Using water treatment sludge to Improve Geotechnical Engineering Properties of Soils: A Review | ||
Anbar Journal of Engineering Sciences | ||
Article 6, Volume 14, Issue 1, May 2023, Pages 50-65 PDF (1.5 M) | ||
Document Type: Review Paper | ||
DOI: 10.37649/aengs.2023.138350.1041 | ||
Authors | ||
Mohammed Hamid* 1; Khalid R. Aljanabi2; Ayad S. Mustafa3 | ||
1civil engineering, university of Anbar, Ramadi, Iraq | ||
2Civil engineering, University of Anbar, Ramadi, Iraq | ||
3Civil engineering, Univercity of Anbar, Ramadi, Iraq | ||
Abstract | ||
Water treatment sludge (WTS) is a byproduct generated during the treatment of wastewater. In recent years, researchers have explored the potential of using WTS as a soil stabilizer to improve the geotechnical properties of soils. In this review, we will examine the current state of knowledge on the use of WTS for this purpose. The organic matter content of WTS is usually high and can range from 30% to 60%. The high organic matter content makes WTS a potential source of nutrients for plants, and it can also enhance soil structure and water retention. Another important consideration is the environmental impact of using WTS. The use of WTS can be an eco-friendly alternative to chemical stabilizers, which can have adverse effects on the environment. However, there are concerns about the potential for heavy metal contamination in WTS. To mitigate this risk, it is recommended to conduct thorough testing of WTS before using it as a soil stabilizer. Finally, the use of WTS as a soil stabilizer has the potential to improve the geotechnical properties of soils. However, it is essential to consider factors such as the type and dosage of WTS, the soil type, and the environmental impact before using it. Further research is also needed to explore the potential of using WTS in different soil types and environmental conditions. | ||
Keywords | ||
water treatment sludge; Properties of Soils; Soils | ||
References | ||
[1] F. H. Ibrahim, Heavy metals released from " water treatment sludge " of Basrah city, Iraq using chemical method. Mesopot. J. Mar. Sci., 2017, 32(1): 25 -34.
[2] B. Ren, Y. Zhao, B. Ji, T. Wei, and C. Shen, “Granulation of drinking water treatment residues: recent advances and prospects”. Water, 2020, 12 (5), 1400. https://doi.org/ 10.3390/w12051400.
[3] T. Turner, R. Wheeler, A. Stone, and I. Oliver, “Potential alternative reuse pathways for water treatment residuals: remaining barriers and questions—a review”. Water Air Soil Pollut., 2019, p.p. 227- 230. https://doi.org/10.1007/s11270-019-4272-0, 2019.
[4] M. A. Motta Sobrinho, R. G. Tavares, V. C. M. Arruda, M. M. Correa, L. J. R. Pereira, Geraça˜o, “tratamento e disposiç˜ao final dos resíduos das estaço˜es de tratamento de a´gua do estado de Pernambuco”. Eng. Sanit. Ambient. [online], 2019, 24 (4), 761–771. https://doi.org/10.1590/S1413-41522019175810.
[5] V. T. Katayama, C. P. Montes, T. H. Ferraz, and D. M., Morita Dec. “Quantificaça˜o da produça˜o de lodo de estaço˜es de tratamento de a´gua de ciclo completo: uma ana´lise crítica. Eng. Sanit”. Ambient., Rio de Janeiro, 2015, 20 (4), 559–569. https://doi.org/ 10.1590/S1413-41522015020040105046.
[6] T. Ahmad, K. Ahmad, and M. Alam, “Characterization of water treatment plant’s sludge and its safe disposal options. Procedia Environmental Sciences”. New Delhi, India: ELSEVIER, 2016, 35, 950–955. https://doi.org/10.1016/j.proenv.2016.07.088.
[7] M. Wolowiec and T. Bajda, “Current stage of knowledge relating to the use ferruginous sludge from water treatment plants - a preliminary review of the literature”. Mineralogia, 2017, 48, 39–45. https://doi.org/10.1515/mipo-2017-0010.
[8] A. La, R. Guru, M. Peiravi, M. Mohanty, X. Ma, S. Kumar, and J. Liu, “Characterization of southern Illinois water treatment residues for sustainable applications”. Sustainability, 2018, https://doi.org/10.3390/su10051374.
[9] C. F. Chen, Y. R. Ju, Y. C. Lim, S. L. Hsieh, M. L. Tsai, P. P. Sun, R. Katiyar, C. W. Chen, and C. D. Dong, “Determination of polycyclic aromatic hydrocarbons in sludge from water and wastewater treatment plants by GC–MS”. Int. J. Environ. Res. Publ. Health, 2019, 16 (14), 2604. https://doi.org/10.3390/ijerph16142604.
[10] I. F. Ullmann, H. S. Tunsjø, M. Andreassen, K. M. Nielsen, V. Lund, and C. Charnock, “Detection of aminoglycoside resistant bacteria in sludge samples from Norwegian drinking water treatment plants”. Front. Microbiol, 2019, art. no. 487. https://doi.org/10.3389/ fmicb.2019.00487. MAR), art. no. 487.
[11] F. A. Fiore, S. Rodgher, C. Y. K. Ito, V. S. S. Bardini, and L. M. G. Klinsky, “Quality of surface water and generation of sludge at water treatment plants”. Rev. Ambient. A´gua, 2020, 15 (5). https://doi.org/10.4136/ambi-agua.2565.
[12] IBAMA – “Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renova´veis”. Lista Brasileira de Resíduos So´lidos – Instruça˜o Normativa n◦ 13, de 18 de dezembro de 2012. Dia´rio Oficial da Uni˜ao, Brasília (DF). 2012 20 dez.
[13] Brasil. Lei Federal no 12.305, de 2 de agosto de 2010. “Institui a Política Nacional de Resíduos So´lidos”; altera a Lei no 9. 605, de 12 de fevereiro de 1998; e da´ outras providˆencias. Di´ario Oficial [da] Unia˜o: seç˜ao 1, Brasília, DF, 2010, p. 127 n. 85.
[14] T. Turner, R. Wheeler, A. Stone, and I. Oliver, 2019. “Potential alternative reuse pathways for water treatment residuals: remaining barriers and questions—a review”. Water Air Soil Pollut., 2019, p.p. 227-230. https://doi.org/10.1007/s11270-019-4272-0, 2019.
[15] R. A. Barakwan, T. T. Hardina, Y. Trihadiningrum, and A.Y. Bagastyo, Recovery of alum from Surabaya " water treatment sludge " using electrolysis with carbon-silver electrodes. Journal of Ecological Engineering., 2019, 20 (7), 126–133. https://doi.org/ 10.12911/22998993/109861.
[16] H. Elmontassir, K. A. Zaki, B. Wassate, N. Gouzouli, M. A. Afdali, and Y. Karhat, “Characterization of sludge from the treatment of drinking water and their valuation in the treatment of leachate”. Scientific study and research-chemistry and chemical engineering biotechnology food industry., 2019, p.p. 89–102, (1) 20.
[17] Z. Zhou, Y. Yang, X. Li, P. Li, T. Zhang, X. Lv, L. Liu, J. Dong, and D. Zheng, Optimized removal of natural organic matter by ultrasound-assisted coagulation of recycling drinking " water treatment sludge ". Ultrason. Sonochem., 2018., 48, 171–180. https://doi.org/10.1016/j.ultsonch.2018.05.022.
[18] S. M. Yusuff, O.K. Khim, W. M .Z. M. Yunus, A. Fitrianto, M. Ahmad, N. Ibrahim, F. Cheros, and T. Ccf, “Carbon dioxide sorption isotherm and kinetics by alum sludge”. Mater. Today, Proc., 2018, 5 (10), p.p. 21948–21955. https://doi.org/10.1016/j. matpr.2018.07.055. Part 2.
[19] M. Wołowiec, M. Komorowska-Kaufman, A. Pruss, G. Rzepa, and T. Bajda, 2019. “Removal of heavy metals and metalloids from water using drinking water treatment residuals as adsorbents: a review”. Minerals, 2019., 9 (8), p.p. 487. https://doi.org/10.3390/min9080487.
[20] R. Albrektiene and D. Paliulis, “Investigation of lead removal from drinking water using different sorbents”. Ecological Chemistry and Engineering S, 2020, 27 (1), 67–82. https://doi.org/10.2478/eces-2020-0004
[21] S. Yildiz, and S. Sevinc, “Heavy metal adsorption by dewatered iron-containing waste sludge”. Ecological Chemistry and Engineering S-Chemia I Inzynieria Ekologiczna S, 2018, 25 (3), p.p. 431–456. https://doi.org/10.1515/eces-2018-0030.
[22] C. B. Niwagaba, A. E. Ayii, A. O. Kibuuka, and R. Pomi, “Possibilities for the use of sludge from A drinking water treatment plant at ggaba iii in kampala, Uganda”. Detritus., 2019, p.p. 59–67 https://doi.org/10.31025/2611-4135/2019.13824.
[23] L. C. F. Herren˜o, D. M. V. Solano, K. D. R. Sarabia, J. O. C. P´erez, and A. A. M. Quintero, “Drinking " water treatment sludge " as a partial substitute for clays in nonstructural brick production”. J. Phys. Conf., 2019, 1409, 012013 https://doi.org/10.1088/1742-6596/ 1409/1/012013.
[24] M. A. Dohim, A. Abdelaal, M. S. Beheary, N. A. Abdullah, A. Razek, and T. M, “Compressive strength of geopolymeric cubes produced from solid wastes of alum industry and drinking water treatment plants”. Egypt. J. Chem., 2019, 62 (12) https://doi. org/10.21608/ejchem.2019.12745.1790. Pg. 2331-2340.
[25] L. V. Cremades, J. A. Cusido´, and F. Arteaga, “Recycling of sludge from drinking water treatment as ceramic material for the manufacture of tiles”. J. Clean. Prod., 2018, 201, p.p. 1071–1080. https://doi.org/10.1016/J.JCLEPRO.2018.08.094.
[26] D. A. Lima, and C. Zulanas, “Use of contaminated sludge in concrete”. Procedia Eng., 2016, 145, p.p. 1201–1208. https://doi.org/10.1016/j.proeng.2016.04.155.
[27] R. C. Urban, R. L. Isaac, and D. M. Morita, “Uso ben´efico de lodo de estaço˜es de tratamento de a´gua e de tratamento de esgoto: estado da arte”. Revista DAE., 2019, Ed. 219 67. https://doi.org/10.4322/dae.2019.050.
[28] S. S. A. Santos, and V. P. Campos, “Utilizaç˜ao de Resíduo So´lido de Estaça˜o de Tratamento de A´gua (lodo), como Mat´eria Prima para Confecç˜ao de Elementos da Construç˜ao Civil”. Rev. Virtual Quim., 2018, 10 (2), p.p. 273–287. https://doi.org/10.21577/1984-6835.20180021.
[29] G. F. Koopmans, T. Hiemstra, C. Vaseur, W. J. Chardon, A. Voegelin, and J. E. Groenenberg, “Use of iron oxide nanoparticles for immobilizing phosphorus in-situ: increase in soil reactive surface area and effect on soluble phosphorus”. Sci. Total Environ., 2020, 711, 135220. https://doi.org/10.1016/j.scitotenv.2019.135220.
[30] K. Arab, D. F. Thompson, and I. W. Oliver, “Trialling water-treatment residuals in the remediation of former mine site soils: investigating improvements achieved for plants, earthworms, and soil solution”. Environ. Toxicol. Chem., 2020, p.p. 1277–1291. https://doi.org/10.1002/etc.4706.
[31] R. Ackah, La, Guru, M. Peiravi, M. Mohanty, X. Ma, S. Kumar, and J. Liu, “Characterization of southern Illinois water treatment residues for sustainable applications”. Sustainability., 2018, https://doi.org/10.3390/su10051374.
[32] D. Caniani, S. Masi, I. M. Mancini, and E. Trulli, “Innovative reuse of drinking water sludge in geo-environmental applications”. Waste Manag., 2013, 33 (6), p.p. 1461–1468. https:// doi.org/10.1016/j.wasman.2013.02.007. ISSN 0956-053X.
[33] M. E. G. Boscov, J. K. Tsugawa, and E. L. T. Montalvan, “Beneficial use of " water treatment sludge " in geotechnical applications as a sustainable alternative to preserve natural soils”. Sustainability, 2021, 13, 9848. https://doi.org/10.3390/su13179848.
[34] A. K. Nazir, E. Mahmoud, M. Ali, and N. Ali, “Safe and economic disposal of water treatment residuals by reusing it as a substitution layer in roads construction (spectroscopic and geotechnical study)”. Environ. Sci. Pollut. Res. Int., Aug 2020, 27 (24), 30490–30501. https://doi.org/10.1007/s11356-020-09371-2.
[35] E. L. T. Montalvan, “Investigaç˜ao do comportamento geot´ecnico de misturas de solo arenoso com lodo da estaça˜o de tratamento de a´gua do município de Cubata˜o, SP”. Thesis (master’s degree). Escola Polit´ecnica, University of S˜ao Paulo. Sa˜o Paulo., 2016.
[36] R. V. Coelho, F. S. Tahira, F. Fernandes, H. B. Fontanele, and R. S. Teixeira, “Use of sludge of water treatment plant in paving roads”. REEC - Rev. Eletroˆnica Eng. Civ., 2015, 10 (2) https://doi.org/10.5216/reec.V10i2.33134.
[37] S. Y. Amakye, and S. J. Abbey, “Understanding the performance of expansive subgrade materials treated with nontraditional stabilizers: a review”. Cleaner Engineering and Technology, 2021, 4, 100159. https://doi.org/10.1016/j.clet.2021.100159. ISSN 2666-7908.
[38] H. Huang, R. N. Bird, and O. A. Heidrich, “review of the use of recycled solid waste materials in asphalt pavements”. Resour. Conserv. Recycl., 2007, 52, p.p. 58–73. https://doi.org/ 10.1016/j.resconrec.2007.02.002.
[39] N. J. Santero, E. Masanet, and Horvath. “A Life-cycle assessment of pavements”. Part I: critical review. Resour. Conserv. Recycl., 2011, 55, p.p. 801–809. https://doi.org/10.1016/j. resconrec.2011.03.010.
[40] A. Arulrajah, J. Piratheepan, M. M. Disfani, and M. W. Asce, “Bo Geotechnical and geoenvironmental properties of recycled construction and demolition materials in pavement subbase applications”. J. Mater. Civ. Eng., 2013, 25, p.p. 1077–1088. https://doi.org/ 10.1061/(ASCE)MT.1943-5533.0000652.
[41] C. A. Richter, “Tratamento de Lodos de Estações de Tratamento de Águas, 1st ed”.; Edgard Blücher: São Paulo, Brazil, 2001.
[42] Unesco. “The United Nations World Water Development Report 2019”: Leaving No One Behind; Unesco World Water Assessment Programme: Paris, France, 2019; Volume 96, ISBN 9789231003097.
[43] United Nations. The 17 Goals. Available online: https://sdgs.un.org/goals (accessed on 8 July 2021).
[44] S. S. Garcia, “Caracterização de Argamassas Auto-Compactáveis com Adição de Lamas Provenientes de uma ETA”. Master’s Thesis, Universidade de Beira Interior, Covilhã, Portugal, 2011.
[45] L. G. G. Godoy, A. B. de Rohden, M. R. Garcez, E. B. Costa, S. da Da Dalt, and J. J. Andrade, “Valorization of " water treatment sludge " waste by application as supplementary cementitious material”. Constr. Build. Mater. 2019, 223, 939–950. [CrossRef]
[46] S. Uçaroglu, and U. Alkan, “Composting of waste" water treatment sludge " with different bulking agents”. J. Air Waste Manag. Assoc. 2016, 66, 288–295. [CrossRef]
[47] V. T. Chaves, D. M. Morita, I. R. S. Chao, R. C. Contrera, “Phosphorus recovery from water treatment with a sustainable and low-cost treatment system”. Water Sci. Technol. 2019, 80, 846–854. [CrossRef]
[48] K. C. B. Krishna, A. Aryal, and T. Jansen, “Comparative study of ground water treatment plants sludges to remove phosphorous from wastewater”. J. Environ. Manag. 2016, 180, 17–23. [CrossRef]
[49] H. A. Elliot, B. A. Dempsey, D. W. Hamilton, and J. R. DeWolfe, “Land Application of " water treatment sludge "s: Impact and Management; Foundation Report”; American Water Works Association: Denver, CO, USA, 1990.
[50] C. L. B. M. Cruz, A. S. Santos, and E. Ritter, “Study on the viability of incorporation of the water treatment plant sludge in the substrate for the production of native species to the Atlantic Forest (Brazil)”. In Proceedings of the 6th International Conference on Sustainable Solid Waste Management: NAXOS2018, Naxos Island, Greece, 13–16 June 2018; Volume 1, pp. 1–8.
[51] S. A. Abo-El-Enein, A. Shebl, and S. A. Abo El-Dahab, “Drinking " water treatment sludge " as an efficient adsorbent for heavy metals removal”. Appl. Clay Sci. 2017, 146, 343–349.
[52] E. Siswoyo, Y. Mihara, and S. Tanaka, “Determination of key components and adsorption capacity of a low-cost adsorbent based on sludge of drinking water treatment plant to adsorb cadmium ion in water”. Appl. Clay Sci. 2014, 97–98, 146–152. [CrossRef]
[53] D. Petruzzelli, A. Volpe, N. Limoni, and R. Passino, “Coagulants removal and recovery from water clarifier sludge”. Water Res. 2000, 34, 2177–2182. [CrossRef]
[54] P. S. Scalize, L. M. D. Souza, and A. Albuquerque, “Reuse of alum sludge for reducing flocculant addition in water treatment plants”. Environ. Prot. Eng. 2019, 45, 57–70. [CrossRef]
[55] D. Raghu, H. N. Hsieh, T. Neilan, and C. T. Yih, “Water treatment plant sludge as landfill liner”. In Proceedings of the Geotechnical Practice for Waste Disposal’87. A Specialty Conference, Ann Arbor, MI, USA, 15–17 June 1987; ASCE-American Society of Civil Engineers: New York, NY, USA, 1987; pp. 744–758.
[56] A. Dos Santos Silva and P. S. Hemsi, “Efeito do teor de sólidos na resistência ao cisalhamento de um lodo de ETA visando seu uso em cobertura diária de aterros sanitários”. In Proceedings of the XIX Congresso Brasileiro de Mecânica dos Solos e Engenharia Geotécnica—COBRAMSEG, Salvador, Brazil, 28 August–1 September 2018; ABMS, Ed.; ABMS: Salvador, Brazil, 2018.
[57] A. J. Roque and M. Carvalho, “Possibility of using the drinking water sludge as geotechnical material”. In Proceedings of the 5th ICEG Environmental Geotechnics: Opportunities, Challenges and Responsibilities for Environmental Geotechnics—Proceedings of the ISSMGE 5th International Congress, Cardiff, UK, 26–30 June 2006; Volume II.
[58] E. F. Santos, J. Scapin, and R. J. B. Pinheiro, “Relação entre o teor de lodo de ETA e parâmetros de compactação em misturas com solo siltoso da região de Santa Maria-RS”. In Proceedings of the X Seminário de Engenharia Geotécnica do Rio Grande do Sul—GEORS2019, Santa Maria, Rio Grande do Sul, Brazil, 13–14 June 2019; pp. 1-9.
[59] A. O. Babatunde and Y. Q. Zhao, “Constructive approaches toward water treatment works sludge management: An international review of beneficial reuses”. Crit. Rev. Environ. Sci. Technol. 2007, 37, 129–164. [CrossRef]
[60] S. De Carvalho Gomes, J. L. Zhou, W. Li, and G. Long, “Progress in manufacture and properties of construction materials incorporating " water treatment sludge ": A review”. Resour. Conserv. Recycl. 2019, 145, 148–159. [CrossRef]
[61] J. K. Tsugawa, R. C. Romano, R. G. Pileggi, and M. E. G. Boscov, “Review: Rheology principles applied to geotechnical engineering”. Appl. Rheol. 2019, 29, 202–221. [CrossRef]
[62] J. T. Novak and D. C. Calkins, “Sludge dewatering and its physical properties”. Journal of the American Water Works Asso- ciation, 1975, 67, p.p. 42–45.
[63] D. Raghu and H. N. Hsieh, “Material properties of water treatment plant sludges”. The International Journal of Civil Engi- neering for Practicing and Design Engineers, 5(5), 1986, p.p. 927–941.
[64] P. Geuzens and W. Dieltjens, “Mechanical strength determi- nation of cohesive sludges – a Belgian research project on sludge consistency”. In Recent developments in " water treatment sludge " proces- sing. Edited by F. Colin, P.J. Newman, and Y.J. Puolanne. Elsevier, London., 1991, pp. 14–23.
[65] M.C. Wang, J.Q. Hull, M., Jao, B.A., Dempsey, and D.A. Cornwell, “Engineering treatment of " water treatment sludge ". Journal of Environmental Engineering, ASCE”, 1992, 118(6): p.p. 848–864. doi:10.1061/(ASCE)0733-9372(1992)118:6(848).
[66] S. Lim, W. Jeon, J. Lee, K. Lee, and N. Kim, “Engineering properties of water/wastewater-treatment sludge modified by hydrated lime, fly ash and loess”. Water Research, 2002, 36: 4177– 4184. doi:10.1016/S0043-1354(02)00150-1.
[67] M.C. Wang and W. Tseng, “Permeability behavior of a " water treatment sludge ". Journal of Geotechnical Engineering”, ASCE, 1993, 119(10): 1672–1677. doi:10.1061/(ASCE)0733-9410 (1993)119:10(1672).
[68] J. Han, “Principles and Practice of ground improvement” John Wily, Sons, Hoboken, New Jersey, Canada, 2015.
[69] U. S. Arya and K. Vijayan. “Effect of " water treatment sludge " on the Geotechnical Properties of Clayey Soil”. International Journal of Engineering Research & Technology (IJERT) ISSN: 2278-0181 ICART - 2022 Conference Proceedings. (2022) Volume 10, Issue 06.
[70] M. Mokhtari. M. Dehghani, “Swell-Shrink Behavior of " expansive soil "s, Damage and Control”, Electronic journal of Geotechnical Engineering (EJJE) Vol. 17 [2012], Bund. R, p.p. 2673-2682
[71] F. G. Bell, “Engineering Geology,” Elsevier, Waltham, 2007.
[72] M. Yenes, J. Nespereira, J. A. Blanco, M. Suárez, S. Mon- terrubio and C. Iglesias, “Shallow Foundations on Expan- sive Soils: A Case Study of the El Viso Geotechnical Unit, Salamanca, Spain,” Bulletin of Engineering Geology and the Environment, Vol. 71, No. 1, 2010, pp. 51-59. doi:10.1007/s10064-010-0337-4
[73] M. Ozer, R. Ulusay and N. S. Isik, “Evaluation of Dam- age to Light Structures Erected on a Fill Material Rich in " expansive soil ",” Bulletin of Engineering Geology and the Environment, 2011, pp. 1-16. doi:10.1007/s10064-011-0395-2
[74] R. E. Hunt, “Characteristics of Geologic Materials and Formations (A Field Guide for Geotechnical Engineers),” Taylor & Francis, London, 2007.
[75] F. G. Bell, “Engineering Properties of Soils and Rocks,” Blackwell Science, Oxford, 2000.
[76] T. S. Umesh, S. V. Dinesh, and P. V. Sivapullaiah, “Char- acterization of Dispersive Soils,” Materials Sciences and Applications, Vol. 2, No. 6, 2011, pp. 629-633. doi:10.4236/msa.2011.26085
[77] F. G. Bell and M. G. Culshaw, “Problem Soils: A Review from a British Perspective,” Proceeding of Problematic Soils Conference, Nottingham, 8 November 2001, pp. 1- 37.
[78] A. Tarantino, E. Romero, and Y. J. Cui, “Laboratory and Field Testing of Unsaturated Soils,” Springer Science, New York, 2009. doi:10.1007/978-1-4020-8819-3
[79] T. Walthman, “Foundation of Engineering Geology,” Spon Press, London, 2009.
[80] A. Jotisankasa, “Collapse Behavior of a Compacted Silty Clay,” Ph.D. Thesis, Imperial College, London, 2005.
[81] G. Bolzon, “Collapse Mechanisms at the Foundation In- terface of Geometrically Similar Concrete Gravity Dams,” Engineering Structures, Vol. 32, No. 3, 2010, p.p. 1304-1311. doi: 10.1016/j.engstruct.2010.01.008
[82] S. H. Liua, D. A. Sun and Y. Wang, “Numerical Study of Soil Collapses Behavior by Discrete Element Modeling,” Computers and Geotechnics, Vol. 30, No. 3, 2003, pp.399-408. doi:10.1016/S0266-352X (03)00016-8
[83] B. M. Das, “Principles of Geotechnical Engineering,” Thomson, New York, 2009.
[84] S. Azam, “Collapse and Compressibility Behavior of Arid Calcareous Soil Formations,” Bulletin of Engineering Ge- ology and the Environment, Vol. 59, No. 3, 2000, pp. 211- 217. doi:10.1007/s100640000060
[85] M. R. Yakov, “Influence of Physical Properties on De- formation Characteristics of " Collapsible Soils ",” Engineer- ing Geology, Vol. 92, No. 1-2, 2007, pp. 27-37. doi: 10.1016/j.enggeo.2007.03.001
[86] A. Al-Taie, B. Albusoda, S. Alabdullah, A. Dabdab, “An Experimental Study on Leaching in Gypseous Soil Subjected to Triaxial Loading,” Geotech Geol Eng, 2019, vol. 37, no. 6, pp. 5199–5210, https://doi.org/10.1007/s10706-019-00974-2.
[87] D. Al-Jeznawi, M. Sanchez, A. Al-Taie, M. Zielinski, “Experimental studies on curling development of artificial soils,” Journal of Rock Mechanics and Geotechnical Engineering, 2019, vol. 11 no. 6, pp.1264-1273.
[88] B. Kermani, S. Stoffels, M. Xiao, T. Qiu,“Experimental Simulation and Quantification of Migration of Subgrade Soil into Subbase under Rigid Pavement Using Model Mobile Load Simulator,” Journal of Transportation Engineering, Part B: Pavements, vol. 144, no. 4, pp. 1-14, 2018.
[89] K. Tiwari, S. Sahil Khandelwal, A. Jatale, “Performance, Problems and Remedial Measures for the Structures Constructed on " expansive soil " in Malwa Region, India,” International Journal of Emerging Technology and Advanced Engineering Website: www.ijetae.com, Certified Journal, vol.2, no.12, 2012.
[90] R. D. Tyagi, D. Coullard, and F. T. Fran (1988) “Heavy metal removal from anaerobically digested sludge by chemical and microbiological methods”. Environ Pollut 50:295–316
[91] Y.F. Meknassi, R.D. Tyagi, and K.S. Narasiah (2000) “Simultaneous " water treatment sludge " digestion and metal leaching: effect of aeration”. Process Biochem 36:263–273
[92] J. Dai, M. Xu, J. Chen, X. Yang, and Z. Ke (2007) “PCDD/Fs, PAHs and heavy metals in the " water treatment sludge " from six wastewater treatment plants in Beijing, China”. Chemosphere 66(2):353–361
[93] M. Ghazy, M. Dockhorn, and N. Dichtl (2009) “" water treatment sludge " management in Egypt: current status and perspectives towards a sustainable agricultural use”. World Acad Sci Eng Technol 57:299–307. http://www.waset.org/journals/waset/v57/v57-53.pdf
[94] G. Hoffmann, D. Schignitz, and B. Bilitewski “Comparing different methods of analytical " water treatment sludge " and " water treatment sludge " ash”. Desalination, 2010, 250:399–403.
[95] K. P. Singh, D. Mohan, S. Sinha, and R. Dalwani “Impact assessment of treated/untreated wastewater toxicants discharged by water treatment treatment plants on health, agricultural, and environmental quality in the wastewater disposal area”. Chemosphere, 2004, 55(2):227–255
[96] A. Pathak, M. G. Dastidar, and T. R. “Sreekrishnan Bioleaching of heavy metals from anaerobi- cally digested " water treatment sludge ". J Environ Sci Health A, 2008, 43(4):402–411.
[97] M. Carballa, F. Omil, and J. M. “Lema Influence of different pretreatments on anaerobically digested sludge characteristics: suitability for final disposal”. Water Air Soil Pollut, 2009, 199: p.p. 311–321.
[98] M. Carballa, G. Manterola, L. Larrea, T. Ternes, F. Omil, and J.M. Lema “Influence of ozone pre-treatment on sludge anaerobic digestion: removal of pharmaceutical and personal care products”. Chemosphere, 2007, 67(7):1444–1452
[99] D. M. Dacera, S. Babel, and P. Parkpian “Potential for land application of contaminated " water treatment sludge " treated with fermented liquid from pineapple wastes”. J Hazard Mater, 2009, 167:866–872.
[100] S. K. Kamil, V. Pinarli, and G. Salihoglu “Solar drying in sludge management in Turkey”. Renewable Energy, 2007, 32:1661–1675
[101] ECE (2001) "Environment DG and UKWIR (UK Water Industry Research)": A conference on sludge 30 and 31 October 2001 in Brussels. http://www.ukwir.org/site/web/content/home.
[102] R. K. Bastian “The biosolids treatment, beneficial use, and disposal in the USA”. Eur Water Pollut Control, 1997, 7(2):62–79
[103] R. P. Singh and M. Agrawal, “Potential benefits and risks of land application of " water treatment sludge ". Waste Manage, 2008, 28:347–358
[104] X. Wang, T. Chen, Y. Ge, and Y. Jia, “Studies on land application of " water treatment sludge " and its limiting factors”. J Hazard Mater, 2008, 160:554–558
[105] A. Fuentes, M. Llore´ns, J. Sa´ez, M.J. Aguilar, J.F. Ortun˜o, and V.F. Meseguer, “Phytotoxicity and heavy metals speciation of stabilised " water treatment sludge "s. J Hazard Mater A, 2004, 108:161–169
[106] E. C. (European Commission) (2001c) Disposal and recycling routes for " water treatment sludge ", Part 3 regulatory report. Office for Official Publications of the European Communities, Luxemburg, 2001
[107] N. T. Basta, J. A. Ryan, and R. L. “Chaney Trace element chemistry in residual-treated soil: key concepts and metal bioavailability”. Environ Qual, 2005, 34:49–63
[108] M. Aamir , Z. Mahmood , Aqsa Nisar, Amjad Farid , Syyed Adnan Raheel Shah, Mudassir Abbas, Muhammad Ismaeel, Tanveer Ahmed Khan and Muhammad Waseem” Perfor mance Evaluation of Sustainable Soil Stabilization Process Using Waste Materials”Professes,7(6),378 Special issue (2019), p.p. 1-16 https://Doi.Org/10.3390/Pr7060378.
[109] A. Mosallaei, H. Eteraf, B. Kovács, and V. Mikita, (2022). “Effect of Sewage Sludge Ash on Collapsible Soil”. In: El-Askary, H., Erguler, Z.A., Karakus, M., Chaminé, H.I. (eds) Research Developments in Geotechnics, Geo-Informatics and Remote Sensing. CAJG 2019. Advances in Science, Technology & Innovation. Springer, Cham. https://doi.org/10.1007/978-3-030-72896-0_10.
[110] J. T. Filho, G.M. Barbosa, and A. A. Ribon, “WATER-DISPERSIBLE CLAY IN SOILS TREATED WITHSEWAGE SLUDGE”. R. Bras. Ci. Solo, 34:1527-1534, 2010. | ||
Statistics Article View: 80 PDF Download: 40 |