New Approach on Improving Mechanical Properties of Hybrid Composite by Adding Mica as Natural Fiber with Glass Fiber Reinforced Epoxy Composites | ||
Kerbala Journal for Engineering Science | ||
Article 1, Volume 3, Issue 1, March 2023, Pages 1-14 PDF (557.09 K) | ||
Document Type: Research Article | ||
Authors | ||
Mohammed Rashad* 1; Gailan Ismail Hassan2 | ||
1Erbil Polytechnic University, Erbil Technical Engineering College, Mechanical and Energy Engineering Department, Erbil, Iraq | ||
2Mechanical & Energy Technical Eng., Erbil Technical Eng. College, Erbil Polytechnic University, Erbil, Iraq | ||
Abstract | ||
A new attempt development of new hybrid composite materials has been studied. Increasing the mechanical and physical properties of composite materials to lower their weight and cost is the most frequent problem in engineering projects. This study's goal is to enhance the mechanical and physical characteristics of composite materials. Also due to this, hybrid composite materials have received recent attention. In this work, hybrid composite materials were created to enhance mechanical and physical characteristics. In this investigation, glass fiber and mica fiber were both employed as synthetic and natural fibers, respectively. The influence of mica as natural fiber with glass fiber as synthetic reinforcement by weight percent (wt%) on the mechanical properties of hybrid composite materials were investigated. Epoxy resin (thermosetting polymer) reinforced by various wt % of glass fiber/mica fiber, such as (0-0, 15-0, 10-5, 7.5-7.5, 5-10, 0-15 %), as well as samples created by hand lay-up method. In addition, glass fiber and mica fiber in long fiber unidirectional form are utilized; mechanical properties such as tensile, flexural and impact strength have been tested. As the results of this study, both glass fiber and mica fiber increased mechanical properties, although glass fiber has a greater effect than mica fiber but also using mica fiber make great improvement between 26% to 67%. Composites reinforced with 15% glass fiber had a better value of mechanical properties compared to others. Additionally, the hybrid composite made of glass fiber and mica fiber performed well in all tests, enhanced mechanical characteristics, which decreased the cost of making composites. | ||
Keywords | ||
Mechanical properties; hybrid composites; Mica fiber; Glass fiber | ||
Full Text | ||
تمت دراسة نهج جدید لتطویر مواد مرکبة هجینة جدیدة. تعتبر زیادة الخواص المیکانیکیة والفیزیائیة للمواد المرکبة لخفض وزنها وتکلفتها هی المشکلة الأکثر شیوعًا فی المشاریع الهندسیة. تهدف هذه الدراسة إلى تعزیز الخصائص المیکانیکیة والفیزیائیة للمواد المرکبة. بسبب هذا أیضًا ، حظیت المواد المرکبة الهجینة باهتمام حدیث. فی عملنا ، تم إنشاء مواد مرکبة هجینة لتحسین الخصائص المیکانیکیة والفیزیائیة. فی هذا التحقیق ، تم استخدام کل من الألیاف الزجاجیة وألیاف المیکا کألیاف طبیعیة وصناعیة ، على التوالی. تم دراسة تأثیر المیکا کألیاف طبیعیة مع الألیاف الزجاجیة کمقویات اصطناعیة بنسبة الوزن (بالوزن٪) على الخواص المیکانیکیة للمواد المرکبة الهجینة. راتنجات الایبوکسی (بولیمر متصلب بالحرارة) معززة بنسبة وزن مختلفة من الألیاف الزجاجیة / ألیاف المیکا ، مثل (0-0 ، 15-0 ، 10-5 ، 7.5-7.5 ، 5-10 ، 0-15٪) ، وکذلک العینات تم إنشاؤها بطریقة وضع الید. بالإضافة إلى ذلک ، یتم استخدام الألیاف الزجاجیة وألیاف المیکا فی شکل ألیاف طویلة أحادیة الاتجاه ؛ تم اختبار الخواص المیکانیکیة مثل قوة الشد والانثناء والتأثیر. نتیجة لهذه الدراسة ، زادت الألیاف الزجاجیة وألیاف المیکا من الخصائص المیکانیکیة ، على الرغم من أن الألیاف الزجاجیة لها تأثیر أکبر من ألیاف المیکا ولکن أیضًا باستخدام ألیاف المیکا تحسن بشکل کبیر بین 26٪ إلى 67٪. کانت المرکبات المقواة بنسبة 15٪ من الألیاف الزجاجیة ذات قیمة میکانیکیة أفضل مقارنة بغیرها. بالإضافة إلى ذلک ، کان أداء المرکب الهجین المصنوع من الألیاف الزجاجیة وألیاف المیکا جیدًا فی جمیع الاختبارات ، مما أدى إلى تحسین الخصائص المیکانیکیة ، مما قلل من تکلفة صنع المرکبات. | ||
References | ||
[1] S. Ekşi and K. Genel, “Comparison of Mechanical Properties of Unidirectional and Woven Carbon, Glass and Aramid Fiber Reinforced Epoxy Composites,” Acta Phys. Pol. A, vol. 132, no. 3, pp. 879–882, 2017, doi: 10.12693/APhysPolA.132.879.
[2] Z. Ren et al., “Effect of Alkali Treatment on Interfacial and Mechanical Properties of Kenaf Fibre Reinforced Epoxy Unidirectional Composites,” Sains Malaysiana, vol. 48, no. 1, pp. 173–181, 2019, doi: 10.17576/jsm-2019-4801-20.
[3] A. V Abhijith, A. Dharmarajan Thayyil, and T. Narendiranath Babu, “Tensile Behavior of Lotus Natural Fiber and E-Glass Fibers Reinforced with Epoxy Composites,” IOP Conf. Ser. Mater. Sci. Eng., vol. 1123, no. 1, p. 012034, 2021, doi: 10.1088/1757-899x/1123/1/012034.
[4] H. Ku, H. Wang, N. Pattarachaiyakoop, and M. Trada, “A Review on the Tensile Properties of Natural Fiber Reinforced Polymer Composites,” Compos. Part B Eng., vol. 42, no. 4, pp. 856–873, 2011, doi: 10.1016/j.compositesb.2011.01.010.
[5] M. R. Sanjay, G. R. Arpitha, and B. Yogesha, “Study on Mechanical Properties of Natural - Glass Fibre Reinforced Polymer Hybrid Composites: A Review,” Mater. Today Proc., vol. 2, no. 4–5, pp. 2959–2967, 2015, doi: 10.1016/j.matpr.2015.07.264.
[6] J. Koh, “Dyeing of cellulosic fibers,” Handb. Text. Ind. Dye. Vol. 2 Appl. Dye., pp. 129–133, Dec. 2011, doi: 10.1533/9780857094919.1.129.
[7] N. Chand and M. B. T.-T. of N. F. P. C. Fahim, Eds., “5 - Cotton Reinforced Polymer Composites,” in Woodhead Publishing Series in Composites Science and Engineering, Woodhead Publishing, 2008, pp. 129–161.
[8] C. G. Silva, D. Benaducci, and E. Frollini, “Lyocell and Cotton Fibers as Reinforcements for a Thermoset Polymer,” BioResources, vol. 7, no. 1, pp. 78–98, 2012.
[9] T. Alomayri, F. U. A. Shaikh, and I. M. Low, “Characterisation of Cotton Fibre-Reinforced Geopolymer Composites,” Compos. Part B Eng., vol. 50, pp. 1–6, 2013, doi: 10.1016/j.compositesb.2013.01.013.
[10] R. Petrucci et al., “Tensile and Fatigue Characterisation of Textile Cotton Waste/Polypropylene Laminates,” Compos. Part B Eng., vol. 81, pp. 84–90, 2015, doi: 10.1016/j.compositesb.2015.07.005.
[11] Y. Zou, N. Reddy, and Y. Yang, “Reusing Polyester/Cotton Blend Fabrics for Composites,” Compos. Part B Eng., vol. 42, no. 4, pp. 763–770, 2011, doi: 10.1016/j.compositesb.2011.01.022.
[12] E. S. De Medeiros, J. A. M. Agnelli, K. Joseph, L. H. De Carvalho, and L. H. C. Mattoso, “Mechanical Properties of Phenolic Composites Reinforced with Jute/Cotton Hybrid Fabrics,” Polym. Compos., vol. 26, no. 1, pp. 1–11, 2005, doi: 10.1002/pc.20063.
[13] L. Henan YAAN Electrical Insulation Material Plant Co., “https://www.yaanelectric.com/tube/85.html.” .
[14] “ASTM D 638 − 14 Standard Test Method for Tensile Properties of Plastics,” 2015.
[15] “ASTM D790-15 Standard Test Methods for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials,” 2016.
[16] “ASTM D6110-10 Standard Test Method for Determining the Charpy Impact Resistance of Notched Specimens of Plastics,” 2018. | ||
Statistics Article View: 62 PDF Download: 58 |