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Abstract:  

The complexity of software has increased because of the development as well as the difficulty of 

requirements during the development of software, or to add new features that eventually lead to reduce 

the quality of the software as a whole. Software refactoring can be defined as included processes in 

the maintenance period of a software life cycle, and it is a technique to clean the software code from 

code bad smell and to improve the internal structure of the software, in addition to increasing the 

quality of software by using a set of activities without changing the external behavior of a software. 

Researchers have been developing techniques to reform software during the code or design standard 

to decrease the effort and time required for maintenance processes. This paper provides a systematic 

review of the literature for 17 studies of code standards, An automatic search is utilized in the digital 

libraries to look for the relevant studies that were published from 2014 to 2021, the best five researchers 

are chosen in this subject, five studies or less are chosen for each depending on the number of reference 

in the database of scientific sites, or using an approach or a new method to get good results. Eventually, 

each paragraph is analyzed and mentions the method or algorithm used in rebuilding software, further 

the aims, and the result for each paper.                               
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 البرامج: مراجعة شاملة كود إعادة بناء 

 
 2،  دجان بشير طه *1ه منير يحيىبه

 
 ، العراق  قسم البرمجيات، كلية علوم الحاسوب والرياضيات، جامعة الموصل، الموصل 2*، 1

 :  خلاصة ال

ازداد تعقيد البرامج بسبب تعقيد وصعوبة المتطلبات الاضافية التي تتم  اثناء عملية تحديث البرامج او اضافة وظائف جديدة لقد      
والذي سيؤدي بالنهاية الى التقليل من جودة البرنامج ككل ، يمكننا تعريف اعادة بناء البرامج بانها احدى العمليات المضمنة في مرحلة  

حياة البرنامج وهي تقنية لتنظيف كود البرنامج من روائح الكود وتحسين البنية الداخلية للبرنامج وزيادة جودته الصيانة ضمن دورة  
باستخدام مجموعة من الفعاليات بدون تغيير السلوك الخارجي للبرنامج ، طور الباحثون تقنيات لإعادة هيكلة البرنامج على مستوى 

لتقل التصميم  او مستوى  البرنامج  الورقة مراجعة منهجية كود  الصيانة ، تضمنت هذه  اجراء عمليات  اثناء  اللازم  الوقت والجهد  يل 
للأدبيات لسبعة عشر دراسة على مستوى الكود ، ولقد اجرينا بحثاً آلياً في المكتبات الرقمية عن البحوث التي لها صلة بهذا الموضوع 

منا باختيار افضل خمسة باحثين في هذا المجال ولكل باحث تم اختيار خمسة  وق  2021  –  2014والمنشورة في الفترة الزمنية ما بين   

mailto:1*hibamoneer@uomosul.edu.iq
mailto:dujan_taha@uomosul.edu.iq
http://creativecommons.org/licenses/by/4.0/


Journal of Education and Science (ISSN 1812-125X), Vol: 32, No: 01, 2023 (71-80) 

72 
 

بحوث او اقل بالاعتماد على عدد مرات الاقتباس في قاعدة بيانات المواقع العلمية او استخدام منهج او طريقة جديدة والحصول على  
 .  المستخدمة في اعادة بناء البرنامج ، اهداف ونتائج كل ورقة واخيراً قمنا بتحليل كل ورقة وذكر الطريقة او الخوارزمية ،نتائج ممتازة

 
 اعادة بناء البرنامج ، تطوير البرنامج ، روائح الكود البرمجي  الكلمات المفتاحية :

  

1. Introduction 

The requirement of maintenance to evolve is considered an inherent aspect regarding software 

in real-world settings. The code is going to be more sophisticated and drifts away from the original 

design when software is expanded , adapted, and adjusted to new requirements, reducing the product's 

quality. As a result, software maintenance consumes the majority of total software development costs 

[1]. Better tools and processes of the software’s development do not alleviate the problem since their 

enhanced capacity is utilized for implementing more new requirements in the same time frame, 

increasing software's complexity. For handling such a spiral of complexity, solutions that minimize 

software complexity through incrementally increasing internal software quality are urgently needed. 

Refactoring is the study domain which that tackles such topic [2,3]. 

"A change made to the internal structure related to the software to make it cheaper to alter and 

simpler to comprehend without modifying its observable behavior," according to the definition [4]. 

Refactoring improves the process of software development through by making programs more 

comprehensible, making software bugs easier to identify, and speeding up development. Refactoring, 

according to numerous researchers, could take place at the design, code, or requirement levels [5][6] . 

        In literature, various automatic refactoring methods were proposed for assisting practitioners in 

spotting smelled code and proposing refactoring procedures for correcting them. Those methods 

depend on rules, data driven , machine learning, or software space in order to maximize predetermined 

metrics. All of such methods have advantages and disadvantages. Rule-based approaches, for instance, 

produce excellent outcomes, yet stating the rules regarding a bad smell is not often straightforward. 

Users normally define the rules manually, which is a complex and time consuming operation.  

Authors may use a fully  or semi-automatic algorithms to find a refactoring opportunity (also 

referred to as a design flaw or a bad smell). Semi-automatic algorithms allow users (usually experts) 

to examine the algorithm's decision before it is applied, while fully automated techniques implement 

the refactoring decision immediately to the software artifact. In the case when multiple scientific 

databases have been searched, over 4000 published research discussing automatic refactoring at the 

design or code levels were found in the present work. Those studies  have been published between the 

early 1990s and the year 2022. A total of 17 high quality publications relevant to automatic refactoring 

have been considered for this current work. Those scientific publications were chosen for their 

suggested novel approaches concering with regard to automatic refactoring, as well as their 

excellent outcomes and citations in the scientific sites database.  

2. Related work 

Many reviews of refactoring processes were undertaken as part of this study. [7] looked at 47 

publications and found 47 refactoring opportunities. The researcher thought about refactoring 

opportunities, methods for discovering refactoring opportunities, empirical techniques for validating 

identification approaches, and dataset types. The researcher  concluded that many of studies on 

refactoring opportunities concentrated on small datasets and ignored huge industrial datasets. Between 

2009 and 2013, the number of research tackling refactoring opportunities increased dramatically , In 

contrast to those researches, the researchers analyzed the refactoring procedures themselves, whereas 

the current work concentrates on the methodologies utilized to accomplish such operations in this 

research. [8] expanded on [7]'s SLR by looking at refactoring and code smells, with a focus upon on 

identifying code smells and anti-patterns. The study uncovered datasets and technologies that have 

been utilized in the research  that were detected. They indicated the most commonly utilized bad 
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smells in experiments. [9] gave an outline regarding the software refactoring and restructuring field. 

They covered the methods utilized for implementing refactoring, refactoring dependencies, refactoring 

scalability, and refactoring applications at high abstraction levels. [10], conducted a systematic review 

regarding the works for proposing, implementing, or suggesting an automated refactoring approach. 

The above-mentioned researches mentioned are primarily concerned with locating studies connected 

to highly particular or specialist refactoring subjects and sub-areas. 

3. TYPES OF SOFTWARE ARTIFACTS 

Refactoring could be utilized for any software artifact's type, event though  most IDEs 

just support it for source code. Refactoring design models, software architectures, database 

schemas, and software requirements, for instance, is useful and possible. Refactoring such types of 

software artifacts relieves developers regarding various implementation-specific details while also 

increasing the changes’ expressive power.  

1- Program: In various paradigms and programming languages, support for program refactoring 

and restructuring was offered. Since control flow and data flow are extremely interwoven, it is 

more complicated to restructure programs that are not designed in object-oriented language. 

As a result, restructurings are usually restricted to the code block or function level [11]. It's also 

worth noting that the more complicated the language is, the more complicated it is to automate 

the refactoring. It is a popular software development technique for upgrading a software 

system's internal code structure without changing its external behaviors. Comprehending the 

way that the developers refactor source code might help to understand the process of software 

development and how different system versions interact. Different prominent programming 

languages, like Python and Java, offer refactoring detection tools [12] . 

2- Designs: Refactoring at the level of the design, for instance in a UML model form, is a 

contemporary research topic. State chart diagrams, class diagrams, and activity diagrams can 

all be refactored using those concepts. The user might utilize refactoring to each of 

the diagrams that aren't simply or intuitively described in other source codes or diagrams [13]. 

3- Software Requirements Restructuring : This concept could be utilized as well to 

requirements specifications  , [14]  proposes restructuring natural language requirements 

conditions by dividing them into viewpoint structures. Each one of the viewpoints embodies 

certain system components' partial requirements, and interconnections between viewpoints 

have been made explicit. Furthermore, this restructuring method improves understanding of 

requirements and makes finding inconsistencies and managing requirements evolution easier. 

4. Research Methodology 

The review methodology includes establishing the databases to be searched, the development 

of research questions, data analysis, data collection ,and discussion of findings. The systematic 

literature review's goal is to uncover gaps that have been discovered by researchers before to 

the survey. 

       Finalizing databases to be searched, designing research questions, and analyzing findings and 

discussions are all part of the review methodology. The procedure entails searching supplementary and 

primary databases, applying exclusion and inclusion criteria, closing with discussions, and generating 

results. Refactoring has received contributions from more than 5584 authors worldwide [15]. In this 

paper to emphasis on four active authors, with just five researchers chosen for each depending on the 

number of citations and publications in the refactoring field area, as shown in Table  (1) and Figure 

(1) . For making the search as broad as possible, we searched  all of the adopted researche in 

the work using a variety of scientific literature sources such as the IEEE Xplore, ACM Library, and 

Academia. 
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Figure 1. Top 10 Authors with a maximum number of citations and publications in the refactoring area [15] 

 

The study selection process was divided into two stages: pre-selection and selection. The four 

adopted authors' names were used to screen studies during pre-selection. As a result  , a 40 types of 

researches on the topic of refactoring have been published. In the second stage, criteria for exclusion 

and inclusion are established, with the inclusion criteria requiring that all researches be published in a 

conference paper or journal article between 2014 and 2021 and be retrieved from one of five databases, 

as well as a comparison depending on the citation numbers of the 40 studies. Exclusion criteria have 

been used for eliminating researches that was not relevant to the software refactoring, as well as 

researches written prior to the year 2000. We eliminated 32  researches as a result of this 

filtering process, leaving only 17 researche to be considered research that matched the inclusion 

requirements. 

Table 1: Shows the studies that were be chosen 

 
Authors Name Article Digital 

Libraries 

Citation No. Year 

Marouane Kessentini [16] ACM Library 108 2014 

Danny Dig [17] ACM Library 73 2016 

Marouane Kessentini [18] ACM Library 125 2016 

Gabriele Bavota [19] IEEE Xplore 36 2016 

Marouane Kessentini [20] Springer 62 2017 

Gabriele Bavota [21] IEEE Xplore 167 2017 

Roy ck [22] IEEE Xplore 28 2017 

Danny Dig [23] IEEE Xplore 206 2018 

Marouane Kessentini [24] IEEE Xplore 32 2018 

Gabriele Bavota [25] Springer 216 2018 

Gabriele Bavota [26] IEEE Xplore 16 2018 

Roy ck [27] IEEE Xplore 23 2018 

Roy ck [28] IEEE Xplore 12 2019 

Roy ck [29] IEEE Xplore 13 2019 

Roy ck [30] IEEE Xplore 12 2020 

Marouane Kessentini [31] Elsevier 20 2021 

Gabriele Bavota [32] IEEE Xplore 1 2021 

 

5. Literature Review of Refactoring  

     This section summarizes the chosen researches, which are organized based on the author's name 

and the number of citations (as shown in Table 1)   

The names of top authors 
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In 2014 , Kessentini et al proposes a distributed optimization problem for detecting code smells. 

Throughout the process of optimization, various approaches are integrated in parallel in order to reach 

a consensus on code smell detection. employed Parallel Evolutionary Algorithms (P-EA), in 

which numerous evolutionary algorithms with diverse adaptations (solution representations, fitness 

functions, and change operators) have been conducted in parallel cooperatively in order to accomplish 

a common aim of detecting code smells. An empirical comparison regarding the implementation of 

this cooperative P-EA technique with random search, 2 single population based methods, and 2 non 

meta heuristics search code smells detection approaches. According to a benchmark of 9 large open 

source systems with over 85% recall and precision scores on 8 types of code smells, statistical analysis 

regarding the acquired results offers evidence for supporting the claim that cooperative P-EA is more 

effective compared to the state of the art techniques of detection. [16] 

In  2016 , Lin et al. , defined the Refactoring Navigator as one of the tool supported and 

interactive recommendation methods for architectural refactoring, according to the researchers. 

This method starts with a given implementation and finishes with a desired high level design, 

iteratively recommending a sequence of refactoring procedures. Furthermore, this method provides the 

users with the ability to accept, rejecting, and ignoring a refactoring step recommendation, and it 

incorporates the user's comments into additional refactoring recommendations. They used an industrial 

case studies and a controlled experimentation in order to assess the efficiency of their tool and method. 

[17] . In the sameyear, Ouni et al. , suggested multi objective search based method for automatic 

refactoring recommendations. The goal of this method is to discover the optimal refactoring sequence 

which (i) enhances quality through reducing the number of design defects, (ii) reduces the number of 

code changes needed to repair these defects, (ii) maximizes consistency with previous code 

modifications and (iv) retains design semantics. The efficiency of the proposed methods was assessed 

with the use of  empirical sizing regarding 6 open-source systems .[18]. In the sameyear , Anich et al.  

interviewed and surveyed 53 Model-View-Controller pattern (MVC) developers. After that, they used 

an open coding approach to create a list of 6 Web MVC smells, including Fat Repository, Brain 

Repository, Brain Controller , Promiscuous , Controller , Meddling Service and Laborious Repository 

Method. They then conducted research on 100 MVC projects to see how much smells affected code 

change and problem proneness. The findings reveal that Web MVC smells (a) frequently raise the 

change and defect proneness of classes, (b) are viewed as severe issues by developers.[19]   

In 2017 , Mansoor et al. proposes a new system that allows software designers to perform the 

model level refactoring. They achieved this by employing a multi objective evolutionary algorithm in 

order to establish a balance between enhancing the class quality and diagrams of activity. In addition, 

the suggested multi objective method offers software designers a multi view to analyze the influence 

of the proposed refactoring applied to the class diagrams on related diagrams of activity for 

assessing overall quality, ensuring behavior preservation, and validating feasibility.[20] , at the same 

year , Tufano et al.  looked at various studies that indicated code smells had a negative effect on code 

maintainability and comprehensibility. Whereas the effects of smells on code quality were objectively 

evaluated, there’s still just anecdotal data on why and when bad smells are presented, how long they 

last, and how developers remove them. They carried out a major empirical analysis of the change 

history regarding 200 open source projects to empirically validate this anecdotal data. This research 

necessitated the creation of an approach for detecting smell introducing changes, as well as mining of 

more than half a million commits and manual analysis and classification of over 10,000 of them. Their 

results largely contradict popular belief, demonstrating the fact that the majority of small 

instances occur during the creation of an artifact rather than as a result of its evolution [21] , also in  

the same year Mondal et al. looked into which clone fragments will possibly have bugs, so that they 

could be prioritized for tracking and refactoring in order to reduce future bug fixing tasks. 

Current research on clone bug proneness is unable to identify code clones that will potentially receive 

future bug fixes. Change frequency regarding code clones doesn't imply their bug proneness, according 

to their examination of thousands of revisions of 4 different subject systems that have been developed 
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in Java . Bug proneness has been primarily linked to the frequency with which code clones are changed. 

As a result they discovered that the bug proneness of code clones is mostly determined by how 

lately they were altered or produced . They feel that code clones must be given priority by management 

because of their recent creation or alteration . [22]  

In 2018  , Tsantalis et al.  study created, tested, and assessed RMiner, an approach that 

addresses the restrictions mentioned above. An AST-based statement matching method is at the heart 

of RMiner, which finds refactoring candidates without the need for user defined thresholds. To test 

RMiner, they built the most extensive oracle to date, which leverages triangulation to produce a dataset 

with far less bias, containing 3,188 refactoring from 185 open-source projects [23] , at the same year 

Alizadeh et al. proposed an interactive method for reducing the developer's interaction efforts in the 

case when modifying systems by integrating multi objective and unsupervised learning. They develop 

multiple feasible refactoring solutions by identifying a balance between many competing quality 

attributes with the use of multi objective search. After that, using an unsupervised learning method 

known as Pareto front, the developers are guided in identifying their region of interest and reducing 

the number of refactoring choices to investigate. The developer's feedback is utilized to automatically 

establish constraints for reducing the search space in following iterations and concentrate on 

the developer's preferred region. They chose 14 active developers in order to manually test our tool's 

efficacy on one industrial system and five open-source projects. The findings revealed that participants 

discovered their intended refactoring faster and more precisely compared to the existing state of the 

art. [24] . In the sameyear  spite of the research community's efforts to understand code smells, the 

extent to which the code smells in software systems affect the maintainability of the software is 

unknown. Palomba et al. And others report on a large scale empirical research of code smells' 

diffuseness and effect on a code change and fault proneness. The research looked at 395 releases from 

30 open source projects and 17350 manually validated instances of 13 types of code smells. The 

findings reveal that smells associated with complex and/or long code (Complex Class) are widely 

dispersed, and that smelly classes are more prone to modification and defect compared to smell free 

classes. [25] . In the same year Pantiuchina et al. , according to the researcher, empirical investigations 

have shown that bad code quality is often related to lower maintainability. As a result, technologies to 

automatically discover design flaws (code smells) were developed. These technologies, on the other 

hand, are unable to prevent design flaws from being introduced. This means that before state of the art 

technologies can be used to uncover and repair design flaws, the code must degrade in quality, to 

prevent the introduction of design flaws through refactoring operations instead of addressing them 

after they have already affected the system. They call this new approach to software refactoring "just 

in time refactoring." Furthermore, they took a first step in this direction by giving a method for 

predicting which classes may be impacted through code smells in future.[26] . In the same year Mondal 

et al. ,  looked into the role of micro clones (code clones with no more than five lines of code) in 

maintaining a consistent code base. While prior clone detectors and trackers have overlooked micro 

clones, their analysis of thousands of commits from 6 subject systems suggests that micro clones 

account . Depending on statistical significance analyses, the percentage of consistent updates in micro 

clones is much higher in comparison with the ones in the regular clones. according to their manual 

study micro-clones, such as regular clones, need consistent updates, and tracking or refactoring micro 

clones could significantly reduce the efforts required to keep them up to date. [27] 

  The majority of previous researches on code clones overlooked micro-clones, which might range in 

their size from 1 to 4 LOC. In 2019 Islam et al. compares the bug-proneness regarding micro-clones 

with conventional code clones in the year 2019. They discover and study regular as well as the micro-

clones which are connected to reported issues from hundreds of revisions of 6 different open-source 

subject systems built in 3 programming languages (C, C#, and Java). Micro-clones had a considerably 

larger rate of changed code fragments owing to bug-fix commits compared to regular clones, 

according to their research. Micro-clones a substantially higher number of consistent modifications 

owing to bug-fix commits in comparison with the regular clones. Also, they discovered that bug-fix 
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commits influence a considerably higher percentage of files in micro-clones compared to 

regular clones. Lastly, they discovered that the percentage of severe bugs in micro-clones is 

substantially higher in comparison with the regular clones. They used Mann-Whitney-Wilcoxon 

(MWW) test in order to determine the statistical significance of our findings. Furthermore, their 

results suggested that when it comes to software maintenance and clone management, micro-clones 

must be prioritized. [28] . In the same year  Mondal et al. , Context Adaptation Bugs, or simply 

Context-Bugs, are the term used by the authors to describe bugs that could be found in code clones. 

They analyzed and defined two clone evolutionary patterns which show Context-Bugs are being fixed. 

Code cloning frequently causes Context-Bugs in software systems, based on their examination of 

thousands of modifications of 6 open source subject systems developed in C, Java, and C#. Context-

Bugs account for almost half of all clone-related bug fixes. Cloning (copy/pasting) a newly-created 

code fragment (in other words, one not introduced in a previous revision) is more possible to introduce 

Context-Bugs than cloning an existing fragment (a code fragment that  has been added in a former 

revision). Furthermore, when cloning across distinct files, the likelihood of generating Context-Bugs 

appears to be substantially higher than when cloning within the same file. Lastly, among the 3 major 

clone-types, Type 3 clones (i.e. gapped clones) have the maximum likelihood of containing 

ContextBugs. Their results could be useful in detecting and removing Context-Bugs in code clones 

early on.[29] 

In 2020, Mondal et al. , presented a survey of current clone refactoring and tracking approaches, 

as well as future research opportunities in such fields. They specified  the features of the quality 

assessment for clone refactoring and tracking tools, then compared such features among the tools. 

Their survey is the first to look into clone re-factoring and tracking in depth. Based on their clone 

refactoring survey, automatic refactoring cannot eliminate the need for manual attempts  in identifying 

refactoring opportunities and testing system behavior after refactoring. Quality assurance engineers 

may have to devote a considerable amount of effort and time to post-refactoring testing. The impact 

of clone refactoring on system performance has received little attention. They also believe that more 

research into real-time detection and tracking of the code clones in big-data environment is required 

in the future. [30] 

in 2021 AlOmar et al. , intended for better understand what motivates the developers to use 

refactoring through mining and automatically classifying a large sample of 111884 commits 

comprising refactoring activity that has been extracted from 800 open source Java projects. Along with 

standard Bug Fix and Functional categories, they have trained multiclass classifiers for categorizing 

such commits into 3 categories: External Quality Attribute, Internal Quality Attribute, and Code Smell 

Resolution. The conventional definition of refactoring, which limited it to enhancing software design 

and eliminating code smells, is challenged by this classification. They qualitatively studied commit 

messages for extracting textual patterns which developers commonly employ to explain their 

refactoring operations in order to better understand their classification results. Their findings reveal 

that (1) eliminating code smells isn't the primary motivation for developers to modify their code bases. 

Beyond its usual definition, refactoring is requested for various reasons; (2) Refactoring operations are 

distributed differently in production and testing files; (3) developers utilize a range of patterns to target 

re-factoring-associated activities; and (4) textual patterns that have been obtained from commit 

messages give better coverage for the way that the developers describe their re-factorings. [31]  

In the same year Traini et al. , attempted to close such gap by presenting the largest study till 

now on the influence of refactoring on the on software performance with regard to execution time. 

They examined the modification history of 20 systems that had performance benchmarks established 

in their repositories in order to find commits where developers performed refactoring operations on 

code components that the performance benchmarks exercised. They demonstrated that refactoring 

operations might have a considerable influence on execution time via a qualitative and 

quantitative examination. Actually, none of the refactoring forms explored may be deemed "safe" in 

terms of preventing performance regression. Extract Method, Extract Class/Interface, and other 
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refactoring types aimed at the decomposition of complex code entities have higher risks of causing 

performance degradation, indicating that they have to be considered carefully in the case of modifying 

performance-critical code. [32] 

6. Discussion 

       Various empirical research investigated the role of refactoring approaches without identifying the 

different types of refactoring approaches. Statistically, eight out of seventeen research (or 46% of the 

total) found no refactoring methods ( [25] , [26] , [27] , [28] , [29] , [30] , [31] , [32] ). However, as 

indicated in Tables 2, nine out of seventeen studies (or53%) have identified types of refactoring 

approaches used in their research. 

  
Table 2: Refactoring Methods utilized via researchers 

 

Author Study Refactoring Methods or Refactoring algorithm 

 

Marouane 

Kessentini 

[16] Parallel Evolutionary algorithms (P-EA) 

Danny Dig [17] Refactoring Navigator Method 

Marouane 

Kessentini 

[18] A benchmark of 6 open-source systems, move field, move method, pull up 

field, push down field, pull up approach, push down approach, move class, 

extract approach, inline class, extract class and extract interface 

Gabriele 

Bavota 

[19] Parallel Evolutionary algorithms (P-EA) 

Marouane 

Kessentini 

[20] Multi-objective evolutionary algorithm 

Gabriele 

Bavota 

[21] This study Reviewed some researches have shown the negative impacts of the 

code smells on code maintainability and comprehensibility 

Gabriele 

Bavota 

[22] This research examines the clone evolution history regarding four Java-based 

subject systems over thousands of revisions, and examines how change-

proneness of clones of the code is connected to their ability to contain bugs. 

Danny Dig [23] Design, implement, and evaluate RMiner Method 

Marouane 

Kessentini 

[24] 

 

Interactive method that combines utilization of the unsupervised and multi 

objective learning for the reduction of developer’s interaction efforts when 

refactoring system 

Gabriele 

Bavota 

[25] This study reported a large study that has been carried out on 395 releases of 

30 Java open source projects, which have been targeted at the understanding of 

diffuseness of the code smells in Java open source projects and their relation 

with the source code change  and fault proneness. The study had considered 

17350 samples of 13 different types of the code smell, which has been first 

detected with the use of metric-based method and validated manually after that. 

Gabriele 

Bavota 

[26] The code smell predictor was utilized in this work for predicting if a given 

class would be affected via specific sort of code smell within t days. Customize 

the code smell type to anticipate and the threshold of value t. 

Gabriele 

Bavota 

[27] The significance of micro clones (code clones of 4 LOC or fewer) in software 

maintenance and evolution is investigated in this paper. Existing research has 

often overlooked such small clones, supposing that they are spurious clones. 

Gabriele 

Bavota 

[28] This work looked at and compared bug proneness and properties of regular and 

micro-clones on six different topic systems, and discovered that microclones 

require more care throughout software maintenance than regular clones. 

Gabriele 

Bavota 

[29] This research looked at context adaptation bugs (also known as context bugs) 

in 3 different code clone types. Context bugs are bugs that are introduced to 

clone fragments as a result of the fragments not being correctly adapted to their 

respective contexts. 

Gabriele 

Bavota 

[30] This research presented a survey of current clone refactoring and tracking 

researches, methods, and tools. All of the researches are categorized according 

to their study directions, and they indicate how far each area was researched. 

Also, discover current clone refactoring and tracking tools and compare them 

according to their characteristics. 
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Marouane 

Kessentini 

[31] Trained a multi class classifier for the categorization of refactoring activities 

into 3 categories, namely, External Quality Attribute, Internal Quality 

Attribute, and Code Smell Resolution, along with conventional Bug Fix and 

Functional categories 

Gabriele 

Bavota 

[32] This research looked at all of the implications of various refactoring kinds on 

software performance. 

 

7. Conclusion 

The results of the systematic review of software refactoring indicated that the identification of 

refactoring opportunities is a highly active area of research 17 researches were chosen as primary 

studies and thoroughly examined. We emphasized four top active writers, with just five studies or less 

chosen for each depending on the number of citations and publications in the refactoring field area 

.The goal of this review is to find out which refactoring methods were used in the studies that were 

used. Furthermore, numerous papers found no refactoring approaches, even though such articles are 

statistical investigations of refactoring procedures. There is little empirical research on the refactoring 

methods in use.  The researchers concluded that the use of machine learning algorithms in refactoring 

method and detecting bad smells in the source code is the best and gives very accurate results despite 

the large database used in the training. Also, by using Semi-automatic algorithms allow users to 

examine algorithm's decision before it is applied To check whether this process increases the quality 

of the program or not. 
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