[1] N. El-Desouky et al., Synthesis of silver nanoparticles using bio valorization coffee waste extract: photocatalytic flow-rate performance, antibacterial activity, and electrochemical investigation. Biomass Conv. Bioref. 2022, 1-15. https://doi.org/10.1007/s13399-021-02256-5
[2] M. Yazdanian et al., The Potential Application of Green-Synthesized Metal Nanoparticles in Dentistry: A Comprehensive Review. Bioinorg. Chem. Appl. 2022 (2022) 27. https://doi.org/10.1155/2022/2311910
[3] L. Fritea et al., Metal nanoparticles and carbon-based nanomaterials for improved performances of electrochemical (Bio) sensors with biomedical applications. Materials.14 (2021) 6319. https://doi.org/10.3390/ma14216319
[4] A.C. Burdușel et al., Biomedical applications of silver nanoparticles: an up-to-date overview. Nanomater.8 (2018) 681. https://doi.org/10.3390/nano8090681
[5] Agnihotri, S. and N.K. Dhiman. 2017 . Development of nano-antimicrobial biomaterials for biomedical applications, in Advances in biomaterials for biomedical applications. Vol. 66, pp. 479-545. Springer. https://doi.org/10.1007/978-981-10-3328-5_12
[6] Tabatabaei, F.S., R. Torres, and L. Tayebi. 2020.Biomedical materials in dentistry. Applications of Biomedical Engineering in Dentistry, pp. 3-20. https://doi.org/10.1007/978-3-030-21583-5_2
[7] J. Jeevanandam et al., Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations. Beilstein J. Nanotechnol. 9 (2018) 1050-1074. https://doi.org/10.3762%2Fbjnano.9.98
[8] T.V. Duncan, Applications of nanotechnology in food packaging and food safety: barrier materials, antimicrobials and sensors. J. Colloid Interface Sci. 363 (2011) 1-24. https://doi.org/10.1016/j.jcis.2011.07.017
[9] M.S. Chavali, and M.P. Nikolova, Metal oxide nanoparticles and their applications in nanotechnology. N Appl. Sci. 1 (2019) 1-30. https://doi.org/10.1007/s42452-019-0592-3
[10] A. Hamad, L. Li, and Z. Liu, A comparison of the characteristics of nanosecond, picosecond and femtosecond lasers generated Ag, TiO2 and Au nanoparticles in deionised water. Appl. Phys. A.120 (2015) 1247-1260. https://doi.org/10.1007/s00339-015-9326-6
[11] A.M. Haleem et al., Cytotoxic effects of titanium dioxide nanaoparticles synthesized by laser technique on peripheral blood lymphocytes and hep-2 Cell Line. Toxicol. Environ. Health Sci. 11 (2019) 219-225. https://doi.org/10.1007/s13530-019-0407-3
[12] R.M. Altuwirqi, Graphene Nanostructures by Pulsed Laser Ablation in Liquids: A Review. Materials 15 (2022) 5925. https://doi.org/10.3390/ma15175925
[13] Y.-H. Chen, and C.-S. Yeh, Laser ablation method: use of surfactants to form the dispersed Ag nanoparticles. Colloids Surf., A 197 (2002) 133-139. https://doi.org/10.1016/S0927-7757(01)00854-8
[14] H. Hassan et al., Gold nanomaterials–The golden approach from synthesis to applications. Mater. Sci. Energy Technol. 5 (2022) 375-390. https://doi.org/10.1016/j.mset.2022.09.004
[15] F. Lavaee et al., The Effect of Gold Nano Particles with Different Sizes on Streptococcus Species. J. Dent. 22 (2021) 235–242. https://doi.org/10.30476%2FDENTJODS.2021.85219.1119
[16] L. Gao et al., Nanocatalysts promote Streptococcus mutans biofilm matrix degradation and enhance bacterial killing to suppress dental caries in vivo. Biomater. 101 (2016) 272-284. https://doi.org/10.1016/j.biomaterials.2016.05.051
[17] A. O. El-Gendy et al., The antimicrobial effect of 400 nm femtosecond laser and silver nanoparticles on Gram-positive and Gram-negative bacteria. J. Photochem. Photobiol., B 223 (2021) 112300. https://doi.org/10.1016/j.jphotobiol.2021.112300
[18] J. Hadi, S. Wu, and G. Brightwell, Antimicrobial blue light versus pathogenic bacteria: mechanism, application in the food industry, hurdle technologies and potential resistance. Foods, 9 (2020) 1895. https://doi.org/10.3390/foods9121895
[19] J.T. Seil, and T.J. Webster, Antimicrobial applications of nanotechnology: methods and literature. Int. J. Nanomed. 7 (2012) 2767. https://doi.org/10.2147%2FIJN.S24805
[20] F.M. Omar, H.A. Aziz, and S. Stoll, Aggregation and disaggregation of ZnO nanoparticles: influence of pH and adsorption of Suwannee River humic acid. Sci. Total Environ. 468 (2014) 195-201. https://doi.org/10.1016/j.scitotenv.2013.08.044
[21] E. Omurzak et al., Effect of surfactant materials to nanoparticles formation under pulsed plasma conditions and their antibacterial properties. Mater. Today: Proc. 5 (2018) 15686-15695. https://doi.org/10.1016/j.matpr.2018.04.179
[22] T.H. Ong et al., Cationic chitosan-propolis nanoparticles alter the zeta potential of S. epidermidis, inhibit biofilm formation by modulating gene expression and exhibit synergism with antibiotics. PloS one, 14 (2019) e0213079. https://doi.org/10.1371/journal.pone.0213079
[23] A.M. Haleem, A. Kadhim, and R.H. Abbas, Antibacterial activity of copper oxide nanoparticles against Escherichia coli ATCC 25922 and Staphylococcus aureus ATCC 25923. Advances in Natural and Applied Sciences, 11 (2017) 1-5.
[24] Cervellino, A., et al. 2016. X-ray powder diffraction characterization of nanomaterials, in X-ray and neutron techniques for nanomaterials characterization. pp. 545-608. Springer. https://doi.org/10.1007/978-3-662-48606-1_10
[25] A.A. Al-Jubori, G.M. Sulaiman, and A.T. Tawfeeq, Antioxidant Activities of Resveratrol Loaded Poloxamer 407: An In Vitro and In Vivo Study. Journal of Applied Sciences and Nanotechnology (JASN).1 (2021) 1-12. http://dx.doi.org/10.53293/jasn.2021.3809.1046
[26] H. A. Kazem, and M. T. Chaichan, Effect of humidity on photovoltaic performance based on experimental study. International Journal of Applied Engineering Research (IJAER).10 (2015) 43572-43577.
[27] T. Tsuji et al., Preparation of silver nanoparticles by laser ablation in polyvinylpyrrolidone solutions. Appl. Surf. Sci. 254 (2008) 5224-5230. https://doi.org/10.1016/j.apsusc.2008.02.048
[28] S.S. Mao et al., Influence of preformed shock wave on the development of picosecond laser ablation plasma. J. Appl. Phys. 89 (2001) 4096-4098. https://doi.org/10.1063/1.1351870
[29] M. Hafizah, A. Riyadi, and A. Manaf. Particle size reduction of polyaniline assisted by anionic emulsifier of sodium dodecyl sulphate (SDS) through emulsion polymerization. in IOP Conf. Ser.: Mater. Sci. Eng.515, 2019, 012080. https://doi.10.1088/1757-899X/515/1/012080
[30] Ramimoghadam, D., M.Z.B. Hussein, and Y.H. Taufiq-Yap, The effect of sodium dodecyl sulfate (SDS) and cetyltrimethylammonium bromide (CTAB) on the properties of ZnO synthesized by hydrothermal method. Int. J. Mol. Sci. 13 (2012) 13275-13293. https://doi.org/10.3390/ijms131013275
[31] S. Sun, and A. Wang, Adsorption kinetics of Cu (II) ions using N, O-carboxymethyl-chitosan. Journal of hazardous materials, 131 (2006) 103-111. https://doi.org/10.1016/j.jhazmat.2005.09.012
[32] Z. Sui et al., Capping effect of CTAB on positively charged Ag nanoparticles. Physica E: Low-dimensional systems and nanostructures, 33 (2006) 308-314. https://doi.org/10.1016/j.physe.2006.03.151
[33] B. Gogoi et al., Facile biogenic synthesis of silver nanoparticles (AgNPs) by Citrus grandis (L.) Osbeck fruit extract with excellent antimicrobial potential against plant pathogens. SN Appl. Sci. 2 (2020) 1-7. https://doi.org/10.1007/s42452-020-03529-w
[34] Anandalakshmi, K., J. Venugobal, and V. Ramasamy, Characterization of silver nanoparticles by green synthesis method using Pedalium murex leaf extract and their antibacterial activity. Appl. Nanosci. 6 (2016) 399-408. https://doi.org/10.1007/s13204-015-0449-z
[35] A. Subhan, A.-H.I. Mourad, and Y. Al-Douri, Influence of Laser Process Parameters, Liquid Medium, and External Field on the Synthesis of Colloidal Metal Nanoparticles Using Pulsed Laser Ablation in Liquid: A Review. Nanomater.12 (2022) 2144. https://doi.org/10.3390/nano12132144
[36] F. Mafuné et al., Structure and stability of silver nanoparticles in aqueous solution produced by laser ablation. J. Phys. Chem. B 104 (2000) 8333-8337. https://doi.org/10.1021/jp001803b
[37] M. Moradi et al., Effect of aqueous ablation environment on the characteristics of ZnO nanoparticles produced by laser ablation. J. Clust .Sci .27 (2016) 127-138. https://doi.org/10.1007/s10876-015-0915-5
[38] S.H. Sabeeh, H.A. Hussein, and H.K. Judran, Synthesis of a complex nanostructure of CuO via a coupled chemical route. Mater. Res. Express.3 (2016) 125025. https://doi.10.1088/2053-1591/3/12/125025
[39] Pavithra, K., M. Yashoda, and S. Prasannakumar, Synthesis, characterisation and thermal conductivity of CuO-water based nanofluids with different dispersants. Particulate Science and Technology, 2019. https://doi.org/10.1080/02726351.2019.1574941
[40] D. Liyanage et al., An analysis of nanoparticle settling times in liquids. J. Nanomater. 2016 (2016) 44. https://doi.org/10.1155/2016/7061838
[41] H. Jang et al., Antibacterial properties of cetyltrimethylammonium bromide-stabilized green silver nanoparticles against methicillin-resistant Staphylococcus aureus. Arch. Pharm. Res. 38 (2015) 1906-1912. https://doi.org/10.1007/s12272-015-0605-8
[42] A. Gupta et al., Combatting antibiotic-resistant bacteria using nanomaterials. Chem. Soc. Rev.48 (2019) 415-427. https://doi.org/10.1039/C7CS00748E
[43] L. Gabrielyan, and A. Trchounian, Antibacterial activities of transient metals nanoparticles and membranous mechanisms of action. World J. Microbiol. Biotechnol.35 (2019) 1-10. https://doi.org/10.1007/s11274-019-2742-6
[44] G. Lim HW, M. Wortis, and R. Mukhopadhyay, Stomatocyte–discocyte–echinocyte sequence of the human red blood cell: Evidence for the bilayer–couple hypothesis from membrane mechanics. Proc. Natl. Acad. Sci. 99 (2002) 16766-16769. https://doi.org/10.1073/pnas.202617299
[45] J. Choi et al., Physicochemical characterization and in V itro hemolysis evaluation of silver nanoparticles. Toxicol. Sci. 123 (2011) 133-143. https://doi.org/10.1093/toxsci/kfr149
[46] M. Suwalsky, F. Villena, and M. Gallardo, In vitro protective effects of resveratrol against oxidative damage in human erythrocytes. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1848 (2015) 76-82. https://doi.org/10.1016/j.bbamem.2014.09.009