[1] A. A. Atamas, H. M. Cuppen, M. V. Koudriachova, & S. W. De Leeuw, Monte Carlo calculations of the free energy of binary sII hydrogen clathrate hydrates for identifying efficient promoter molecules. The J. of Ph. Chem. B,117 (2013) 1155-1165. https://doi.org/10.1021/jp306585t
[2] A. M. O. Mohamed, E. K. Paleologos, & F. Howari, Pollution Assessment for Sustainable Practices in App. Sci. and Eng. (2020). https://doi.org/10.1016/B978-0-12-809582-9.00019-0
[3] M. F. Kheshty, F. Varaminian, & N. Farhadian, Exploring the effect of important parameters on decomposition of gas hydrate structure I: A molecular dynamics simulation study, J. of Nat. Gas Sci. and Eng. 52 (2018) 1-12. https://doi.org/10.1016/j.jngse.2018.01.025
[4] I. B. A. Sfaxi, V. Belandria, A. H. Mohammadi, R. Lugo, & D. Richon, Phase equilibria of CO2+ N2 and CO2+ CH4 clathrate hydrates: Experimental measurements and thermodynamic modelling,Chem. eng. sci. 84 (2012) 602-611. https://doi.org/10.1016/j.ces.2012.08.041
[5] H. Najibi, K. Momeni, M. T. Sadeghi, & A. H. Mohammadi, Experimental measurement and thermodynamic modelling of phase equilibria of semi-clathrate hydrates of (CO2+ tetra-n-butyl-ammonium bromide) aqueous solution, The J. of Chem. Therm. 87 (2015) 122-128. https://doi.org/10.1016/j.jct.2015.03.024
[6] M. Seif, A. Kamran-Pirzaman, & A. H. Mohammadi, Phase equilibria of clathrate hydrates in CO2/CH4+(1-propanol/2-propanol)+ water systems: Experimental measurements and thermodynamic modeling, The J. of Chem. Therm. 118 (2018) 58-66. https://doi.org/10.1016/j.jct.2017.09.034
[7] K. Momeni, A. Jomekian, & B. Bazooyar, Semi-clathrate hydrate phase equilibria of carbon dioxide in presence of tetra-n-butyl-ammonium chloride (TBAC): Experimental measurements and thermodynamic modeling, Flu. Ph. Eq. 508 (2020) 112445. https://doi.org/10.1016/j.fluid.2019.112445
[8] H. Hassan, & H. Pahlavanzadeh, Thermodynamic modeling and experimental measurement of semi-clathrate hydrate phase equilibria for CH4 in the presence of cyclohexane (CH) and tetra-n-butyl ammonium bromide (TBAB) mixture, J. of Nat. Gas. Sci. and Eng. 75 (2020) 103128. https://doi.org/10.1016/j.jngse.2019.103128
[9] A. Sonune, & R. Ghate, Developments in wastewater treatment methods. Desalination, 167 (2004) 55-63. https://doi.org/10.1016/j.desal.2004.06.113
[10] S. T. AL-Hemeri, R. S. AL-Mukhtar, & M. N. Hussine, Removal of heavy metals from industrial wastewater by use of Cyclopentane-Clathrate Hydrate formation technology, In IOP Conference Series: Mater. Sci. and Eng. 737 (2020) 012178. https://doi:10.1088/1757-899X/737/1/012178
[11] S. T. AL-Hemeri, R. S. AL-Mukhtar, & L. W. Mahmood, Thermodynamic and kinetic investigation of desalination by refrigerant clathrate hydrate formation. Eng. and Tech. J., 37 (2019) 29-44. https://doi.10.30684/etj.37.1C.6
[12] E. Romanovskaia, V. Romanovski, W. Kwapinski, & I. Kurilo, Selective recovery of vanadium pentoxide from spent catalysts of sulfuric acid production: Sustainable approach,Hydr. 200 (2021) 105568. https://doi.org/10.1016/j.hydromet.2021.105568
[13] X. Chen, Y. Chen, T. Zhou, D. Liu, H. Hu, & S. Fan, Hydrometallurgical recovery of metal values from sulfuric acid leaching liquor of spent lithium-ion batteries, Was. man., 38 (2015) 349-356. https://doi.org/10.1016/j.wasman.2014.12.023
[14] K. Várnai, L. Petri, & L. Nagy, Prospective Evaluation of Spent Sulfuric Acid Recovery by Process Simulation, Per. Poly. Che. Eng., 65 (2021) 243-250. https://doi.org/10.3311/PPch.15679
[15] M. Asof, S. Arita, W. Andalia, & C. Rahmayati, C. Recovery of H2SO4 from spent acid waste using bentonite adsorbent, In MATEC Web of Conf., (2017) 02007 (2017). http://repository.unsri.ac.id/id/eprint/30589
[16] J. Castilla-Archilla, S. Papirio, & P. N. Lens, Two step process for volatile fatty acid production from brewery spent grain: hydrolysis and direct acidogenic fermentation using anaerobic granular sludge, Proc. Bio., 100 (2021) 272-283. https://doi.org/10.1016/j.procbio.2020.10.011
[17] L. Ulloa Guntiñas, M. Martínez Minchero, E. Bringas Elizalde, A. Cobo García, & M. F. San Román San Emeterio, Split regeneration of chelating resins for the selective recovery of nickel and copper,(2020). https://doi.org/10.1016/j.seppur.2020.117516
[18] G. Chauhan, K. K. Pant, & K. D. Nigam, Metal recovery from hydroprocessing spent catalyst: a green chemical engineering approach. Indus. & Eng. Chem. Research, 52 (2013) 16724-16736. https://doi.org/10.1021/ie4024484
[19] J. Charles, B. Sancey, N. Morin-Crini, P. M. Badot, F. Degiorgi, G. Trunfio, & G. Crini, Evaluation of the phytotoxicity of polycontaminated industrial effluents using the lettuce plant (Lactuca sativa) as a bioindicator, Ecoto. and envir. safety, (2011) 74(7) 2057-2064. https://doi.org/10.1016/j.ecoenv.2011.07.025
[20] A. Da̧browski, Z. Hubicki, P. Podkościelny, & E. Robens, Selective removal of the heavy metal ions from waters and industrial wastewaters by ion-exchange method. Chem., 56 (2004) 91-106. https://doi.org/10.1016/j.chemosphere.2004.03.006
[21] L. Marder, A. M. Bernardes, & J. Z. Ferreira, Cadmium electroplating wastewater treatment using a laboratory-scale electrodialysis system, Sepa. and Puri. Tech., 37 (2004) 247-255. https://doi.org/10.1016/j.seppur.2003.10.011
[22] N. Adhoum, L. Monser, N. Bellakhal, & J. E. Belgaied, Treatment of electroplating wastewater containing Cu2+, Zn2+ and Cr (VI) by electrocoagulation. J. of hazar.mater. 112 (2004) 207-213. https://doi.org/10.1016/j.jhazmat.2004.04.018
[23] S. Ahmed, S. Chughtai, & M. A. Keane, The removal of cadmium and lead from aqueous solution by ion exchange with Na Y zeolite, Separa. and pur. tech., 13 (1998) 57-64. https://doi.org/10.1016/S1383-5866(97)00063-4
[24] H. Alvares-Vazquez, B. Jefferson, & S. J. Judd, Membrane bioreactors vs. conventional biological, Chem. Tech., Bio., 79 (2004) 1043-1049. https://doi.org/10.1002/jctb.1072
[25] R. S. Juang, H. C. Kao, & F. Y. Liu, Ion exchange recovery of Ni (II) from simulated electroplating waste solutions containing anionic ligands. J. of hazar.mater128 (2006) 53-59. https://doi.org/10.1016/j.jhazmat.2005.07.027
[26] M. Sugaya, & Y. H. Mori, Behavior of clathrate hydrate formation at the boundary of liquid water and a fluorocarbon in liquid or vapor state, Chem. Eng. Sci., 51 (1996) 3505-3517. https://doi.org/10.1016/0009-2509(95)00404-1
[27] Y. Song, H. Dong, L. Yang, M. Yang, Y. Li, Z. Ling, & J. Zhao, Hydrate-based heavy metal separation from aqueous solution, Sci. rep. 6 (2016) 1-8. https://doi.org/10.1038/srep21389
[28] N. Gaikwad, R. Nakka, V. Khavala, A. Bhadani, H. Mamane, & R. Kumar, Gas hydrate-based process for desalination of heavy metal ions from an aqueous solution: Kinetics and rate of recovery. ACS ES&T Water, 1 (2020) 134-144. https://doi.org/10.1021/acsestwater.0c00025
[29] E. Atangana, Production, disposal, and efficient technique used in the separation of heavy metals from red meat abattoir wastewater,Env. Sci.and Poll. Res., 27 (2020) 9424-9434. https://doi.org/10.1007/s11356-019-06850-z
[30] D. Corak, T. Barth, S. Høiland, T. Skodvin, R. Larsen, & T. Skjetne, Effect of subcooling and amount of hydrate former on formation of cyclopentane hydrates in brine, Desa. 278 (2011) 268-274. https://doi.org/10.1016/j.desal.2011.05.035