Experimental Investigation of the Optimum Angle for the Hybrid PV/T Collector | ||
Anbar Journal of Engineering Sciences | ||
Article 1, Volume 13, Issue 1, May 2022, Pages 1-12 PDF (1.55 M) | ||
Document Type: Research Paper | ||
DOI: 10.37649/aengs.2022.175875 | ||
Authors | ||
Zuhair D. Mohammed1; Saad M. Jalil* 2 | ||
1Municipalities Directorate of Anbar, Fallujah, Iraq | ||
2Department of Mechanical Engineering, University of Anbar , Anbar, Iraq | ||
Abstract | ||
In this article, an experimental study of the single-pass hybrid (PV/T) collector is conducted in the climatic conditions of Fallujah city, where the experimental results are compared with a previous research to validate the results. The effect of changing the angle of inclination of the hybrid collector (PV/T) and its effect on the electrical power in the range (20°-50°) is studied. The optimum angle of the collector is found to be 30°, which gives a maximum electrical power of 58.8 W at average solar radiation of 734.35 W/m2. In another experimental study with different air flow rates ranged from 0.04 kg/s to 0163 kg/s, where it is found that the maximum electrical power of 57.66 W at an air flow rate of 0.135 kg/s, while the maximum thermal efficiency reaches 33.53% at an air flow of 0.163 kg/s at average solar radiation of 786 W/m2. | ||
Keywords | ||
electrical power; optimum inclination angle; PV/T collector; thermal efficiency | ||
References | ||
[1] A. S. Joshi, A. Tiwari, G. N. Tiwari, I. Dincer, and B. V. Reddy, “Performance evaluation of a hybrid photovoltaic thermal (PV/T) (glass-to-glass) system,” Int. J. Therm. Sci., vol. 48, no. 1, pp. 154–164, 2009, doi: 10.1016/j.ijthermalsci.2008.05.001. [2] F. Sarhaddi, S. Farahat, H. Ajam, A. Behzadmehr, and M. Mahdavi Adeli, “An improved thermal and electrical model for a solar photovoltaic thermal (PV/T) air collector,” Appl. Energy, vol. 87, no. 7, pp. 2328–2339, 2010, doi: 10.1016/j.apenergy.2010.01.001. [3] A. Tiwari, M. S. Sodha, A. Chandra, and J. C. Joshi, “Performance evaluation of photovoltaic thermal solar air collector for composite climate of India,” Sol. Energy Mater. Sol. Cells, vol. 90, no. 2, pp. 175–189, 2006, doi: 10.1016/j.solmat.2005.03.002. [4] A. Kasaeian, Y. Khanjari, S. Golzari, O. Mahian, and S. Wongwises, “Effects of forced convection on the performance of a photovoltaic thermal system: An experimental study,” Exp. Therm. Fluid Sci., vol. 85, pp. 13–21, 2017, doi: 10.1016/j.expthermflusci.2017.02.012. [5] K. E. Amori and H. M. Taqi Al-Najjar, “Analysis of thermal and electrical performance of a hybrid (PV/T) air based solar collector for Iraq,” Appl. Energy, vol. 98, pp. 384–395, 2012, doi: 10.1016/j.apenergy.2012.03.061. [6] K. E. Amori and M. A. Abd-AlRaheem, “Field study of various air based photovoltaic/thermal hybrid solar collectors,” Renew. Energy, vol. 63, pp. 402–414, 2014, doi: 10.1016/j.renene.2013.09.047. [7] O. K. Ahmed and Z. A. Mohammed, “Dust effect on the performance of the hybrid PV/Thermal collector,” Therm. Sci. Eng. Prog., vol. 3, pp. 114–122, 2017, doi: 10.1016/j.tsep.2017.07.003. [8] L. pauly, L. Rekha, C. V. Vazhappilly, and C. R. Melvinraj, “Numerical Simulation for Solar Hybrid Photovoltaic Thermal Air Collector,” Procedia Technol., vol. 24, pp. 513–522, 2016, doi: 10.1016/j.protcy.2016.05.088. [9] J. K. Tonui and Y. Tripanagnostopoulos, “Improved PV/T solar collectors with heat extraction by forced or natural air circulation,” Renew. Energy, vol. 32, no. 4, pp. 623–637, 2007, doi: 10.1016/j.renene.2006.03.006. [10] S. Dubey, G. S. Sandhu, and G. N. Tiwari, “Analytical expression for electrical efficiency of PV/T hybrid air collector,” Appl. Energy, vol. 86, no. 5, pp. 697–705, 2009, doi: 10.1016/j.apenergy.2008.09.003. [11] M. Fterich, H. Chouikhi, H. Bentaher, and A. Maalej, “Experimental parametric study of a mixed-mode forced convection solar dryer equipped with a PV/T air collector,” Sol. Energy, vol. 171, no. May, pp. 751–760, 2018, doi: 10.1016/j.solener.2018.06.051. [12] M. M. Ali, O. K. Ahmed, and E. F. Abbas, “Performance of solar pond integrated with photovoltaic/thermal collectors,” Energy Reports, vol. 6, no. xxxx, pp. 3200–3211, 2020, doi: 10.1016/j.egyr.2020.11.037. [13] O. K. Ahmed and Z. A. Mohammed, “Influence of porous media on the performance of hybrid PV/Thermal collector,” Renew. Energy, vol. 112, pp. 378–387, 2017, doi: 10.1016/j.renene.2017.05.061. [14] A. Hadipour, M. Rajabi Zargarabadi, and S. Rashidi, “An efficient pulsed- spray water cooling system for photovoltaic panels: Experimental study and cost analysis,” Renew. Energy, vol. 164, pp. 867–875, 2021, doi: 10.1016/j.renene.2020.09.021. [15] S. Jakhar, M. S. Soni, and N. Gakkhar, “An integrated photovoltaic thermal solar (IPVTS) system with earth water heat exchanger cooling: Energy and exergy analysis,” Sol. Energy, vol. 157, pp. 81–93, 2017, doi: 10.1016/j.csite.2018.07.001. [16] A. M. Ali Morad, A. K. S. Al-Sayyab, and M. A. Abdulwahid, “Optimisation of tilted angles of a photovoltaic cell to determine the maximum generated electric power: A case study of some Iraqi cities,” Case Stud. Therm. Eng., vol. 12, no. July, pp. 484–488, 2018, doi: 10.1016/j.csite.2018.07.001. [17] A. K. Shaker Al-Sayyab, Z. Y. Al Tmari, and M. K. Taher, “Theoretical and experimental investigation of photovoltaic cell performance, with optimum tilted angle: Basra city case study,” Case Stud. Therm. Eng., vol. 14, no. September 2018, p. 100421, 2019, doi: 10.1016/j.csite.2019.100421. [18] M. K. Sharma, D. Kumar, S. Dhundhara, D. Gaur, and Y. P. Verma, “Optimal Tilt Angle Determination for PV Panels Using Real Time Data Acquisition,” Glob. Challenges, vol. 4, no. 8, p. 1900109, 2020, doi: 10.1002/gch2.201900109. [19] R. J. Moffat, “Describing the uncertainties in experimental results,” Exp. Therm. Fluid Sci., vol. 1, no. 1, pp. 3–17, 1988, doi: 10.1016/0894-1777(88)90043-X. [20] A. Shahsavar and M. Ameri, “Experimental investigation and modeling of a direct-coupled PV/T air collector,” Sol. Energy, vol. 84, no. 11, pp. 1938–1958, 2010, doi: 10.1016/j.solener.2010.07.010. [21] M. Al-Damook, Z. A. H. Obaid, M. Al Qubeissi, D. Dixon-Hardy, J. Cottom, and P. J. Heggs, “CFD modeling and performance evaluation of multipass solar air heaters,” Numer. Heat Transf. Part A Appl., vol. 76, no. 6, pp. 438–464, 2019, doi: 10.1080/10407782.2019.1637228. | ||
Statistics Article View: 322 PDF Download: 97 |