[1] V. R. Sivakumar, O. R. Kavitha, G. Prince Arulraj, and V. G. Srisanthi, “An experimental study on combined effects of glass fiber and Metakaolin on the rheological, mechanical, and durability properties of self-compacting concrete,” Appl. Clay Sci., vol. 147, no. January, pp. 123–127, 2017, doi: 10.1016/j.clay.2017.07.015.
[2] S. Rasiah, “Properties of Flowing Concrete and Self-Compacting Concrete With High-Performance Superplasticier Properties of Flowing Concrete and Self-Compacting Concrete With High-Performance Superplasticier,” no. September, pp. 17–20, 2015.
[3] R. Dachowski and P. Kostrzewa, “The Use of Waste Materials in the Construction Industry,” Procedia Eng., vol. 161, pp. 754–758, 2016, doi: 10.1016/j.proeng.2016.08.764.
[4] B. Franco, A. M. Domingues, N. D. A. Africano, R. M. Deus, R. Aparecida, and G. Battistelle, “Sustainability in the Civil Construction Sector Supported by,” Infrastructures, vol. 7, no. 43, pp. 1–23, 2022.
[5] R. Sharma and P. P. Bansal, “Use of different forms of waste plastic in concrete - A review,” J. Clean. Prod., vol. 112, pp. 473–482, 2016, doi: 10.1016/j.jclepro.2015.08.042.
[6] A. I. Al-Hadithi and N. N. Hilal, “The possibility of enhancing some properties of self-compacting concrete by adding waste plastic fibers,” J. Build. Eng., vol. 8, pp. 20–28, 2016, doi: 10.1016/j.jobe.2016.06.011.
[7] P. Croce, P. Formichi, and F. Landi, “Climate change: Impacts on climatic actions and structural reliability,” Appl. Sci., vol. 9, no. 24, 2019, doi: 10.3390/app9245416.
[8] A. Colette, “Case studies on climate change and World Heritage ,” UNESCO World Heritage Centre, 2007.
[9] G. Giaccio, M. E. Bossio, M. C. Torrijos, and R. Zerbino, “Contribution of fiber reinforcement in concrete affected by alkali-silica reaction,” Cem. Concr. Res., vol. 67, pp. 310–317, 2015, doi: 10.1016/j.cemconres.2014.10.016.
[10] G. Giaccio, M. C. Torrijos, C. Milanesi, and R. Zerbino, “Alkali–silica reaction in plain and fibre concretes in field conditions,” Mater. Struct. Constr., vol. 52, no. 2, pp. 1–15, 2019, doi: 10.1617/s11527-019-1332-2.
[11] A. C. Bhogayata and N. K. Arora, “Impact strength, permeability and chemical resistance of concrete reinforced with metalized plastic waste fibers,” Constr. Build. Mater., vol. 161, pp. 254–266, 2018, doi: 10.1016/j.conbuildmat.2017.11.135.
[12] J. V. Marshall Raman, “Mechanical Studies of Self Compacting Concrete Using Plastic Aggregate,” Int. J. Res. Appl. Sci. Eng. Technol., vol. V, no. II, pp. 226–233, 2017, doi: 10.22214/ijraset.2017.2036.
[13] B. Preethiwini, S. Bharaniraja, M. Aravindhan, B. B. Pradeep, and R. Jothiprasath, “Comparative study on durability characteristics of high strength self compacting concrete,” Int. J. Civ. Eng. Technol., vol. 8, no. 3, pp. 942–949, 2017.
[14] G. S. Vijaya, V. G. Ghorpade, and H. Sudarsana Rao, “The Behaviour of Self Compacting Concrete with Waste Plastic Fibers When Subjected to Chloride Attack.,” Mater. Today Proc., vol. 5, no. 1, pp. 1501–1508, 2018, doi: 10.1016/j.matpr.2017.11.239.
[15] R. H. Faraj, A. F. H. Sherwani, and A. Daraei, “Mechanical, fracture and durability properties of self-compacting high strength concrete containing recycled polypropylene plastic particles,” J. Build. Eng., vol. 25, p. 100808, 2019, doi: 10.1016/j.jobe.2019.100808.
[16] Properties of Portland Cement, Iraqi Specification No.5, 2019.
[17] Natural Sources for aggregate that is used in concrete and construction, Iraqi Specification No.45, Baghdad, 1984.
[18] Standard Test Method for Relative Density (Specific Gravity) and Absorption of Fine Aggregate, ASTM C128-15, 2015.
[19] The European Guidelines for Self Compacting Concrete Specification, Production and Use, EFNARC, 2002.
[20] The European Guidelines for Self Compacting Concrete Specification, Production and Use, EFNARC, 2005.
[21] Standard Test Method for Potential Alkali Reactivity of Aggregates (Mortar-Bar Method), ASTM C1260-07, 2007.
[22] M.K. Mohammed "Multi-scale Response of Sustainable Self- Compacting Concrete ( SCC ) to Carbonation and Chloride Penetration" Ph.D. dissertation, Univ. of Nottingham ,” 2015.
[23] Concrete, hardened: accelerated chloride penetration, BUILD, Nord Test. 443, 1995.
[24] J. Jaskowska-Lemańska, M. Kucharska, J. Matuszak, P. Nowak, and W. Łukaszczyk, “Selected Properties of Self-Compacting Concrete with Recycled PET Aggregate,” Materials (Basel)., vol. 15, no. 7, 2022, doi: 10.3390/ma15072566.
[25] W. K. Aswatama, H. Suyoso, N. U. Meyfa, and P. Tedy, “The Effect of Adding PET (Polyethylen Terephthalate) Plastic Waste on SCC (Self-Compacting Concrete) to Fresh Concrete Behavior and Mechanical Characteristics,” J. Phys. Conf. Ser., vol. 953, no. 1, 2018, doi: 10.1088/1742-6596/953/1/012023.
[26] M. H. Mohammed “Production of SCC Using Local Waste Materials: Statistical Approach,” MSC thesis, Univ. Anbar, Coll. Eng., 2019.
[27] D. Bondar, C. J. Lynsdale, N. B. Milestone, and N. Hassani, “Sulfate Resistance of Alkali Activated Pozzolans,” Int. J. Concr. Struct. Mater., vol. 9, no. 2, pp. 145–158, 2015, doi: 10.1007/s40069-014-0093-0.
[28] H. Biricik, F. Aköz, F. Türker, and I. Berktay, “Resistance to magnesium sulfate and sodium sulfate attack of mortars containing wheat straw ash,” Cem. Concr. Res., vol. 30, no. 8, pp. 1189–1197, 2000, doi: 10.1016/S0008-8846(00)00314-8. |