[1] S. H. Kim, S. H. Chang, and H. J. Jung, The finite element analysis of a fractured tibia applied by composite bone plates considering contact conditions and time-varying properties of curing tissues, Compos. Struct., 92 (2010) 2109–2118. doi: 10.1016/j.compstruct.2009.09.051
[2] B. Qiao et al., Bone Plate Composed of a Ternary Nanohydroxyapatite/Polyamide 66/Glass Fiber Composite: Biocompatibility In Vivo and Internal Fixation for Canine Femur Fractures, Adv. Funct. Mater., 29 (2019).doi: 10.1002/adfm.201808738
[3] A. M. Hashim, E. K. Tanner, and J. K. Oleiwi, Biomechanics of Natural Fiber Green Composites as Internal Bone Plate rafted, MATEC Web Conf., 83, 2016. doi: 10.1051/matecconf/20168309002
[4] M. S. Ali et al., Carbon fibre composite bone plates. Development, evaluation and early clinical experience, J. Bone Joint Surg. Br., 72 (1990) 586–591.
[5] N. Gillett, S. A. Brown, J. H. Dumbleton, and R. P. Pool, The use of short carbon fibre reinforced thermoplastic plates for fracture fixation, Biomaterials, 6 (1985) 113–121.
[6] K. Fujihara, Z.-M. Huang, S. Ramakrishna, K. Satknanantham, and H. Hamada, Performance study of braided carbon/PEEK composite compression bone plates, Biomaterials, 24 (2003) 2661–2667.
[7] H. Balakrishnan, M. R. Husin, M. U. Wahit, and M. R. Abdul Kadir, Maleated High Density Polyethylene Compatibilized High Density Polyethylene/Hydroxyapatite Composites for Biomedical Applications: Properties and Characterization,” Polym. - Plast. Technol. Eng., 52 (2013) 774–782.doi: 10.1080/03602559.2013.763364
[8] M. Yunus and M. S. Alsoufi, Experimental Investigations into the Mechanical, Tribological, and Corrosion Properties of Hybrid Polymer Matrix Composites Comprising Ceramic Reinforcement for Biomedical Applications, Int. J. Biomater., 2018 (2018).doi: 10.1155/2018/9283291.
[9] J. K. Oleiwi, R. A. Anaee, and S. H. Radhi, Roughness, wear and thermal analysis of uhmwpe nanocomposites asacetabular cup in HIP joint replacement, Int. J. Mech. Prod. Eng. Res. Dev., 8 (2018) 855–864.doi: 10.24247/ijmperddec201887
[10] R. Anaee and S. Radhi, Compression and Hardness With Ftir Characterization, 8 (2019) 1–10.
[11] A. D. Thamir, J. S. Kashan, and J. T. Alhaidary, Effect of particle size on the physical and mechanical properties of nano HA/HDPE bio-composite for synthetic bone substitute, Eng. Tech. J., 32 (2014) 286-297.
[12] N. H. Rija, Modified polymer matrix nano biocomposite for bone repair and replacement-radiological study, Eng. Technol. J., 35 (2017) 365-371.doi: 10.30684/etj.35.4A.8
[13] J. K. Soundhar.A1, Investigations on mechanical and morphological characterization of chitosan reinforced polymer nanocomposites, Mater. Res. Express, 6 (2019).doi:10.1088/2053-1591/ab1288
[14] U. Kureemun, M. Ravandi, L. Q. N. Tran, W. S. Teo, T. E. Tay, and H. P. Lee, Effects of hybridization and hybrid fibre dispersion on the mechanical properties of woven flax-carbon epoxy at low carbon fibre volume fractions, Compos. Part B Eng., 134 (2018) 28–38.
[15] I. ASTM, Standard Test Method for Compressive Properties of Rigid Plastics, D 695-02a. 2002.
[16] H. A. Sharhan, Z. N. Rasheed, and J. K. Oleiwi, Effect of Polypropylene (PP) and Polyacrylonitrile (PAN) Fibers Reinforced Acrylic Resin on Compression, Hardness and Surface-Roughness for Denture Applications, in Key Engineering Materials, 911 (2022) 9–16.
[17] I. ASTM, Annual Book of ASTM Standard, ‘Standard test method for plastics properties-durometer hardness, D 2240-03, PP. 1-12, 2003.”
[18] M. T. Fahey, Nonlinear and Anisotropic Behavior of High Performance Fibers, p. 232, 1993.
[19] N. K. Faheed, J. K. Oleiwi, and Q. A. Hamad, Effect of Different Fiber Reinforcements on Som0e Properties of Prosthetic Socket, Eng. Technol. J., 39 (2021) 1715–1726.doi: 10.30684/etj.v39i11.2267
[20] A. E1252-98, Standard practice for general techniques for obtaining infrared spectra for qualitative analysis, Annu. B. Stand., 2013.
[21] X. Kang, W. Zhang, and C. Yang, Mechanical properties study of micro- and nano-hydroxyapatite reinforced ultrahigh molecular weight polyethylene composites, J. Appl. Polym. Sci., 133 (2016) 1–9. doi: 10.1002/app.42869
[22] B. B. Mandal, A. Grinberg, E. S. Gil, B. Panilaitis, and D. L. Kaplan, “High-strength silk protein scaffolds for bone repair,” Proc. Natl. Acad. Sci. U. S. A., 109 (2012) 7699–7704. doi: 10.1073/pnas.1119474109
[23] T. K. Das, P. Ghosh, and N. C. Das, Preparation, development, outcomes, and application versatility of carbon fiber-based polymer composites: a review, Adv. Compos. Hybrid Mater., 2 (2019) 214–233. doi: 10.1007/s42114-018-0072-z
[24] D. Singh, A. Kumar, V. Bhalla, and R. K. Thakur, Mechanical and thermophysical properties of actinide monocarbides, Mod. Phys. Lett. B, 32 (2018).doi: 10.1142/S0217984918502482.
[25] J. R. Jones and L. L. Hench, Regeneration of trabecular bone using porous ceramics, Curr. Opin. Solid State Mater. Sci., 7 (2003) 301–307.
[26] S. A. Mirsalehi, A. Khavandi, S. H. Mirdamadi, M. R. Naimi-Jamal, S. Roshanfar, and H. Fatehi-Peykani, Synthesis of nano-HA and the effects on the mechanical properties of HA/UHMWPE nanocomposites, Adv. Mater. Process. Technol., 2 (2016) 209–219. doi: 10.1080/2374068X.2015.1127544
[27] A. Visco, C. Scolaro, A. Quattrocchi, and R. Montanini, Mechanical characterization of nanocomposite joints based on biomedical grade polyethylene under cyclical loads, Polymers (Basel)., 12 (2020) 1–11. doi: 10.3390/polym12112681
[28] A. V. Ushakov, I. V. Karpov, L. Y. Fedorov, A. A. Lepeshev, A. A. Shaikhadinov, and V. G. Demin, Nanocomposite material based on ultra-high-molecular-weight polyethylene and titanium dioxide electroarc nanopowder, Theor. Found. Chem. Eng., 49 (2015) 743–745. doi: 10.1134/S0040579515050176
[29] K. R. Dinesh and G. Hatti*,Tribological and Mechanical Properties of UHMWPE Polymer Composite filled with TiO2 and Al2O3 Particles used as TKR Implant, Int. J. Innov. Technol. Explor. Eng., 9 (2020) 991–995.doi: 10.35940/ijitee.f4147.049620
[30] S. H. R. Al-huseiny, Charcterization of polymer nanocomposite (UHMWPE/CNT, nHA) intended for use in artificial hip joint. Ph. D thesis, Department of Materials Engineering, University of Technology , 2019.
[31] P. S, S. KM, N. K, and S. S, Fiber Reinforced Composites - A Review, J. Mater. Sci. Eng., 06 (2017).doi: 10.4172/2169-0022.1000341
[32] M. V. Branquinho et al., In vitro and in vivo characterization of PLLA-316L stainless steel electromechanical devices for bone tissue engineering—A preliminary study, Int. J. Mol. Sci., 22 (2021).doi: 10.3390/ijms22147655
[33] J. Cheng et al., Effective nondestructive evaluations on UHMWPE/Recycled-PA6 blends using FTIR imaging and dynamic mechanical analysis, Polym. Test., 59 (2017) 371–376.
[34] R. S. Al-Hamdan et al., Influence of hydroxyapatite nanospheres in dentin adhesive on the dentin bond integrity and degree of conversion: A scanning electron microscopy (SEM), raman, fourier transform-infrared (FTIR), and microtensile study, Polymers (Basel)., 12 (2020) 2948.
[35] To, Introduction to infrared and Raman spectroscopy. Elsevier, 2012.
[36] M. E. Darzi, S. I. Golestaneh, M. Kamali, and G. Karimi, Thermal and electrical performance analysis of co-electrospun-electrosprayed PCM nanofiber composites in the presence of graphene and carbon fiber powder, Renew. Energy, 135 (2019) 719–728.
[37] J. V Gulmine, P. R. Janissek, H. M. Heise, and L. Akcelrud, Polyethylene characterization by FTIR, Polym. Test., 21 (2002) 557–563.
[38] Y. C. Gou, L. Feng, and Y. Zhang, Effect of particle size on wettability measurement with Washburn equation, Res Explor Lab, 30 (2011) 17.
[39] A. M. Azam, A. Ali, H. Khan, T. Yasin, and M. S. Mehmood, Analysis of degradation in UHMWPE a comparative study among the various commercial and laboratory grades UHMWPE, IOP Conf. Ser. Mater. Sci. Eng., 146, 2016.doi: 10.1088/1757-899X/146/1/012025
[40] A. A. Edidin, C. W. Jewett, A. Kalinowski, K. Kwarteng, and S. M. Kurtz, Degradation of mechanical behavior in UHMWPE after natural and accelerated aging, Biomaterials, 21 (2000) 1451–1460.
[41] S. Krimm, C. Y. Liang, and G. B. B. M. Sutherland, Infrared spectra of high polymers. II. Polyethylene, J. Chem. Phys., 25 (1956) 549–562. doi: 10.1063/1.1742963
[42] L. Costa, M. P. Luda, L. Trossarelli, E. M. B. Del Prever, M. Crova, and P. Gallinaro, Oxidation in orthopaedic UHMWPE sterilized by gamma-radiation and ethylene oxide, Biomaterials, 19 (1998) 659–668.