[1] M. De, L.C. Lanfranchi, Benefits of Compressor Inlet Air Cooling for Gas Turbine Cogeneration Plants, 1996.
[2] G. Zhang, R. Zhu, G. Xie, S. Li, B. Sundén, Optimization of cooling structures in gas turbines: A review, Chinese J. Aeronaut. 35 (2022) 18–46. https://doi.org/10.1016/j.cja.2021.08.029.
[3] R. Gareta, L.M. Romeo, A. Gil, Methodology for the economic evaluation of gas turbine air cooling systems in combined cycle applications, Energy. 29 (2004) 1805–1818. https://doi.org/10.1016/j.energy.2004.03.040.
[4] G. Comodi, M. Renzi, F. Caresana, L. Pelagalli, Limiting the Effect of Ambient Temperature on Micro Gas Turbines (MGTs) Performance Through Inlet Air Cooling (IAC) Techniques: An Experimental Comparison between Fogging and Direct Expansion, Energy Procedia. 75 (2015) 1172–1177. https://doi.org/10.1016/j.egypro.2015.07.561.
[5] M.M. Alhazmy, Y.S.H. Najjar, Augmentation of gas turbine performance using air coolers, Appl. Therm. Eng. 24 (2004) 415–429. https://doi.org/10.1016/j.applthermaleng.2003.09.006.
[6] M.M. Alhazmy, R.K. Jassim, G.M. Zaki, Performance enhancement of gas turbines by inlet air-cooling in hot and humid climates, Int. J. Energy Res. 30 (2006) 777–797. https://doi.org/10.1002/er.1184.
[7] O.R. AL-Hamdan, A.A. Saker, Studying the Role Played by Evaporative Cooler on the Performance of GE Gas Turbine Existed in Shuaiba North Electric Generator Power Plant, Energy Power Eng. 05 (2013) 391–400. https://doi.org/10.4236/epe.2013.56041.
[8] E. Kakaras, A. Doukelis, A. Prelipceanu, S. Karellas, Inlet air cooling methods for gas turbine based power plants, J. Eng. Gas Turbines Power. 128 (2006) 312–317. https://doi.org/10.1115/1.2131888.
[9] Q.M. Jaber, J.O. Jaber, M.A. Khawaldah, Assessment of Power Augmentation from Gas Turbine Power Plants Using Different Inlet Air Cooling Systems, 2007.
[10] E. Matjanov, Gas turbine efficiency enhancement using absorption chiller. Case study for Tashkent CHP, Energy. 192 (2020). https://doi.org/10.1016/j.energy.2019.116625.
[11] E. Pyzik, S. Jarzebowski, A. Miller, Impact of inlet air cooling on gas turbine performance, J. Power Technol. 92 (2012) 249–257.
[12] Y. Al-sinaiyah, S. Arabia, D. Technology, Thermo-Economics Analysis Of Gas Turbines Power Plants With Cooled Air Intake, (2010) 26–42.
[13] A.A. El-Shazly, M. Elhelw, M.M. Sorour, W.M. El-Maghlany, Gas turbine performance enhancement via utilizing different integrated turbine inlet cooling techniques, Alexandria Eng. J. 55 (2016) 1903–1914. https://doi.org/10.1016/j.aej.2016.07.036.
[14] R. Radchenko, A. Radchenko, S. Serbin, S. Kantor, B. Portnoi, Gas turbine unite inlet air cooling by using an excessive refrigeration capacity of absorption-ejector chiller in booster air cooler; Gas turbine unite inlet air cooling by using an excessive refrigeration capacity of absorption-ejector chiller in booster, (n.d.). https://doi.org/10.1051/e3sconf/2018.
[15] T.K. Ibrahim, M.K. Mohammed, O.I. Awad, R. Mamat, M.K. Abdolbaqi, Thermal and Economic Analysis of Gas Turbine Using Inlet Air Cooling System, MATEC Web Conf. 225 (2018) 1–10. https://doi.org/10.1051/matecconf/201822501020.
[16] A. Radchenko, E. Trushliakov, K. Kosowski, D. Mikielewicz, M. Radchenko, Innovative turbine intake air cooling systems and their rational designing, Energies. 13 (2020). https://doi.org/10.3390/en13236201.
[17] M.R. Majdi Yazdi, F. Ommi, M.A. Ehyaei, M.A. Rosen, Comparison of gas turbine inlet air cooling systems for several climates in Iran using energy, exergy, economic, and environmental (4E) analyses, Energy Convers. Manag. 216 (2020) 112944. https://doi.org/10.1016/j.enconman.2020.112944.
[18] A.M. Abubaker, A.D. Ahmad, B.B. Singh, N.K. Akafuah, K. Saito, Multi-objective linear-regression-based optimization of a hybrid solar-gas turbine combined cycle with absorption inlet-air cooling unit, Energy Convers. Manag. 240 (2021) 114266. https://doi.org/10.1016/j.enconman.2021.114266.
[19] M.F. Elberry, A.A. Elsayed, M.A. Teamah, A.A. Abdel-Rahman, A.F. Elsafty, Performance improvement of power plants using absorption cooling system, Alexandria Eng. J. 57 (2018) 2679–2686. https://doi.org/10.1016/j.aej.2017.10.004.
[20] M. Salehi, H. Eivazi, M. Tahani, M. Masdari, Analysis and prediction of gas turbine performance with evaporative cooling processes by developing a stage stacking algorithm, J. Clean. Prod. 277 (2020) 122666. https://doi.org/10.1016/j.jclepro.2020.122666.
[21] M. Renzi, F. Caresana, L. Pelagalli, G. Comodi, Enhancing micro gas turbine performance through fogging technique: Experimental analysis, Appl. Energy. 135 (2014) 165–173. https://doi.org/10.1016/j.apenergy.2014.08.084.
[22] S. Sanaye, M. Tahani, Analysis of gas turbine operating parameters with inlet fogging and wet compression processes, Appl. Therm. Eng. 30 (2010) 234–244. doi.org/10.1016/j.applthermaleng.2009.08.011.
[23] K.H. Kim, H.J. Ko, K. Kim, H. Perez-Blanco, Analysis of water droplet evaporation in a gas turbine inlet fogging process, Appl. Therm. Eng. 33–34 (2012) 62–69. https://doi.org/10.1016/j.applthermaleng.2011.09.012.
[24] M.A. Ehyaei, A. Mozafari, M.H. Alibiglou, Exergy, economic & environmental (3E) analysis of inlet fogging for gas turbine power plant, Energy. 36 (2011) 6851–6861. https://doi.org/10.1016/j.energy.2011.10.011.
[25] H. Athari, S. Soltani, A. Bölükbaşi, M.A. Rosen, T. Morosuk, Comparative exergoeconomic analyses of the integration of biomass gasification and a gas turbine power plant with and without fogging inlet cooling, Renew. Energy. 76 (2015) 394–400. https://doi.org/10.1016/j.renene.2014.11.064.
[26] M. Mostafa, Y.A. Eldrainy, M.M. EL-Kassaby, A comprehensive study of simple and recuperative gas turbine cycles with inlet fogging and overspray, Therm. Sci. Eng. Prog. 8 (2018) 318–326. https://doi.org/10.1016/j.tsep.2018.09.006.
[27] O. Zeitoun, Two-stage evaporative inlet air gas turbine cooling, Energies. 14 (2021). https://doi.org/10.3390/en14051382.
[28] S.O. Oyedepo, O. Kilanko, Thermodynamic analysis of a gas turbine power plant modeled with an evaporative cooler, Int. J. Thermodyn. 17 (2014) 14–20. https://doi.org/10.5541/ijot.480.
[29] T. Srinivas, D. Vignesh, Performance enhancement of GT-ST power plant with inlet air cooling using lithium bromide/water vapour absorption refrigeration system Performance enhancement of GT-ST power plant with inlet air cooling, 2012.
[30] D.A. Pinilla Fernandez, B. Foliaco, R.V. Padilla, A. Bula, A. Gonzalez-Quiroga, High ambient temperature effects on the performance of a gas turbine-based cogeneration system with supplementary fire in a tropical climate, Case Stud. Therm. Eng. 26 (2021) 101206. https://doi.org/10.1016/j.csite.2021.101206.
[31] A. De Pascale, F. Melino, M. Morini, Analysis of inlet air cooling for IGCC power augmentation, Energy Procedia. 45 (2014) 1265–1274. https://doi.org/10.1016/j.egypro.2014.01.132.
[32] M. Ghanaatpisheh, M. Pakaein, Optimization and increase production and efficiency of gas turbines GE-F9 using Media evaporative cooler in fars combined cycle power plant, 30th Power Syst. Conf. PSC 2015. 8 (2017) 241–247. https://doi.org/10.1109/IPSC.2015.7827755.
[33] R. Bhargava, C.B. Meher-Homji, Parametric analysis of existing gas turbines with inlet evaporative and overspray fogging, J. Eng. Gas Turbines Power. 127 (2005) 145–158. https://doi.org/10.1115/1.1712980.
[34] W.J. Stannard, By and by, Notes Queries. s2-VI (1858) 323–324. https://doi.org/10.1093/nq/s2-VI.147.323-a.
[35] C.B. Meher-homji, Inlet Fogging Of Gas Turbine Engines Part A : Theory , Psychrometrics And Fog Generation ., Ratio. (2000).
[36] S. Ingistov, FOG system performance in power augmentation of heavy duty power generating gas turbins model 7EA, Proc. ASME Turbo Expo. 3 (2000) 1–11. https://doi.org/10.1115/2000-GT-0305.
[37] Z. Domachowski, M. Dzida, Inlet Air Fogging of Marine Gas Turbine in Power Output Loss Compensation, Polish Marit. Res. 22 (2015) 53–58. https://doi.org/10.1515/pomr-2015-0071.
[38] K.Y. Al-Salman, Q.A. Rishack, S.J. Al-Mousawi, Parametric Study Of Gas Turbine Cycle With Fogging System, 2007.
[39] K.H. Kim, H. Perez-Blanco, Potential of regenerative gas-turbine systems with high fogging compression, Appl. Energy. 84 (2007) 16–28. https://doi.org/10.1016/j.apenergy.2006.04.008.
[40] Presented by Heavy Duty GT - Effects of Ambient Temp, Lithium. (n.d.).
[41] E. Ebrahimnia-Bajestan, V. Etminan, M. Moghiman, M. Boghrati, M. Moghiman, E.E. Bajestan, Performance Improvement Of Simple Cycle Gas Turbine By Using Fogging System As Intake Air Cooling System Production of Biodiesel (Lab/Semi Industrial) View project Nanofluid Today View project Performance Improvement Of Simple Cycle Gas Turbine By Using Fog., 2007.
[42] S.S.M. Tehrani, M.S. Avval, N. Alvandifar, H. Rabiei, Technical and economic evaluation of gas turbine inlet air cooling in a combined cycle power plant, 2011 Proc. 3rd Conf. Therm. Power Plants, CTPP 2011. (2011).
[43] C. Deng, A.T. Al-Sammarraie, T.K. Ibrahim, E. Kosari, F. Basrawi, F.B. Ismail, A.N. Abdalla, Air cooling techniques and corresponding impacts on combined cycle power plant (CCPP) performance: A review, Int. J. Refrig. 120 (2020) 161–177. https://doi.org/10.1016/j.ijrefrig.2020.08.008.
[44] M.A. Ehyaei, M. Tahani, P. Ahmadi, M. Esfandiari, Optimization of fog inlet air cooling system for combined cycle power plants using genetic algorithm, Appl. Therm. Eng. 76 (2015) 449–461. https://doi.org/10.1016/j.applthermaleng.2014.11.032.
[45] index@www.simonsgreenenergy.com.au, (n.d.).
[46] A.K. Shukla, O. Singh, Performance evaluation of steam injected gas turbine based power plant with inlet evaporative cooling, Appl. Therm. Eng. 102 (2016) 454–464. https://doi.org/10.1016/j.applthermaleng.2016.03.136.
[47] T. Li, J. Liu, J. Wang, N. Meng, J. Zhu, Combination of two-stage series evaporation with non-isothermal phase change of organic Rankine cycle to enhance flue gas heat recovery from gas turbine, Energy Convers. Manag. 185 (2019) 330–338. https://doi.org/10.1016/j.enconman.2019.02.006.
[48] S. Boonnasa, P. Namprakai, T. Muangnapoh, Performance improvement of the combined cycle power plant by intake air cooling using an absorption chiller, Energy. 31 (2006) 2036–2046. https://doi.org/10.1016/j.energy.2005.09.010.
[49] M. Tahmasebzadehbaie, S. Najafi Nobar, M. Derahaki, Thermodynamic analysis of the NGL plant in a sample gas refinery and problem solving by designing an absorption chiller, Appl. Therm. Eng. 159 (2019) 113963. https://doi.org/10.1016/j.applthermaleng.2019.113963.
[50] H.A. El-Sattar, S. Kamel, D. Vera, F. Jurado, Tri-generation biomass system based on externally fired gas turbine, organic rankine cycle and absorption chiller, J. Clean. Prod. 260 (2020) 121068. https://doi.org/10.1016/j.jclepro.2020.121068.
[51] B. Li, S. sen Wang, K. Wang, L. Song, Thermo-economic analysis of a combined cooling, heating and power system based on carbon dioxide power cycle and absorption chiller for waste heat recovery of gas turbine, Energy Convers. Manag. 224 (2020). https://doi.org/10.1016/j.enconman.2020.113372.
|