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A B S T R A C T 

Scour around bridge piers is a well-known threat to bridge stability worldwide. It can cause 

losses in lives and the economy, especially during floods. Therefore, an artificial intelligence 

approach called artificial neural network (ANN) was used to predict the scour depth around 

bridge piers. The ANN model was trained with laboratory data, including pier width, flow 

velocity, particle diameter, sediment critical velocity, flow depth, and scour depth. The data 

was divided into 70% for training, 15 for validation, and 15% for testing. Besides, the ANN 

model was trained using various training algrthins and a single hidden layer with 20 neurons 

in the hidden layer. The results showed that the ANN model with Bayesian regularization 

backpropagation training algorithm provides a better predicted scour depth with a correlation 

coefficient (R) equal to 0. 9692 and 0.926 for training and test stages, respectively. Besides, it 

showed a low mean squared error (MSE), which was 0.0034 for training and 0.0066 for the 

test. These results were slightly better than the ANN with Levenberg-Marquardt 

backpropagation with  R training equals 0.9552 (MSE training = 0.0047), and R test equals 

0.838 (MSE test = 0.007).On the other hand, the ANN model with a scaled conjugate gradient 

backpropagation training algorithm showed worse predictions (R training = 0.7407  and R test 

= 0.6409). Besides, the ANN model shows better outcomes than the linear regression model. 

Finally, the sensitivity analysis has shown that the pier width is the most crucial parameter for 

estimating scour depth using the ANN model. 

 

DOI: 10.37650/ijce.2022.160201 

1. Introduction  

Streams near hydraulic facilities are represented by random geometric complexity due to active vortical 

structures overwhelming a broad combination of hydraulic facilities like bridge piers. Moreover, scour is a natural 

event that can happen suddenly, especially during floods. These whirlpools interact with sediments on the bed, 

directing to local scour and creating scour holes, which could jeopardize stability and sabotage structural 

mailto:aali5@memphis.edu
mailto:sbrahimi@memphis.edu
http://dx.doi.org/10.37650/ijce.2022.160201


IRAQI JOURNAL OF CIVIL ENGINEERING (2022) 016–002                                                                                                                                                                                         2                                                                                                                                                                                                                           

 

reliability. Besides, scouring is one of the primary reasons for bridging piers' failure (Khosronejad et al., 2012), 

resulting in the destruction of highways (Iqbal et al., 2020), their reconstruction using concrete, and ultimately 

losses to the economy (Iqbal et al., 2019; Jahanzaib et al., 2021). The mechanisms of scouring around bridge piers 

are complex, and the discharge growths with the scour hole development (Ghodsian and Vaghefi 2009). The direct 

mechanism driving local scour around bridge piers is down-flow at the upstream front of the pier and creating the 

whirlpool or vortex at the bottom of the hydraulic structures like piers (Heidarpour et al., 2010), as shown in 

Figure 1 (Alasta et al.,2022). The mechanics of scouring around bridge piers were explained broadly in the 

literature by Chiew (1984) and Shen et al. (1969). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 An illustration showing scouring around a bridge pier 

 

Furthermore, scour at bridge locations is commonly categorized as a contraction and local scour. Contraction 

scour appears due to the existence of the hydraulic structure like a bridge pier, which raises the velocity over the 

entire cross-section of the stream, then creating erosion of the river's bed material. As flow accelerates near 

hydraulic structures like bridge piers, local scour occurs from the expanded velocities. In this study, we consider 

the scour depth an equilibrium scour, achieved when the river's bed material is dragged into the scour hole at the 

exact velocity it is carted out. 

A report stated that in 1999, more than 1000 of about 600,000 bridges in the USA collapsed, and scour was 

responsible for 60% of these cases (Briaud et al.,1999). Wardhana and Hadipriono (2003) demonstrated that five 

hundred crumpled bridges in the USA from 1989 to 2000 were due to scouring. Thus, examining the lowering of 

the river's bottom is critical for designing bridges. D. Imhof (2004) revealed that data from various sources shows 

that the natural jeopardies are the most heightened reason for the bridge collapse, as shown in Figure 2. Also, they 

stated that the natural threat is the critical factor that leads to failure, and the most common cause is flooding or 

scouring. In addition, local scour could be critical in developing offshore wind and hydrokinetic turbine farms 

(Mutlu, 2007). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2 Failure of bridges due to various reasons (Imhof, 2004) 

Various studies were conducted using numerical modeling, a mathematical model, to solve different problems 

(Ashiq and Khan, 2020; Ebrahimi and Khorram, 2021; Tunc et al., 2022). Hence, many studies were conducted 
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to study scour around bridge piers. For instance, Khosronejad et al. (2012) used laboratory and mathematical 

models to investigate clear water scour types around various bridge piers. Omara and Tawfik (2018) used a 

numerical model to study and predict scour around bridge piers of multiple shapes. Ghaderi and Abbasi (2019) 

employed a CFD model using FLOW-3D software to examine the usefulness of airfoil-shaped piers on local 

scour. Wang et al. (2019) used experimental models to study local scour around cylindrical bridge piers and 

methods to reduce the scour, like collars around piers. Finally, Rasaei et al. (2020) employed experimental 

examination to examine the maximum scour depth and volume of holes around bridge piers. Alasta et al. (2022) 

used a FLOW -3D numerical model to simulate scour around bridge piers. 

However, the recent development in data-driven models like machine learning models has attracted the 

attention of researchers to apply these advanced tools for various problems related to different engineering areas 

(Worden et al., 2007; Akhani et al., 2019; Sparks et al., 2020; Lange and Sippel, 2020; Zounemat et al., 2021; 

Gandomi et al.2021; Kashani et al., 2021; Akhani and Pezeshk, 2022; Azari et al., 2022; Ali et al., 2022). Machine 

learning models were adopted broadly for studying the scour around hydraulic structures because traditional 

methods like numerical or experimental models require a lot of data, and these models are costly. Therefore, 

multiple techniques applied machine learning models to study the scour around various hydraulic structures. Pal 

et al. (2011) used a support vector machine model to examine the machine learning model's performance to 

estimate the scour depth. They compared the outcomes with empirical equations, backpropagation, and 

generalized regression models and trained the models with field data. They showed that the support vector 

machine provides better results, especially in dimensionless data. Etemad-Shahidi et al. (2011) used a machine 

learning model to study and predict the scour near submarine pipelines for both scour conditions: clear-water and 

live-bed scour. They stated that the machine learning model could be a reliable tool for estimating scour depth. 

Pourzangbar et al. (2017) adopted two machine learning models, the support vector regression model and a tree 

algorithm (M5), to estimate maximum scour depth at breakwaters. They showed that these two models could 

provide accurate predictions and be used by coastal engineers to fix problems related to scouring, like a prediction 

of the depth of scour hole. Hu et al. (2021) used various machine learning approaches, such as the genetic 

algorithm, radial basis function, and support vector machine, to study and predict the scour depth around the 

pipelines. They demonstrated that the genetic algorithm model was the best compared to other machine learning 

models in this study. It showed good performance with a low error between measured and predicted scour depth. 

Yousefpour et al. (2021) used a machine learning model to predict the scour depth around bridge piers and trained 

the model with real-time scour depth data. They showed that the machine learning model could be used as a 

helpful tool for estimating scour depth by integrating the model with a monitoring system for observing the scour 

depth.  

Hence, this study aims to adopt a machine learning model called the artificial neural network to predict the 

local scour depth around bridge piers and then examine the predicted scour depth with correlation coefficient and 

mean square error values to verify the accuracy of the ANN model. Besides, the outcomes of the ANN model 

were compared with a multiple linear regression model. Finally, the ANN model was used to examine the 

importance and effect of input parameters on the prediction performance by conducting a sensitivity analysis for 

the input parameters. It is essential to notice that this study is based on the article of Shakir Ali Ali and Günal 

(2021). The novelty of the current study is that the training data was used as raw data instated of normalizing the 

training data employed by Shakir Ali Ali and  Günal (2021). 

2. Methodology  

2.1. Parameters Influencing Scour 

Melville and Coleman (2000) indicated that the depth of scour around the bridge piers is affected by the river's 

flow, features of the particles like sediments, and the shape properties of the pier. Moreover, Choi et al. (2017) 

demonstrated that the depth of local scour around bridge piers (dse) is a function of the parameter like flow depth 

(y), flow velocity (V), sediment critical velocity (Vc), the diameter of the particle (d), and pier width or diameter 

(b), it can be written as follows: 
                                              𝒅𝒔𝒆 = 𝒇 ( 𝑽, 𝑽𝒄, 𝒚, 𝒅, 𝒃)                                                                      (1) 

Where dse is the scour depth, V is the flow velocity, Vc is sediment critical velocity, y is flow depth, d is 

particle diameter, and b is pier diameter. A dataset of local scour depth around a cylindrical bridge pier, which 
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contains ( V,Vc,y,d,b) , was used to train the ANN model. The dataset contains many laboratory data from various 

sources collected. These data were obtained from the PSDb-2014 report, consisting of prior experiments gathered 

by Sheppard et al. (2011), Benedict and Caldwell (2014). Sheppard et al. (2011) identified 441 laboratory 

measures that matched equilibrium scour and used them in their study of scouring. Besides, these data were used 

to enhance the initial Hydraulic Engineering Circular No. 18 (HEC-18) pier-scour equation (Richardson et al. 

1991). The details of the training data are available in a published report and an excel file by Benedict and Caldwell 

(2014). Besides, the first 400 laboratory data were chosen out of 572 scour laboratory measurement data. 

 

Table 1 - Training data. 

Variable Observations Minimum Maximum Mean Std. deviation 

Pier width (ft) 400 0.094 2.510 0.269 0.278 

Flow velocity (ft/s) 400 0.540 5.280 1.717 0.915 

Sediment critical velocity (ft/s2)  400 0.730 4.180 1.490 0.783 

Flow depth (ft) 400 0.066 3.281 0.897 0.703 

Particle diameter (mm) 400 0.240 7.800 1.302 1.554 

Measured scour depth (ft) 400 0.049 1.497 0.367 0.232 

2.2. Artificial Neural Network   

Machine learning is a sort of artificial intelligence that lets computers learn and provide accurate outcomes. 

Besides, machine learning models use recorded data or other dataset types for training. Machine learning has 

advanced considerably within the last two decades from laboratory interest to practical approaches in across-the-

board. Also, machine learning has appeared as the selection procedure for creating useful software for various 

purposes, robot control, and other applications (Jordan and Mitchell, 2015). Machine learning contains different 

approaches, and one of these approaches is an artificial neural network (ANN). ANN is a machine learning model 

boosted by the complex functionality of the biological system of the human intelligence system, where billions of 

connected neurons procedure information in parallel. Moreover, the ANN is trying to imitate the natural human 

system mathematically.  

As shown in Figure 3, the neuron is the fundamental part of the ANN model, and it is a logical-mathematical 

model which tries to imitate the human biological neuron system. The neuron contains a bias computed with the 

weighted inputs to form the input, and it can be represented as follows (Ly et al., 2017): 

                                                                      𝑛 =  ∑ 𝑊𝑗𝑃𝑗 + 𝑏𝑅
𝑗=1                                                       (2) 

The part in the input vector P is weighted by the part of the weight matrix W. Then, the net input n passes via 

an operational process, which creates the outcome's neuron, as shown in Figure 3. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3 Artificial neuron (Ly et al.2017). 

Commonly, the ANN model contains three layers with neurons. The first layer is the input layer, which takes 

the data or information for the problem. The second layer is the hidden layer, which can be one hidden layer or 

more. Finally, the last layer, called the output layer, provides the predicted value by the model, as shown in Figure 

4. Besides, the connection between these layers is called weights. The weight values can initialize randomly, and 
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it is updated during the training process based on the initial learning rate, which governs how much the values of 

the weights for the ANN model are to be adjusted based on the error between predicted and actual values. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4 Typical artificial neural network 

 

Besides, the ANN model contains activation functions. The objective of the activation function is to give the 

model the ability to solve the problem's nonlinearity and control the weight of the neuron (Wang 2003). This study 

used the tangent activation function between the input and hidden layer (Eq. 3). The tangent activation function 

was used because it demonstrates a more suitable training implementation during back-propagation for ANN 

models with various layers, and it has potent gradients  (Nwankpa et al.,2018), The linear activation function was 

adopted between the hidden and the output layer (Eq. 4).   

                                                               𝑓(𝑥) =  
2

1+𝑒(−2𝑥) − 1                                                         (3) 

                                                                             𝑓( 𝑥) =  𝑥                                                                    (4) 

However, the activation function can be selected based on the type of the problem, and the most suitable one 

can be found by trial and error. Another crucial feature of a neural network model is called the training algorithm. 

A learning algorithm is a collection of teachings that helps a computer simulate the natural human learning ability 

to obtain better performance at describing knowledge. The mathematics that keeps learning can be revised over 

time as data is introduced to the computer. Besides, The ANN model learns from experience or data, comparable 

to the human capability of understanding by experience. Therefore, the training algorithm is adopted for training 

the model by inserting the data into the model, and these data are called training data. The expected outcomes of 

the problem are known. Thus, the training algorithm tries to reduce the differences between outputs of the ANN 

model and the measured or actual results by changing the weights between the neurons (Wang 2003) and the 

difference between actual and predicted called error, which is the mean square error in this study. A separate data 

set dubbed a validation set can be introduced to the trained ANN model. The validation data set aims to fairly 

assess the final tuned model's agility. Besides, another dataset is introduced to the ANN model after finishing the 

training stage, and these data are called test data. The test data are used to examine the accuracy of the ANN 

model, and these data are not used in the training stage. So, the ANN model treats these data as new data. 

This study adopted the ANN approach to predict the scour depth bridge piers using MATLAB. The ANN 

models were built with an input layer with 5 neurons: pier width, flow velocity, flow depth, sediment critical 

velocity, and particle diameter. Also, a single hidden layer was used with 20 neurons. The number of neurons in 

the hidden layer was chosen based on the trial-and-error process. Finally, the output layer contains one neuron, 

the predicted scour depth. 

 As shown in Table 2, three ANN models were conducted using different training algorithms. The first one, 

called ANN-1, was trained with Bayesian regularization backpropagation, known as the TRAINBR function in 

MATLAB. It is a linear hybrid of Bayesian techniques and ANN to automatically choose the values of the 

appropriate weights while training the ANN model (Okut, 2016). A more detailed discussion can be found in 
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Gouravaraju et al. (2021). The second was called ANN-2 and trained with the Levenberg-Marquardt 

backpropagation, known as the TRAINLM function in MATLAB. The Levenberg-Marquardt algorithm is an 

adjusted version of Gauss-Newton approach, and more details are explained in Hagan and Menhaj (1994) and 

Reynaldi et al. (2012). Finally, the third model was called ANN-3 and trained with a scaled conjugate gradient 

backpropagation algorithm known as TRAINSCG function. The scaled conjugate gradient algorithm is founded 

on conjugate trends. Besides, it does not conduct a straight examination per iteration, which causes the procedure 

to become costly. Hence, SCG was created to bypass wasting time (Babani et al.2016). 

The ANN model was trained with 400 laboratories scour depth data. The dataset was divided into 70% for the 

training stage, 15 % for the validation stage, and 15% for the test stage. 

 

Table 2 ANN models. 

Model Training Algorithm Neurons in the Hidden Layer Epochs 

ANN-1 TRAINBR 20 1000 

ANN-2 TRAINLM  20 1000 

ANN-3 TRAINSCG  20 1000 

2.3. Multiple Linear Regression  

Multiple linear regression (MLR) is a statistical approach that utilizes two or more additional independent 

parameters to forecast the result of a dependent parameter. Also, it can be used to choose the divergence of the 

approach and the proximate importance of each independent parameter. The multiple linear regression model was 

conducted using excel, and the coefficient values of the independent variables are as follows 

                   𝑦 =  0.012 + 0.54 𝐵1 + 0.0059𝐵2 + 0.13 𝐵3 + 0.065 𝐵4 − 0.052 𝐵5                 (5)  

where y is the estimated value, B1 is the pier diameter, B2 is the flow velocity, B3 is the sediment velocity, B4 

is the flow depth, and B5 is the particle diameter. 

2.4. Assessment of Model's Accuracy  

The outcome of the ANN model, in which the predicted scour depth was assessed based on two criteria. The 

first one is the correlation coefficient; the correlation coefficient (r) is a statistical measurement of the strength of 

the connection between two variables like actual value and predicted value from the ANN model. 

 

                                       𝑟 =  
𝑛 ∑(𝑥𝑦) − (∑ 𝑥)(∑ 𝑦) 

√[𝑛 ∑ 𝑥2 − (∑ 𝑥)
2

] ∑ 𝑦2 − (∑ 𝑦)
2

]

                                                 ( 6) 

Where r is the correlation coefficient, n  is the number in the given dataset, x is the first variable in the sample, 

and y is the second variable. For this study, x is the measured scour depth, y is the predicted scour depth, and the 

correlation coefficient examines the relationship between these two parameters. The second is the mean square 

error (MSE), which measures the average squared difference between the predicted and actual values. 

                                                                      𝑀𝑆𝐸 =
1

𝑛
∑ (𝑥 − 𝑦)2𝑛

𝑖=1                                                   (7) 

MSE is the mean squared error, x is the measure values, y is the predicted values, and n is the total amount of 

data. 

3. Results and Discussion 

The ANN model has shown promising results for estimating the scour depth around bridge piers. The ANN-1 

model showed a high correlation between measured and predicted scour depth, which equals 0.9637, and the MSE 

value of 0.0038. Meanwhile, the ANN-2 model showed a similar performance with r correlation coefficient = 

0.9416 and MSE = 0.006, but the ANN-3 model showed lower performance than the two ANN models with 
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correlation coefficient = 0.7459 and MSE = 0.026. Furthermore, the R training was higher than the R test for three 

ANN models because the training data is introduced to the ANN model in the training stage. Therefore, it tries to 

reach results close to the training measurements as possible. Then, in the test stage, the ANN model makes 

predictions with new data set and compares the outcomes to examine the estimation accuracy based on the loss 

function like MSE. Figures 5 – 7 show the measured and predicted values of the scour depth using ANN models 

based on the final output of ANN models after finishing the training, validation, and testing process. While Table 

3 shows the performance of the ANN molds for the training and test stages. 

Table 1 Performance of ANN models. 

Model R training MSE training R test MSE test 

ANN-1 0.9692 0.0034 0.926 0.0066 

ANN-2 0.9552 0.0047 0.838 0.007 

ANN-3 0.7407 0.023 0.6409 0.0291 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5ANN-1 model 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6 ANN-2 model. 
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Figure 7 ANN-3 model 

 

Moreover, the multiple linear regression model showed lower performance than the ANN-1 and ANN-2 

models but similar to the performance of the ANN-2 model with a correlation coefficient = 0.7514 and MSE = 

0.023. Besides, in the linear regression, all input variables were employed and considered in calculating the 

predicted scour as the ANN, which was trained with all parameters. Figure 8 shows the expected outcomes from 

the linear regression model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8 Linear regression model. 

 

Besides, the ANN model was used to conduct a sensitivity analysis to examine the importance of five input 

parameters:  pier diameter, flow velocity, flow depth, critical sediment velocity, and particle diameter. For this 

purpose, another five ANN model was run using the same structure of the ANN-1 model mentioned in the 

methodology section. The ANN-1 model was used as a reference model to examine the input parameters' impact. 

As shown in Figure 9 to Figure 13, the pier diameter has the most critical effect on the ANN model's accuracy, 

while removing other parameters has decreased the efficiency of the ANN-1 model slightly. Table 4 summarizes 

the performance of selectivity analysis ANN models during the training and test stage. Besides, the coloration 

analysis shows that the scour depth has strong with scouring depth, as shown in Table 5. It supports the outcome 

of sensitivity analysis by ANN models, which showed that removing a pier with decrees prediction efficiency. 
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Table 2 Sensitivity analysis. 

Model  Removed parameters R training  MSE test R test MSE test  

ANN-1 None 0.9692 0.0034 0.926 0.0066 

ANN-1a Flow depth  0.9553 0.0047 0.8919 0.01 

ANN-1b Flow velocity  0.9429 0.0055 0.9311 0.0108 

ANN-1c Sediment critical velocity 0.969 0.0036 0.9012 0.0093 

ANN-1d Particle diameter 0.9409 0.006 0.9713 0.0058 

ANN-1e Pier width 0.6178 0.031 0.4169 0.055 

Table 3 Correlation analysis for training parameters. 

 

Variables 

Pier 

width 

Approach 

Flow 

Velocity 

Sediment 

critical 

velocity 

Approach 

flow 

depth  

Particle 

diameter 
 

Measured 

Scour 

Depth 

Pier width 1 -0.129 0.035 0.081 0.046 0.669 

Approach Flow Velocity -0.129 1 0.588 0.083 0.594 0.019 

Sediment critical velocity 0.035 0.588 1 0.473 0.951 0.260 

Approach flow depth (ft) 0.081 0.083 0.473 1 0.306 0.366 

Particle diameter 0.046 0.594 0.951 0.306 1 0.194 

Measured Scour Depth (ft) 0.669 0.019 0.260 0.366 0.194 1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2 ANN-1a model trained without flow depth. 
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Figure 3 ANN-1b model without flow velocity. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11 ANN-1c trained without sediment critical velocity. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12 ANN-1d trained without particle diameter. 
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Figure 13 ANN-1e trained without pier width. 

 

4. Conclusion 

It is crucial to forecast the scour depth near bridge piers for hydraulic engineers concerned with the financial 

strategy of bridge pier bases. Hence, this study adopted an artificial neural network (ANN) model to predict scour 

around bridge piers. The ANN model trained laboratories scour measurement data collected from various studies. 

The dataset included five input data parameters: pier diameter, flow velocity, flow depth, sediment critical 

velocity, and particle diameter. Also, the output was the scour depth around bridge piers. The ANN model was 

trained with three backpropagation training algorithms: Bayesian regularization, Levenberg-Marquardtand, and 

scaled conjugate gradient algorithms, with a single hidden layer containing 20 neurons. In addition, another 

regression model called multiple linear regression was conducted to compare the outcome of the regression model 

with ANN. The main results of the study are as follows: 

• ANN model has shown promising results for scour depth estimation around bridge piers with a high 

correlation coefficient (R = 0.9637) and low mean squared error (MSE = 0.0038). 

• The multiple linear regression model showed worse results than the ANN-1 and ANN-2 models but better 

than the ANN-3 model trained with a scaled conjugate gradient algorithm. It is obvious that the ANN model can 

handle problems like prediction of scour better than multiple linear regsression. 

• Pier diameter is the most critical input for training the ANN model and obtaining accurate scour depth 

prediction. However, other parameters like flow velocity can substantially impact the modeling of the scour depth 

around bridge piers. Still, the influence might appear clearly when the scour is simulated using numerical 

modeling, and the outcome can show the effect of velocity on removing of bed’s material.   

• The correlation analysis showed that the pier width considerably correlates with the measured scour depth. 

• The results showed that training ANN models with raw data could accurately predict the scour depth as 

normalized data. The normalized data was used in a study by Shakir Ali Ali and Günal (2021). The outcomes of 

the current study are similar to their results and performance of the ANN model's accuracy. 
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