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Structural Equation Modeling is a statistical methodology commonly used in the social
and administrative sciences and all other. In this research, the researcher made a
comparison between methods of estimation Unweighted Least Squares with Mean and
Variance Adjusted( ULSMV) and weighted Least Squares with Mean and Variance
Adjusted (WLSMV). When we have a five-way Likert scale, the data is treated as ordinal
using the polychoric matrix as inputs for the weighted methods with robust corrections.
With robust standard errors ULSMV and WLSMV .No study compared these methods
and the impact of outliers on them. where a robust algorithm is proposed to clean the data
from the outlier, as this proposed algorithm calculates the robust correlation matrix
Reweighted Fast Consistent and High Breakdown (RFCH), which consists of several
steps and has been modified by taking the clean data before calculating the RFCH
correlation matrix, where these data are data clean from outlier to add in the methods and
to calculate a correlation matrix for each method where the purpose is to keep the ordinal
data to calculate the polychoric matrix, which is robust to the violation of the assumption
of normal distribution .By conducting a simulation experiment on different sample sizes
and the degree of distribution to observe the accuracy of the proposed method for
obtaining clean data. On methods ULSMV and WLSMV before and after the treatment
process by calculating the absolute bias rate For the standard errors and the estimated
parameters, in addition to studying the extent of their effect on the quality of fit indicators
for each of the chi-square index, Comparative fit index (CFI), Tucker-Lewis Index (TLI),
and Root-Mean-Squared-Error-of Approximation( RMSEA), Standardized Root Mean
square Residual (SRMR), , with the robust corrections in the chi-square index for each of
the methods WLSMYV and ULSMV the accuracy of the proposed.

DOI: https://doi.org/10.33899/igj0ss.2022.176201 , ©Authors, 2022, College of Computer and Mathematical Science, University of Mosul.

This is an open access article under the CC BY 4.0 license (http://creativecommons.org/licenses/by/4.0 ).

1. Introduction

Researchers and specialists have addressed various estimating approaches for structural equations.
Modeling components, measurement errors, and correlation among the various factors are estimated, and
the independent variables with the direct and indirect relationships connect the various independent
variables. Social and behavioral research researchers use SEM, which has gained widespread appeal in the
previous decades, to solve big problems. With the wide range of statistical analytic features that SEM
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offers, researchers may build models that account for latent variables and measurement errors. Using ML
as well as other techniques, such as to estimate methods for (GLS). When certain conditions are met,
possess desirable asymptotic distribution, such as unbiased, consistency, and efficiency(Gregory R.
Hancock and Ralph O. Mueller 2013) Therefore, the researchers recommend addressing the problem of
outlier data before using estimation methods. For this reason, a robust method has been proposed to
address the problem of outlier data through the use of a proposed RFCH robust algorithm to trim the data
from outlier values and the use of both methods WLSMV and ULSMV with robust corrections in standard
errors and fit indexes where These robust correction methods work with data that has non normal
distribution but is also sensitive to outliers The proposed algorithm for cleaning the data from the outlier
and calculates a robust RFCH(Reweighted Fast Consistent and High Breakdown )matrix of an outlier,
where the researcher made a simple modification to the algorithm by taking the final data he reached by
going through several estimators before calculating the matrix to be hired these robust data in all methods
and to calculate a polychoric correlation matrix When we deal with data ordinal.

2- Objective

The researcher aims to address the problem of outliers when we have a Likert scale questionnaire form, so
there are responses of individuals on a paragraph more than others, in addition to errors in data entry
because the modeling requires a large sample size and the entry error is very likely. Studying the effect of
an outlier on estimation methods and using the same estimation methods before and after treatment using
robust RFCH aims to study the effect of the sample size and the degree of distribution on the estimator bias
and standard error bias and use the same estimation methods before and after treatment using robust
RFCH.It aims to study the effect of the sample size and the degree of distribution on the model's overall fit
indexes.

3- The problem
Researchers in psychological and administrative sciences often use the ML and GLS estimation method
without resorting to any test because the technique requires the assumption of a normal distribution. Thus
other estimation methods deal with the non normal distribution, especially when the data are ordinal, and
these methods are WLSMV, ULSMV. The problem of an outlier, as the outlier values affect the estimation
of parameters, standard errors, and the fit indexes, although there are methods that deal with no normal
distribution, the methods are not Robust for outlier values, so they require treatment before using the
method of estimation by using robust method RFCH. When we have a Likert scale of five categories. We
use new methods and corrections when we treat the data as ordinal using the polychoric matrix.
4- Structural equation models (SEM)
An important two-part of models employed in SEM includes measurement models and structure models. .
CFA is used to correct for indicator measurement error, shaping the latent variables (factors). A model in
which the exogenous variable x and the endogenous variables y are being measured is defined as
x=A$+6

y=An+e @)
The full structural Equation model is defined as
n=Bn+T&+¢ (2)
The covariance matrix is obtained as follows by
A,(1—B) HTer’ + ¥](1-B) A, + 0, A, (I1—B) T'dA,
E(H)z[y( ) 1d=B)7°Ay + 6, Ay(1-B) x 3)

A, ®T'(1—-B) 1A, A @A, + O
Therefore the matrix of covariance was proven. (Timm 2002) (Byrne 2013)(Bollen 1989).
5- Polychoric Correlations

Polychoric correlation, explained by (Olsson 1979) can be calculated when ordinal data is involved.
Ordinal variabley, and ordinal variabley, have distinct r and s class categories.

Usually, using the two-stage method, polychoric correlations computed by Olsson (1979) defined. The
proportions of data for the category of an ordinal univariate variable are utilized independently in the first
phase to approximate each latent univariate response variable's threshold values. gives both variables
ordinal y1, with a;, denotes, a;,i = 0, ..., s and ordinal y2, with b i,j=0,...,r The first step is to set the
thresholds at the estimated value of r and s.
a; = ®7'(Pi) (4)
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And b; = ®7(P-)) (5)
The univariate standard normal for cumulative distribution function is denoted as ®1, and P ij denotes in
the proportion cell (i, j), Pi-and P-j denote the proportions cumulative marginal. (Flora and Curran 2004)
(YYang-Wallentin, Joreskog, and Luo 2010)
6- Estimation of Model Parameters
a -Weighted Least Squares (WLS)
When data are non normal, the most generally advocated estimate strategy is the asymptotically
distribution-free (ADF) system (Browne, 1984).
When continuous and ordinal data stray greatly from normality, the use of this method is allowed. '
In the general situation, 6 is the ADF estimator under the following GLS method: the vector that minimizes
this function is
F(0) = 27 [vecs{S — £(0)}]"V " [vecs{S — £(0)}] (6)
the stochastic weight matrix V has a positive definite vector structure. can be written WLS minimizes the
fit function . (Muthén and Asparouhov 2002) (DiStefano 2002)
b- Diagonally weighted squares and Robust DWLS with Corrections to Robust Standard Errors
and Robust Test Statistics
The estimate of Diagonally WLS (DWLS) was developed to address the limitations of the full estimate of
the WLS. Specifically, by decreasing the statistical sensitivity associated with the complete WLS
estimator, DWLS eliminates the need for a large sample size DWLS may also incorporate scaling similar
to the SB scaling approach, resulting in robust DWLS estimation(Gregory R. Hancock and Ralph O.
Mueller 2013). The general form of the RWLS fit function is:
Fpwis = (S —a(0))" Wp)'(S' —a'(8)) )
In ordinary data, one technique fits the SEM model with the polychoric correlation matrix rather than the
sample covariance matrix called cat-DWLS. W, = fg = diag(Iy) includes only diagonal elements of a

polychoric corelation , and threshold projections approximate asymptotic covariance matrix. (Bollen, 1989;
Muthén & Muthén, 2010).

However, the typical test statistics TWLS are not sufficient for model fit evaluation because the test
statistics provided by cat-DWLS are no longer distributed asymptotically chi-square. This robust correction
requires both corrections. The mean-adjusted chi-square statistic can also be implemented in the cat-DWLS
estimator (Asparouhov and Muth 2010) proposed a new way to compute the mean- and variance-adjusted
x? (denoted as TDWLS-MV). The method of estimating this correction is called WLSMV: developed
ways to compute the robust y? test

Twismy = aTpwis — b (8)
= as — gf _ [HLrulor?

Where a = T ,and b =df T UFSURD ]

df =s—t ,and U =Wy —Wgta(ar wyta)—1ar wit

£ 1s the estimated asymptotic covariance matrix of s, s = the number of unique elements in s, and t = the
number of independent model parameters. The method of estimating this correction is called
WLSMV (Weighted Least Squares with Mean and Variance Adjusted).(Jia 2016)(Muthén 2002)
c- unweighted Least-squares and Robust ULS Robust Corrections to Standard Errors and Test
Statistics

The ULS approach is simply a type of OLS estimation that minimizes the total squared differences
between the sample and the covariance's expected by the model. This can obtain unbiased estimates
through random samples. A downside of the ULS approach is the necessity that all variables observed be
on the same scale. One benefit is that the ULS approach does not need a positive-definite covariance
matrix, including ML(Kline 2016) estimation method does not require distributional
assumption(Nalbantoglu Yilmaz 2019)

The cat-ULS parameter estimates 65 a saturated threshold structure by minimizing the fit can be
represented as follows

Fyis = (r = p(8))' (r — p(6)) 9)
Where r represent polycoric corelation matrix. . (Savalei and Rhemtulla 2013)
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A recent proposal by (Asparouhov and Muth 2010) to implement an amendment in the second-order that
does not modify the degree of the freedom. The Cat-ULS estimator determines the next method for the
new mean and variance-adjusted statistics: ULSMV
Tysmy = aTyps — b (10)

A A

Where ayps = [———— . byis = df — aystr(UyisT™) , Represent df = 1/, k(k+1) — ¢

A A A A

tr(UyisI™ UuisI™)

A
9p(6)
Ayrs =
Auis =77 s |

It is a standard matrix of 1/2 k(k + 1) = t . 'These statistics are similar to the chi-square scaled by the so-
called Satorra — Bentler, famous for continuous results. This applies to a chi-square distribution of df
degrees of freedom, but that is just the approximate asymptomatic distribution. (Savalei and Rhemtulla
2013) (Xia and Yang 2018)(Asparouhov and Muth 2010)

7- The proposed method for processing data from outlier values represented by estimation
Reweighted Fast Consistent and High Breakdown (RFCH)

Olive and Hawkins (2010) developed Reweighted Fast Consistent and High breakdown (RFCH) estimators
of location and scatter, which was faster than the fast MCD developed by Rousseeuw and Driessen (1999).
The attractive feature of the RFCH technique is that not only its computation is very fast, which is even
faster than Fast MCD (Zhang et al., 2012), but it is v/n Consistent estimators. The RFCH utilizes the vn
Consistent DGK (Devlin et al., 1981 ) estimator and high breakdown Median Ball (MB) (Olive &
Hawkins, 2008 ) estimators as attractors.

Mahalanobis (1936) defined Mahalanobis Distance (MD) to measure the deviation of a data point from its

center. Let us write the i™ vector of predictor variables as:

X =,X, Xy, 0, Xp) = (1, x)

where x; Is a p -dimensional row vector. The mean vector and the variance-covariance matrix are
calculated as:

n

n
1
X = 1/nz x;and C = (m) Z (x; — %) (x; — X)', respectively.
i=1

i=1 =
Subsequently, the (MD) for each observation is written as Equation:
MD; = /(= TX))'CX) (o, —TX) i=12,..,n (11)

where T(X) is the mean vector (x) and C(X) is the variance-covariance matrix (C).
8- The RFCH algorithms can be summarized as follows:

The RFCH consists of three steps where; in the first step, the Fast Consistent and High breakdown (FCH)
attractors of Olive and Hawkins (2010) is determined based on the final attractors of DGK and MB
estimators that adhere to the following rules:
The Tpey and Crpey are determined as:

Ty pex if \/|CK,DGK| < \/|CK,MB|

Trcn = 12
Ty mB Otherwise
And Equation (12)
Med(MDy(Tk.pck.Cx.DGK) .
7R N o o
Cren = 13)
Med(MDi(TK,MBrCK,MB)) % C th i
05) K MB» otherwise
. Med(MD;(T2.rFcH Co.RFCH)
CorrcH = ( lxz(p,O.S) ) * Corrcn =

with the new cut-off point until convergence to get the final attractors (Trpcy, Crrcy) and Xrech »
Subsequently, the Mahalanobis Distance based on is computed, and a new set of data is constructed using
the following Equation (15) ;
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cleandata = X3 ppcy = {Xji: MD;(Torecu, Copren) < ¥2(p, 1 — )}, (15)
j=12,.,kl=12,..,m

(Olive and Hawkins 2010) (Uraibi and Midi 2019) (Zhang 2011)(Rousseeuw and Van Driessen 1999)

(Olive and Hawkins 2008)(D. J. Olive, 2017)

9- Model evaluation

1- Robust Model-fit Indexes with methods robust estimation

The robust chi-square statistic, model degrees of freedom, scale factor, and shift factor for WLSMV and

ULSMV is denoted as T, d, a, and b, respectively. PR model-fit indexes are determined for a sample size of

n.

_ aM(n—l)II;MerM—dM
RMSEA , = \/max(O, o= Ddar ) (16)
CFIn =1- apy(n—1)F p+by—dym (17)

ag(n—-1)Fg+bp—dp

TLIn —1— apy(n—1)Fpy+bpy—dpy _dm (18)

’ ag(n-1)Fg+bg—dp dn
(Xia and Yang 2019)(Savalei 2018)(Asparouhov and Muth 2010)
2- Residual-Based Fit Indices
a- Residual Matrix.
Residual matrix To examine the hypothesis that £ = %(08) you must calculate £—X(0). A nonzero member in
a null matrix indicates model definition error. To find S, you would use X(0) as a substitution for X, and
then you would use S — £(0) to form S-X(0) has elements, where each element is calculated as S — X(0).
Each parameter determines whether the model predicts covariance levels between observed variables i and
j in the negative or positive definite. the correlation residuals(Hildreth 2013) (Ibrahim and Mohammed
2021)
ry =y = —tp = —La, (ij = 1,.,p) (19)

(siisjj) (6116j5)

b- Standardized Root Mean square Residual (SRMR)

This formula is known as the "Root Mean Square Residual” (SRMR). Dr. Stephen Bentler created SRMR
in 1995.SRMR is calculated the sample estimate and population is follows:

(vi-o0s)’
SRMR = |*yP_ yi_ 70U (20)

i=1 i=1 ® %
s J 0};05

Where s = k(k + 1)/2). And  ¢;}, 0y, 55, 6;; are elements of X%, X, S, and £ Respectively. Represent Sij
is the sample covariances, d;; Is the model implied covariance, and sii and s jj are observed standard
deviations. SRMR value has a value of 0 or 1, with 0 being the optimum fit and 1 representing the worse
fit. (Kline 2016) (Schermelleh-Engel, Moosbrugger, and Mdiller 2003)

10-Simulation Design

The simulation was conducted to answer the research objectives and problems of the research. The
simulation design, data generation and analysis procedures and evaluation of the results will be described.
Continuous data were generated using the R program according to the method of(Vale and Maurelli 1983)
and(Rhemtulla, Brosseau-Liard, and Savalei 2012) for a multivariate normal distribution with skewness
and kurtosis of 0 and 0 and a distribution of moderate normal with skewness and kurtosis 2 and 7, and the
number of variables required for the variance-covariance matrix as defined in the model, and then a set of
thresholds are determined to convert each continuous variable into an ordered categorical variable, as the
number of categories is equal to 5, and this is common in research. It is Generating data with different
sample sizes and 500 replicates for each group with 20% contamination average for each sample size,
randomly, where the proposed modified robust system is applied to clean the data from an outlier. The
following Table shows the design of the simulation experiment for the model, sample sizes, and
distributions.

11- Simulation population parameter models
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The first model consists of four factors and 12 variables; each factor has three variables. We have three
exogenous factors and one endogenous factor, and the indicators are loaded on the first three factors at
0.70. with making the indicators for one factor, they are generated random normality, with a mean equal to
0.5 and standard deviation 0.05, the scheme The following describes the design of a simulation experiment
for a model

x7

Diagram (1) the design of a model of the hierarchical model paths for the estimated parameters
As for the simulation model, it was designed as follows

[0.7 0 0 0
0.7 0 0 0
0.7 0 0 0
0 0.7 0 0
0 0.7 0 0
0 0.7 0 0
A =10 0 0.7 0
0 0 0.7 0
0 0 0.7 0
0 0 0 rnom(1,0.5.0.05)
0 0 0 rnom(1,0.5.0.05)
0 0 0 rnom(1,0.5.0.05)

where A load factors for X and Z, respectively
1 0 p

o} !

p P 1

As for @, it represents the correlation between the exogenous latent variables, as the correlation with the
value 0.2 is shown in the matrix below

1 02 0.2
_10.2 1 0.2
®= 02 0.2 1

dig®=[1 1 1 11111111 1]
Also, the covariance matrix @ represents the measurement error, or the variance of the residuals on the
independent and dependent variables (indicators), which equals 1. In contrast, the covariance matrix of {s
reflects the correlations or variances of the factors located on the latent variables.

digip)=[1 1 1 1 ]

Whereas the matrix T represents the paths between the exogenous and endogenous latent variables so that
these paths were generated with a multivariate normal distribution with a mean equal to 0.3 and standard
deviation of 0. 5

0 0 0 0

e 0 0 0 0
- 0 0 0 0
rnom(1,0.3.0.5) rnom(1,,0.3.0.5) rnom(1,0.3.0.5) 0
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The model consists of two parts, measurement the model, which is represented by the following
mathematical equations

X31 = Ax3, X1 + 63 X153 = Ax153X3 + 655
Xy = x4 Xy + 6, X163 = AX163X3 + 816 ]
X51 = Ax51 X1 + 65 X173 = Ax173X3 + 617 1)
X102 = Ax102X5 + 810 Z3q = A231Z, + &5
X112 = Ax112X5 + 614 Zyy = A2492, + 6,
122 = Ax122X5 + 612 Zsy = AZ51Z4 + 85
As for the structural model, it is written in the following format
Zy =y t VX, tviXs + 4 (22)

The parameters Ax,; ... Aysq , Y11 -.-. Y13ar€ unknown, and their estimation is required. The factor loads of
the standard model, the measurement errors on the measured variable, and the structural model parameters
represent a path analysis between the underlying variables.

12- The absolute bias average for standard errors

To determine the overall fit of the standard errors of the parameters, the total absolute bias average of the
standard errors was calculated as shown in tables (1 ), which represents the bias for both factor loading,
structural coefficients, correlations, influence by two methods estimation with the presence of outlier
values and using the proposed method RFCH and according to the distribution normality and moderate
distribution non-normality, as it was noted that the relative bias of errors decreased in all sample sizes and
all methods, which indicates the quality of the proposed method to clean the data from an outlier in
addition to the effect of an outlier on standard errors.

Table (1) represents the absolute bias average of the standard errors of the small model

SZ?;‘Z'G 200 400 600 800 1000
ULSMV | 04341 | 04116 | 04462 | 0.4227 | 04371
Dist  ["cuLsmv | 0.16983 | 0.16893 | 0.2016 | 0.1704 | 0.18444
WLSMV | 0337 | 030244 | 03402 | 03199 | 0.3571
CWLSMV | 0.16932 | 0.16792 | 0.20101 | 0.1784 | 0.18386
ULSMV | 05096 | 0.4939 | 04156 | 0.4083 | 0.443
CULSMV | 0.1866 | 0.1705 | 0.1854 | 0.1805 | 0.19634
WLSMV | 04176 | 03498 | 0361 | 0.36039 | 0.3612

CWLSMV | 0.1818 | 0.17297 | 0.18712 | 0.1884 | 0.19545

7

=2,

skew
kurtosis

The (C) symbol is represented in front of each method using the clean data of the proposed method RFCH
represent CULSMV and CWLSMV.As for the methods that deal with the data as ordinal by calculating the
polychoric matrix in addition to using the robust corrections in the standard errors and the robust
corrections in the chi-square, the values of the absolute bias average for the method of ULSMV before
cleaning ranged between 0.4462- 0.4227, while CULSMYV after using the method The proposed ranged
between 0.16983 - 0.12016, and from this result. It is clear from this result that there is a clear difference
using the RFCH method, as the errors were very small and less than using the WLSMV method directly
with contaminated data.

By comparing the two methods, it is clear that both methods are ideal in terms of the relative bias of the
standard errors of the clean data, and they give close results. And in some sample sizes, the WLSMV
method is superior, and in other sample sizes, the ULSMV method is superior.

13- Bais parameter estimation

The total quality of the estimated parameters was calculated by calculating the absolute bias average for the
parameters before and after cleaning with the presence of outlier using the proposed method, as it was
noted through Table ( 2) that all the parameters estimated using the robust RFCH were very small
compared to the contaminated data and for all methods.
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Table (2) the absolute bias average for the parameters of the small model

Sample 200 400 600 800 1000
Slze
ULSMV | 333559 | 300.937 | 49.9154 | 18.053 | 32.395
Dist. | cyLsmv | 1.394 0227 | 0.18716 | 0.19073 | 0.19064

WLSMV 91.9735 19.9744 | 9.17086 | 8.1207 31.702
CWLSMV 1.42 0.2262 | 0.18677 0.1909 | 0.19071

ULSMV 660.797 471.36 60.455 98.805 | 32.1393
CULSMV 2.9102 0.2823 0.2561 0.2792 0.245
WLSMV 238.545 6.5361 15.7378 | 2.28352 | 4.9672
CWLSMV 2.3659 0.28103 | 0.2557 0.2792 | 0.24503

7

=2

skew
kurtosis

It was noted through the data that was normality generated with outlier and cleaned using the proposed
method that the overall bias average of the parameters is much smaller than the data that were assumed by
the nonnormal distribution so that the performance of the robust and weighted methods without outlier is
better for both two distributions, in addition to the evaluation of the model through the relative bias average
For standard errors and estimated parameters, the quality of the proposed method is evaluated after
cleaning from the outlier through the residual matrix, which represents the difference between the real
parameter and the estimated parameter

14- fit indexes for small model
Through the simulation results of the previous model, the data follow the two distributions of first:
skewness 2, kurtosis 7, and second: skewness 0, kurtosis 0, in the presence of an outlier. They are cleaned
by the proposed method RFCH from outlier and use five sample sizes: 200, 400, 600, 800, and 1000. as
well as it was noted that the fit indexes of differing according to the estimated method Because some
methods use the correction robust chi-square, in addition, some fit indicators are based on the chi-square
correction robust.
1-chi-Square fit Index
In comparison, its value was less when the nonnormal data is distributed, which indicates the robustness of
the correction to deal with nonnormal data. And all chi values decreased after using the proposed method
RFCH as shown in Table (3).

Table (3) the chi-square fit index for the small model

Dist Sample size 200 400 600 800 1000
ist.
method Chisq chisq chisq chisq chisq
S ULSMV 113.8416 | 170.9354 | 231.5337 | 297.2292 | 346.9776

C.ULSMV | 46.45603 | 45.58651 | 45.83298 | 45.64137 | 45.59435
WLSMV 91.59424 | 133.8841 | 176.1701 | 222.8137 | 273.8744
C.WLSMV | 46.23925 | 45.6918 | 45.98901 | 45.70388 | 45.65046

skew 0
kurtosis

W ULSMV 110.4685 | 164.4508 | 210.8787 | 276.7401 | 330.7945

T C.ULSMV | 47.19695 | 46.52312 | 46.1589 | 46.16313 | 46.52194
> 'é WLSMV 97.19711 | 154.4712 | 204.8167 | 268.7435 | 320.2169
% E C.WLSMV | 47.70195 | 46.64953 | 46.24243 | 46.2121 | 46.65148

For the ULSMV and WLSMV methods, the use of (Asparouhov, & Muthén, 2010) correction robust
method for mean and variance, especially when the distribution assumption is violated and in the presence
of outliers It gave better results and noted that the chi-square index is biased for the sample size, the model
size and affected by the degree of distribution, so other matching indicators have been developed based on
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the chi -Square and the immune-corrected chi-Square robust, even though the process of cleaning from the
outlier made all the values of chi-Square and for all methods close.
2- RMSEA fit Index
This is the most fitting indicator based on the estimation technique; It was noticed through Table ( 4) when
using the proposed method and for all sample sizes that the RMSEA values had decreased and became
within the ideal limits close to zero, and it was also noted that the value of RMSEA with the increase in the
sample size approached to zero using the RFCH method and that the use of robust corrections for chi
Square in the RMSEA index gave better results

Table (4) the RMSEA fit index values for the small model

Sample size 200 400 600 800 1000
method RMSEA | RMSEA | RMSEA | RMSEA | RMSEA
ULSMV 0.07729 0.07638 | 0.076292 | 0.077398 | 0.07632
C.ULSMV 0.00996 | 0.006982 | 0.005776 | 0.005002 | 0.004306
WLSMV 0.064078 | 0.064761 | 0.065101 0.0659 0.067281
C.WLSMV | 0.009658 | 0.007118 | 0.005906 | 0.005064 | 0.004389

Dist.

0

skew 0
kurtosis

o ULSMV 0.07618 | 0.075328 | 0.072846 | 0.074898 | 0.074478

T C.ULSMV 0.01084 0.00759 | 0.006024 | 0.005238 | 0.00481
> é WLSMV 0.06855 0.07249 | 0.071814 | 0.074092 | 0.07363
% ; C.WLSMV | 0.01147 | 0.007781 | 0.006045 | 0.00536 | 0.004942

For the ULSMV and WLSMYV estimation methods, we note that the fit index values are very small before
and after cleaning and that they are smaller than the fit indicators for other methods and all sample sizes.
We also note that the ULSMV method is superior to the methods by giving it a relatively lower value than
the WLSMV method. This is if the data does not follow a normal distribution. But if the data follow a
normal distribution, then through the table results, it was noted that the values of ULSMV for the clean
data ranged between 0.004306-0.00996, while the WLSMV method ranged between 0.009658-0.004389.
3- SRMR fit index
This fit index is less affected by the chi-square determinants, which is an index of the covariance matrix of
the residuals, and the closer to zero indicates that there is no error and that the recommended minimum is
0.08.

Table (5) the SRMR fit index values for the small model

Dist Sample size 200 400 600 800 1000
ISL.
method SRMR SRMR SRMR SRMR SRMR
o ULSMV 0.0787 0.070284 | 0.06711 | 0.066576 | 0.066152

C.ULSMV 0.0521 0.03536 | 0.028706 | 0.024638 | 0.022024
WLSMV 0.07347 | 0.064963 | 0.061885 | 0.060871 | 0.060586
C.WLSMV | 0.052101 | 0.035412 | 0.028711 | 0.024651 | 0.02202

skew 0
kurtosis

W ULSMV 0.08379 | 0.076872 | 0.072374 | 0.07307 | 0.072196

T C.ULSMV 0.04853 | 0.034448 0.0282 0.024356 | 0.021946
> é WLSMV 0.079676 | 0.073774 | 0.069234 | 0.069611 | 0.067858
% E C.WLSMV | 0.04853 | 0.034476 | 0.028205 | 0.024378 | 0.021973

The results are shown in Table (5 ) for all methods, whether normal or nonnormal distribution, the value of
SRMR falls within the ideal limits. However, some methods such as WLSMV and ULSMV before
cleaning also fall within the acceptable limits for the use of robust corrections in errors, as noted through
The Table shows that these methods have the lowest SRMR compared to other methods when we treat the
data as ordinal, where the ULSMV values for the nonnormal distribution ranged between 0.04853-
0.021946 for the clean data, which indicates a perfect fit for the residuals of standard errors, which
represent the difference between the sample matrix for the real data and the estimated matrix from the
model, while the values of the WLSMV method ranged between 0.04853-0.021973, as it was noted that

32



Iraqgi Journal of Statistical Sciences, Vol. 19, No. 2, Pp. (24-35)

with the increase in the sample size and for all methods after cleaning, it approaches more than zero and
the least error for the residuals.

4- fit indexes TLI and CFI

These fit indicators the high value indicates a perfect fit through the results in the tables (6 ) ( 7) for all
methods and all sample sizes and the two distributions, and the values of the two fit indicators lead to the
rejection of the model when the data contains outlier values for most methods. At the same time, the values
after using the proposed method RFCH obtained an ideal fit quality and were close to one. However, most
methods after cleaning give very close results, especially when the data is normally distributed. We
conclude from That is, with the increase in the sample size, increase the accuracy and robustness of fit
indexes, as shown in the tables.

Table (6) the CFI fit index values of the small model

Dist Sample size 200 400 600 800 1000
ISL.
method CFlI CFlI CFlI CFlI CFl
o ULSMV 0.80913 0.82075 0.82066 | 0.820054 | 0.82902

C.ULSMV 0.98448 | 0.994214 | 0.996556 | 0.997476 | 0.998014
WLSMV 0.878486 | 0.883508 | 0.884433 | 0.883871 | 0.880352
C.WLSMV | 0.986554 | 0.993926 | 0.996297 | 0.997353 | 0.997891

skew 0
kurtosis

N ULSMV 0.798505 | 0.820174 | 0.835068 | 0.828842 0.83122
T C.ULSMV | 0.987735 0.9947 | 0.996604 | 0.997592 | 0.998048
> é WLSMV 0.851528 | 0.844848 | 0.850562 | 0.844627 | 0.848025
% ; C.WLSMV | 0.985737 | 0.993998 | 0.996187 | 0.997245 | 0.997745
Table (7 ) the TLI fit index values of the small model
Dist. Sample size 200 400 600 800 1000
method TLI TLI TLI TLI TLI
=) ULSMV 0.73755 | 0.753544 | 0.753398 | 0.752518 | 0.764868

C.ULSMV 1.06101 1.00882 | 1.004278 | 1.003484 | 1.002636
WLSMV 0.83364 | 0.839841 | 0.841095 | 0.840322 | 0.83548
C.WLSMV | 1.034713 | 1.008622 | 1.004102 | 1.00351 | 1.002683

skew 0
kurtosis

N ULSMV | 0.723005 | 0.752768 | 0.773196 | 0.764664 | 0.767928

‘I CULSMV | 100595 | 1.004124 | 1.003232 | 100244 | 1.001554
=% WLSMV | 0796838 | 0.786672 | 0.794524 | 0.786364 | 0.791032
23 CWLSMV | 1.003515 | 1.004126 | 1.003423 | 1.002665 | 1.001587

In addition, the TLI and CFI fit indicators for the normal distribution, whether for contaminated data and
clean data, after using the proposed method give greater results than if the data distribution is no normal.
15- Conclusions

We conclude from the simulation results that all methods with robust corrections in the weighted standard
errors affected by the outlier. Using the proposed method RFCH, the absolute bias rate for standard errors
and parameters and all models decreases significantly, indicating the algorithm's quality to get clean of
outliers and improve the quality of parameters and reduce errors. We conclude that the absolute bias rate
for parameters and standard errors is affected by the degree of distribution. It is less accurate when the data
is not distributed normally. Through the simulation results after using the proposed method and for the
clean data, we conclude through the comparison between the methods that the best methods are the
ULSMV weighted and WLSMV; when we deal with the data, it is ordinal by calculating the polychoric
matrix as input, In addition to the strong corrections in the standard errors because it has the least bias rate
in standard errors and the least bias in the estimate parameters. By simulating different sample sizes and
with an increase in the sample size, at a contamination rate of 20%, the absolute bias rate of errors
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increases due to the percentage of contamination, but with the use of the proposed method RFCH, we
conclude that the standard errors after cleaning and with the same sample size obtain stability, which
indicates the quality of the method. Through the total quality based on the fit indexes, we conclude that all
fit indexes decrease after using the proposed method and are within the limits of the ideal cut-off after
cleaning. We conclude that the chi-square value is biased the sample size, as it rises with the increase in the
sample size and the degree of distribution, so it is not recommended to rely on it. Through the simulation
results, all the fit indexes are affected by the sample size, so we notice an increase in the accuracy of the
quality of the fit indexes after using the proposed method for clean data as the sample size increases.

Whereas TLI and CFI are close to one, so modeling requires a large sample size. Through the results, we

conclude that the quality of fit indexes is affected by the degree of distribution. When the data are

distributed in a normal distribution and free of an outlier, the fit indexes are more ideal than no normal
distribution. By drawing the residual matrix for all methods, we conclude that the residuals approach zero
and the normal distribution after cleaning using the proposed method. The use of the robust corrections of

(Asparouhov, & Muthén,2010) in the estimation methods ULS and DWLS gave results and quality of fit

greater by using correlation polychoric, especially when the data is distributed nonnormal, because of the

robustness of this Correction on data that are not normally distributed.
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