[1] S. Katoch, S. S. Chauhan, and V. Kumar, A review on genetic algorithm: past, present, and future,” Multimedia Tools and Applications, vol. 80, no. 5. pp. 8091–8126, Oct. 2020, doi: 10.1007/s11042-020-10139-6.
[2] P. Spronck, “An overview of genetic algorithmsapplied to control engineering problems,” *Proc. Second Int. Conf. Mach. Learn. Cybern*., no. November, pp. 1–6, 2004, doi: 10.1109/ICMLC.2003.1259761.
[3] E. G. Shopova and N. G. Vaklieva-Bancheva, “BASIC—A genetic algorithm for engineering problems solution,” *Computers & Chemical Engineering*, vol. 30, no. 8, pp. 1293–1309, Jun. 2006, doi: 10.1016/j.compchemeng.2006.03.003.
[4] D. E. F. Zbigniew Michalewicz, “How to solve it: modren heuristics,” *Book*, 2004.
[5] A. Jayachitra and R. Vinodha, “Genetic Algorithm Based PID Controller Tuning Approach for Continuous Stirred Tank Reactor,” *Adv. Artif. Intell.*, vol. 2014, pp. 1–8, 2014, doi: 10.1155/2014/791230.
[6] A. Abdollahi, A. Forruzan Tabbar, and H. Khodadadi, “Optimal controller design for quadrotor by genetic algorithm with the aim of optimizing the response and control input signals,” *Cumhur. Sci. J.*, vol. 36, no. 3, pp. 135–147, 2015, [Online]. Available: http://dergi.cumhuriyet.edu.tr/cumuscij/article/view/5000118362
[7] L. Shao, N. Liu, and H. B. Zuo, “The Research on Temperature Control System of Heat Transfer Station Based on Genetic Algorithm PID Control,” *Applied Mechanics and Materials*, vol. 391, pp. 433–436, Sep. 2013, doi: 10.4028/www.scientific.net/amm.391.43
[8] G. Mester, “Design of the fuzzy control systems based on genetic algorithm for intelligent robots,” *Interdiscip. Descr. Complex Syst.*, vol. 12, no. 3, pp. 245–254, 2014, doi: 10.7906/indecs.12.3.4.
[9] A. J. Ali, Z. Farej, and N. Sultan, “Performance evaluation of a hybrid fuzzy logic controller based on genetic algorithm for three phase induction motor drive,” *Int. J. Power Electron. Drive Syst.*, vol. 10, no. 1, p. 117, 2019, doi: 10.11591/ijpeds.v10.i1.pp117-127.
[10] A. Świć, D. Wołos, A. Gola, and G. Kłosowski,
“The use of neural networks and genetic algorithms to control low rigidity shafts machining,” *Sensors (Switzerland)*, vol. 20, no. 17, pp. 1–23, 2020, doi: 10.3390/s20174683.
[11] Q. Wang, H. Xi, F. Deng, M. Cheng, and G. Buja, “Design and analysis of genetic algorithm and BP neural network based PID control for boost converter applied in renewable power generations,” *IET Renew. Power Gener.*, vol. 16, no. 7, pp. 1336–1344, 2022, doi: 10.1049/rpg2.12320.
[12] J. P. Belletti Araque, A. Zavoli, D. Trotta, and G. De Matteis, “Genetic algorithm based parameter tuning for robust control of launch vehicle in atmospheric flight,” *IEEE Access*, vol. 9, pp. 108175–108189, 2021, doi: 10.1109/ACCESS.2021.3099006.
[13] M. J. Mahmoodabadi, T. Soleymani, and M. A. Sahnehsaraei, “A hybrid optimal controller based on the robust decoupled sliding mode and adaptive feedback linearization,” *Inf. Technol. Control*, vol. 47, no. 2, pp. 295–309, 2018, doi: 10.5755/j01.itc.47.2.16288.
[14] H. C. Tran, V. D. Tran, T. T. H. Le, M. T. Nguyen, and V. D. H. Nguyen, “Genetic algorithm implementation for optimizing linear quadratic algorithm to control acrobot robotic system,” *Robot. Manag*., vol. 23, no. 1, pp. 31–36, 2018.
[15] K. Benbouabdallah and Z. Qi-Dan, “Improved genetic algorithm lyapunov-based controller for mobile robot tracking a moving target,” *Res. J. Appl. Sci. Eng. Technol*., vol. 5, no. 15, pp. 4023–4028, 2013, doi: 10.19026/rjaset.5.4471.
[16] ** **A. A. Taleizadeh, S. T. A. Niaki, M. B. Aryanezhad, and A. F. Tafti, “A genetic algorithm to optimize multiproduct multiconstraint inventory control systems with stochastic replenishment intervals and discount,” *Int. J. Adv. Manuf. Technol*., vol. 51, no. 1–4, pp. 311–323, 2010, doi: 10.1007/s00170-010-2604-8.
[17] M. Mossolly, K. Ghali, and N. Ghaddar, “Optimal control strategy for a multi-zone air conditioning system using a genetic algorithm,” *Energy*, vol. 34, no. 1, pp. 58–66, 2009, doi: 10.1016/j.energy.2008.10.001.
[18] J. Brown, M. Paternostro, and A. Ferraro, “Optimal quantum control via genetic algorithms,” pp. 1–11, 2022, [Online]. Available: https://arxiv.org/abs/2206.14681v1
[19] A. Zamuda and J. Brest, “Self-adaptive control parameters’ randomization frequency and propagations in differential evolution,” *Swarm Evol. Comput.*, vol. 25, no. December, pp. 72–99, 2015, doi: 10.1016/j.swevo.2015.10.007.
[20] E. Pellerin, L. Pigeon, and S. Delisle, “Self-adaptive parameters in genetic algorithms,” *Data Min. Knowl. Discov. Theory, Tools, Technol. VI*, vol. 5433, no. April 2004, p. 53, 2004, doi: 10.1117/12.542156.
[21] N. Aguila-Camacho and M. A. Duarte-Mermoud, “Fractional adaptive control for an automatic voltage regulator,” *ISA Trans.*, vol. 52, no. 6, pp. 807–815, 2013, doi: 10.1016/j.isatra.2013.06.005. | |