L. M. Deshpande, R. E. Mendes, and R. N. Jones. Prevalence of β –lactamase- encoding genes among Enterobacteriaceae bacteremia isolates collected in 26 US hospitals: report from the SENTRY Antimicrobial Surveillance Program (2010). Antimicrobial Agents and Chemotherapy, 57(7): 3012–3020, 2013, doi:10.1128/AAC.02252-12. [165] Y. Matsumoto and M. Inoue. Characterization of SFO-1, a plasmid-mediated inducible class a β -lactamase from Enterobacter cloacae. Antimicrobial Agents and Chemotherapy, 43(2): 307–313, 1999. [166] G. M. Rossolini, N. Franceschini, L. Lauretti, B. Caravelli, M. L. Riccio, M. Galleni, and G. Amicosante. Cloning of a Chryseobacterium (Flavobacterium) meningosepticum chromosomal gene (blaACME) encoding an extended-spectrum class a β -lactamase related to the bacteroides cephalosporinases and the VEB-1 and PER β -lactamases. Antimicrobial Agents and Chemotherapy, 43(9): 2193–2199, 1999. [167] Mahmood Z. Al-Hasso and N.A. Al-Sharifi. Antimicrobials sensitivity of Gram-positive and Gram-negative bacteria isolated from urinary tract infections in Mosul city. Kirkuk University Journal-Scientific Studies, 12(3):737–62, 2017, doi:10.32894/kujss.2017.131535.
[168] J. Silva, C. Aguilar, G. Ayala, M. A. Estrada, U. GarzaRamos, R. Lara-Lemus, and L. Ledezma. TLA-1: a new plasmid-mediated extended-spectrum β -lactamase from Escherichia coli. Antimicrobial Agents Chemotherapy, 44(4): 997–1003, 2000. | ||
Statistics Article View: 68 PDF Download: 88 |