[1] K. Francisco and M. Panguila, “Sentiment Analysis on Social Media Data Using Intelligent Techniques,” International Journal of Engineering Research and Technology, 2019.
[2] S. Joshi and D. Deshpande, “Twitter Sentiment Analysis System,” Int. J. Comput. Appl., vol. 180, no. 47, pp. 35–39, 2018.
[3] A. Kumar and G. Garg, “Systematic literature review on context-based sentiment analysis in social multimedia,” Multimed. Tools App., 2019.
[4] M. Amajd, Z. Kaimuldenov, and I. Voronkov, “Text Classification with Deep Neural Networks,” International Conference on Actual Problems of System and Software Engineering, pp. 364-370,2017.
[5] V. VardanReddy, M. Maila, S. Sri Raghava, Y. Avvaru, and S. V. Koteswarao, “A Survey on Analysis of Twitter Opinion Mining Using Sentiment Analysis,” Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol., pp. 537–542, 2019.
[6] L. Zhang, S. Wang, and B. Liu, “Deep learning for sentiment analysis: A survey,” Wiley Interdiscip. Rev. Data Min. Knowl. Discov., vol. 8, no. 4, Jul. 2018.
[7] B. Lopez and X. Sumba, “IMDb Sentiment Analysis,” pp. 2–6, 2019.
[8] R. Adyan Marendra, and H. S. Goo, "Twitter sentiment analysis using deep learning methods," 2017 IEEE 7th International Annual Engineering Seminar (InAES), pp. 1-4, 2017.
[9] V. N. Patodkar and I. R. Shaikh, “Twitter as a Corpus for Sentimental Analysis using Naïve Bayes,” vol. 6, no. 7, pp. 375–379, 2017.
[10] K. K. Uma and D. K. Meenakshisundaram, “A Novel Optimizer Technique for Sentiment Polarity in Social Web Environment,” International Journal of Applied Engineering Research, pp. 118–125, 2019.
[11] B. Duncan and Y. Zhang, “Neural networks for sentiment analysis on Twitter,” Proc. 2015 IEEE 14th Int. Conf. Cogn. Informatics Cogn. Comput. ICCI*CC 2015, pp. 275–278, 2015.
[12] A. Tripathy, A. Agrawal, and S. K. Rath, “Classification of Sentimental Reviews Using Machine Learning Techniques,” Procedia Comput. Sci., vol. 57, pp. 821–829, 2015.
[13] M. Z. Asghar, S. Ahmad, M. Qasim, S. R. Zahra, and F. M. Kundi, “SentiHealth: creating health-related sentiment lexicon using hybrid approach,” Springerplus, vol. 5, no. 1, 2016.
[14] R. A. Ramadhani, F. Indriani, and D. T. Nugrahadi, “Comparison of Naive Bayes smoothing methods for Twitter sentiment analysis,” 2016 Int. Conf. Adv. Comput. Sci. Inf. Syst. ICACSIS 2016, pp. 287–292, 2017.
[15] S. Mehla, and M. M “Sentiment Analysis of Movie Reviews using Machine Learning Classifiers,” Int. J. Comput. Appl., vol. 182, no. 50, pp. 25–28, 2019.
[16] H. Han, X. Bai, and P. Li, “Augmented sentiment representation by learning context information,” Neural Comput. Appl., vol. 4, 2018.
[17] B. Ay Karakuş, M. Talo, İ. R. Hallaç, and G. Aydin, “Evaluating deep learning models for sentiment classification,” Concurr. Comput, vol. 30, no. 21, pp. 1–14, 2018.
[18] D. M. Reddy, D. N. V. S. Reddy, and D. N. V. S. Reddy, “Twitter Sentiment Analysis using Distributed Word and Sentence Representation,” arXiv preprint arXiv:1904.12580, 2019.
[19] N. Mohamed Ali, M. M. A. El Hamid, and A. Youssif, “Sentiment Analysis for Movies Reviews Dataset Using Deep Learning Models,” Int. J. Data Min. Knowl. Manag. Process, vol. 09, no. 03, pp. 19–27, 2019.
[20] X. Li, P. Wu, W Wang “Incorporating stock prices and news sentiments for stock market
[21] prediction,”Inf Process Manag 57(5):102212. https ://doi.org/10.1016/j.ipm.2020.10221, 2020.
[22] U. D. Gandhi, P. Malarvizhi Kumar, G. Chandra Babu, and G. Karthick, “Sentiment Analysis on Twitter Data by Using Convolutional Neural Network (CNN) and Long Short Term Memory (LSTM),” Wirel. Pers. Commun., no. 0123456789, 2021.
[23] M. Mahyarani, A. Adiwijaya, S. Al Faraby, & M. Dwifebri, “Implementation of Sentiment Analysis Movie Review based on IMDB with Naive Bayes Using Information Gain on Feature Selection,” In 2021 3rd International Conference on Electronics Representation and Algorithm (ICERA) (pp. 99-103). IEEE, 2021
[24] M. Pota, M. Ventura, R. Catelli, M. Esposito, “An Effective BERT-Based Pipeline for Twitter Sentiment Analysis: A Case Study in Italian,” Sensors, 21, 133, 2021.
[25] B. AlBadani, R. Shi, J. Dong, “A Novel Machine Learning Approach for Sentiment Analysis on Twitter Incorporating the Universal Language Model Fine-Tuning and SVM,” Appl. Syst. Innov. , 5, 13, 2022.
[26] T. Swathi, N. Kasiviswanath, & A. Rao, “An optimal deep learning-based LSTM for stock price prediction using twitter sentiment analysis,” Appl Intell, 2022.
[30] A., Alqudsi, N. Omar, & Ibrahim, R. W. (2016). Rule Based and Expectation Maximization algorithm for Arabic-English Hybrid Machine Translation. International Journal of Artificial Intelligence (IJ-AI), 5.
[31] A., Alqudsi, N. Omar, & Shaker, K. (2014). Arabic machine translation: a survey. Artificial Intelligence Review, 42(4), 549-572.
[32] Alqudsi, A., Omar, N., & Shaker, K. (2019, May). A hybrid rules and statistical method for Arabic to English machine translation. In 2019 2nd International Conference on Computer Applications & Information Security (ICCAIS) (pp. 1-7). IEEE. |