[1] S. Chen, B. Liu, C. Feng, C. Vallespi-Gonzalez, and C. Wellington, 3D Point Cloud Processing and Learning for Autonomous Driving, Mar. 2020, [Online]. Available: doi.org/10.48550/arXiv.2003.00601
[2] . Fayyad, M. A. Jaradat, D. Gruyer, and H. Najjaran, Deep Learning Sensor Fusion for Autonomous Vehicles Perception and Localization: A Review Deep Learning Sensor Fusion for Autonomous Vehicle Perception and Localization: A Review, 20 (2020) 4220. doi.org/10.3390/s20154220
[3] T. G. R. Reid et al., Localization Requirements for Autonomous Vehicles, SAE Int. J. Connect. Autom. Veh., 2 (2019) 173-190. doi.org/10.4271/12-02-03-0012
[4] A. L. Ballardini, S. Fontana, D. Cattaneo, M. Matteucci, and D. G. Sorrenti, Vehicle localization using 3D building models and point cloud matching, Sensors, 21 (2021) 5356. doi.org/10.3390/s21165356
[5] R. Pirník, M. Hruboš, D. Nemec, T. Mravec, and P. Božek, Integration of inertial sensor data into control of the mobile platform, Adv. Intell. Syst. Comput., 511 (2017) 271–282. doi: 10.1007/978-3-319-46535-7_21
[6] P. Božek, Y. Nikitin, P. Bezák, G. Fedorko, and M. Fabian, Increasing the Production System Productivity Using Inertial Navigation, Manuf. Technol., 15 (2015) 274-278. doi: 10.21062/ujep/x.2015/a/1213-2489/MT/15/3/274
[7] T. T. O. Takleh, N. A. Bakar, S. A. Rahman, R. Hamzah, and Z. A. Aziz, A brief survey on SLAM methods in autonomous vehicle, Int. J. Eng. Technol., 7 (2018) 38–43. doi: 10.14419/ijet.v7i4.27.22477
[8] A. Noureldin, A. El-Shafie, and M. Bayoumi, GPS/INS integration utilizing dynamic neural networks for vehicular navigation, Inf. Fusion, 12 (2011) 48–57. doi: 10.1016/j.inffus.2010.01.003
[9] H. U. Kim and T. S. Bae, Deep learning-based GNSS network-based real-time kinematic improvement for autonomous ground vehicle navigation, J. Sensors, 2019 (2019)8. doi: 10.1155/2019/3737265
[10] E. Parisotto, D. S. Chaplot, J. Zhang, and R. Salakhutdinov, Global Pose Estimation with an Attention-based Recurrent Network, Feb. 2018, [Online]. Available: doi.org/10.48550/arXiv.1802.06857
[11] D. Chen, Y. Yu, and X. Gao, Semi-Supervised Deep Learning Framework for Monocular Visual Odometry.
[12] D. Eigen, C. Puhrsch, and R. Fergus, Depth map prediction from a single image using a multi-scale deep network, Adv. Neural Inf. Process. Syst., 3 (2014) 2366–2374.
[13] J. Byun, M. Roh, K.-I. Na, J. C. Sohn, and S. Kim, LNAI 7508 - Navigation and Localization for Autonomous Vehicle at Road Intersections with Low-Cost Sensors, 2012.
[14] S. Bag, Deep Learning Localization for Self-driving Cars, 2017. [Online]. Available: https://scholarworks.rit.edu/theses
[15] S. Alzu’bi and Y. Jararweh, Data Fusion in Autonomous Vehicles Research, Literature Tracing from Imaginary Idea to Smart Surrounding Community, 2020 5th Int. Conf. Fog Mob. Edge Comput. FMEC. 2020, 306–311.doi: 10.1109/FMEC49853.2020.9144916
[16] . Laina, C. Rupprecht, V. Belagiannis, F. Tombari, and N. Navab, Deeper depth prediction with fully convolutional residual networks, Proc. - 2016 4th Int. Conf. 3D Vision, 3DV, 2016, 239–248. doi: 10.1109/3DV.2016.32
[17] G. Plastiras, C. Kyrkou, and T. Theocharides, Efficient convnet-based object detection for unmanned aerial vehicles by selective tile processing, ACM Int. Conf. Proceeding Ser., 2018, 1–6.doi:10.1145/3243394.3243692
[18] L. Alzubaidi et al., Review of deep learning: concepts, CNN architectures, challenges, applications, future directions, J. Big Data, 8 (2021). doi:10.1186/s40537-021-00444-8
[19] V. Vaquero Gomez, Lidar-Based Scene Understanding for Autonomous Driving Using Deep Learning. [Online]. Available: http://www.tdx.cat/?locale-
[20] D. Mishra and B. Palkar, Image Fusion Techniques: A Review, Int. J. Comput. Appl., 130 (2015) 7–13.doi: 10.5120/ijca2015907084
[21] F. A. Al-Wassai, N. V. Kalyankar, and A. A. Al-Zuky, The IHS Transformations Based Image Fusion, 2 (2011),[Online]. Available: doi.org/10.48550/arXiv.1107.4396
[22] H. Atiyah and M. Y., Outdoor Localization in Mobile Robot with 3D LiDAR Based on Principal Component Analysis and K-Nearest Neighbors Algorithm, Eng. Technol. J., 39 (2021) 965–976. doi: 10.30684/etj.v39i6.2032
[23] M. Y. Hassan and G. Kothapalli, Comparison between neural network based PI and PID controllers, 2010 7th Int. Multi-Conference Syst. Signals Devices, SSD-10, no. May 2014, 2010, 1-6.doi:10.1109/SSD.2010.5585598
[24] B. Zhou, J. Liu, W. Sun, R. Chen, C. Tomlin, and Y. Yuan, pbSGD: Powered stochastic gradient descent methods for accelerated nonconvex optimization, IJCAI Int. Jt. Conf. Artif. Intell.,2021-Janua,2020,3258–3266.doi: 10.24963/ijcai.2020/451
[25] Q.-Y. Zhou, J. Park, and V. Koltun, Open3D: A Modern Library for 3D Data Processing. [Online]. Available: http://www.open3d.
[26] S. Bag, Deep Learning Localization for Self-driving Cars, 2017. [Online]. Available: http://scholarworks.rit.edu/theses
[27] Y. Wu, Y. Li, X. Ge, Y. Gao, and W. Qian, An Efficient Method for Calculating the Error Statistics of Block-Based Approximate Adders, IEEE Trans. Comput., 68 (2019) 21–38.doi: 10.1109/TC.2018.2859960