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Abstract— The control technique for an exoskeleton system for lower limb 

rehabilitation is complicated, and numerous internal and external elements 

must be taken into account, in addition to the uncertainties in the system model. 

In this paper, through the analysis of the lower extremity exoskeleton is utilized 

to obtain the corresponding equation and its linearized form. The nonlinear 

differential equations have been linearized by using Jacobean’s method in order 

to facilitate the controller design. Considering the interior and external factors 

of the connecting rod, the uncertain elements are introduced and therefore the 

optimal control technique is applied to regulate the system. An optimal state 

feedback control strategy of Linear Quadratic Regulator (LQR), and LQR-Servo 

have been implemented in this work. Finally, the physical parameters of the 

Knee-Ankle Orthosis (KAO) exoskeleton are used, and the simulation results 

show the advantage and applicability of the proposed controller’s design of the 

Knee-Ankle orthosis system. 

 Index Terms— Rehabilitation, Knee-Ankle orthosis (KAO), Optimal control, LQR-Servo 

controller. 

I. INTRODUCTION 

The main reason for everlasting incapacity global is stroke. Impairments because of 

stroke caused hemiplegia, making it impossible for patients to engage in activities of daily 

living. The aid of therapies, like rehabilitation, enables to regain lack abilities. In the 

previous, the lower limb rehabilitation techniques were fully exercised manually with aid of 

the therapist to the patients suffering from a stroke [1].  

The rehabilitation method includes repetitive exercises that are designed to enhance 

motor functions. In stroke rehabilitation, the training that facilitates effective recovery 

should consist of high-intensity and repetitive movements. In the meantime, the patient 

should be motivated to actively engage in the training over a long period. Conventional 

training that requires physiotherapists to manually assist the movement of a patient is 

expensive, labor-intensive, and low repetitive while the duration of the training session is 

short [2]. 

The use of robotics can enhance muscular strength and movement in patients with 

neurological or orthopedic harms particularly stroke rehabilitation [3]. In fact, in many 

manufactories, manipulators have taken the place of human workers because they own the 

ability to handle repetitive movements [4]. Integrating robotics into rehabilitation advanced 

the method of recovery and created the taking walks functionality of the sufferers affected 

with paraplegic and tetraplegic. Besides, the participation of robotic technology in 

therapeutic exercises has spread up modern possibilities for surveillance. To help patients 

perform rehabilitation exercises, assistive robots must be stable and robust enough to 
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 support free movement in a limited, repetitive angular pattern. Robustness and stability 

come with the controller to the robot [1]. 

Several devices use various control approaches to regulate their systems, and as a 

result, study into their control has progressed with the advancement of science and 

technology. It is a fast-developing frontier subject, that is extremely valued by business and 

academia. The control challenge becomes more significant when we want to track the lower 

extremity exoskeleton. 

The human lower limb system has Multiple Inputs and Multiple Outputs (MIMO), 

surely complexed within the extreme nonlinear dynamics and uncertainty. The defy matter 

of unsure systems is the way to transact for them once an actual system has been taking into 

account. The uncertainty of the system parameters reduces system performance, and system 

instability is a possibility [5]. These uncertainties have a major impact on the controller, and 

the overall performance of the model-based controller is strickted by those uncertainties. 

Therefore, the development of a sensible control algorithm to solve the uncertainty problem 

of the exoskeletal system of the lower extremities has become an important topic [6]. 

Meanwhile, some researchers have investigated the optimal control, particularly the 

Linear Quadratic Regulator (LQR), to achieve a normal movement. In [5] presented the 

online iterative learning LQR with adaptive iterative learning control is suggested to control 

trajectory tracking errors for the sake of a leg rehabilitation exoskeleton. In [6] designed the 

LQR control for exoskeletal systems of the lower extremities taking into account the human 

4-DOF gait model in the single support phase. They used the non-dominated sorting genetic 

algorithm to determine the optimal weighting matrices system dynamics. In [7] used an 

LQR optimal control to destabilize the lower extremity exoskeleton system. In [8] proposed 

a robust LQR based Neural-Fuzzy (NF) control scheme is presented in order to overcome 

the effects of payload uncertainties and external disruption in passive assistance for gait 

training. Other types of statefeedback controllers as in [9], where H∞  robust controlller had 

been designed. 

The current paper aims to to improve the performance of an optimal LQR controller by 

extended it to LQR-Servo controller for the exoskeleton system to minimize the feedback 

error and ensure the stability of the controlled robotic system.  

The paper is structured as follows: Section 2 describes the dynamics model of a KAO 

system which derived by using Lagrange equations. Section 3 describes the proposed 

controller design. In Section 4, illustration of simulation results is given. Finally, some 

Conclusions are drawn in Section 5. 

II. MATHEMATICAL MODELING OF KNEE-ANKLE ORTHOSIS (KAO) SYSTEM 

 

A. The dynamics model of Knee-Ankle orthosis system: 

The KAO system is a model of 2-DOF exoskeleton. This system introducing using a 

two-part plane model with revolutionary joints, as shown in Fig. 1.  It consists of two 

actuators, one in each joint. This model takes into consideration the flexion/extension of the 

knee joint and the plantar-flexion/dorsal-flexion of the ankle joint, according to the motions 

are achieved in a sagittal plane due to the fact exoexercising tasks for lower limbs are the 

ones of sagittal plane movements [10]. 
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FIG. 1. THE MODEL OF KNEE-ANKLE ORTHOSIS [10]. 

The Lagrange equations are one of the feasible methods to derive the equations of 

motion. Accordingly, the Euler-Lagrange equation gives the "generalized" equations of 

motion as: 

𝑑

𝑑𝑡
(

𝜕𝐿

𝜕𝜃̇𝑖
) −

𝜕𝐿

𝜕𝜃𝑖
= 𝜏𝑖  , i = 0, 1, 2, …n    (1) 

where the Lagrangian, L, is obtained from the difference between total kinetic energy, and 

total potential energy and τi corresponding generalized forces. The equation can be 

expressed as in Eq. (2).  

𝐿 = 𝐾𝑒 − 𝑉𝑒     (2) 

where, 

𝑲𝒆 is the kinetic energy, 

𝑽𝒆 is the potiential energy. 

𝐾𝑒 =
1

2
𝑚1𝑟1

2𝜃̇1
2 +

1

2
𝐼1𝜃̇1

2 +
1

2
𝐼2𝜃̇1

2 +
1

2
𝐼2𝜃̇2

2 +
1

2
𝑚2𝐿1

2𝜃̇1
2 

+𝑚2𝐿1𝑟2 𝑐𝑜𝑠(𝜃2) 𝜃̇1(𝜃̇1 + 𝜃̇2) +
1

2
𝑚2𝑟2

2(𝜃̇1 + 𝜃̇2)
2
   (3) 

𝑉𝑒 = 𝑚1𝑔𝑟1 𝑐𝑜𝑠 𝜃1 + 𝑚2𝑔(𝐿1 𝑐𝑜𝑠 𝜃1 + 𝑟2 𝑐𝑜𝑠(𝜃1 + 𝜃2))   (4) 

Using the Lagrange Eq. (2) and the equations (3) and (4), then we get the following: 

𝐿 =
1

2
[𝑚1𝑟1

2 + 𝐼1 + 𝐼2 + 𝑚2𝐿1
2]𝜃̇1

2 +
1

2
𝐼2𝜃̇2

2 + 𝑚2𝐿1𝑟2 𝑐𝑜𝑠(𝜃2) 𝜃̇1(𝜃̇1 + 𝜃̇2) 

+
1

2
𝑚2𝑟2

2(𝜃̇1 + 𝜃̇2)
2

− [𝑚1𝑟1 + 𝑚2𝐿1]𝑔 𝑐𝑜𝑠(𝜃1) − 𝑚2𝑔𝑟2 𝑐𝑜𝑠(𝜃1 + 𝜃2)  (5) 

The dynamic model of both human leg and exoskeleton are derived simultaneously, the Lagrange 

equation supplies a methodical process to procure the dynamics equations of motion for robots. 

According to the Lagrange dynamic Eq. (5), the knee and ankle joint moments of τ1 and τ2 can 

be obtained as: 
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 𝑑

𝑑𝑡
(

𝜕𝐿

𝜕𝜃̇1
) −

𝜕𝐿

𝜕𝜃1
= 𝜏1     (6) 

𝜏1 = [𝑚1𝑟1
2 + 𝐼1 + 𝐼2 + 𝑚2𝐿1

2 + 2𝑚2𝐿1𝑟2 𝑐𝑜𝑠(𝜃2) + 𝑚2𝑟2
2]𝜃̈1 − 𝑚2𝐿1𝑟2 𝑠𝑖𝑛(𝜃2)𝜃̇2

2 

−2𝑚2𝐿1𝑟2 𝑠𝑖𝑛(𝜃2)𝜃̇1𝜃̇2 − [𝑚1𝑟1 + 𝑚2𝐿1]𝑔 𝑠𝑖𝑛(𝜃1) − 𝑚2𝑔𝑟2 𝑠𝑖𝑛(𝜃1 + 𝜃2)  (7)  

𝑑

𝑑𝑡
(

𝜕𝐿

𝜕𝜃̇2
) −

𝜕𝐿

𝜕𝜃2
= 𝜏2     (8) 

𝜏2 = [𝑚2𝐿1𝑟2 𝑐𝑜𝑠(𝜃2) + 𝑚2𝑟2
2]𝜃̈1 + [𝐼2 + 𝑚2𝑟2

2]𝜃̈2 − 𝑚2𝐿1𝑟2 𝑠𝑖𝑛(𝜃2) 𝜃̇1𝜃̇2 

−𝑚2𝑔𝑟2 𝑠𝑖𝑛(𝜃1 + 𝜃2) + 𝑚2𝐿1𝑟2 𝑠𝑖𝑛(𝜃2)𝜃̇1 (𝜃̇1 + 𝜃̇2)   (9) 

Simplifying equations (7) and (9) yields: 

𝜃̈1 =
𝛼1𝜏1−𝛼2𝜏2+𝛼3𝜃̇1𝜃̇2+𝛼5𝜃̇2

2+𝛼6+𝛼7−𝛼8+𝛼9𝜃̇1
2

𝛼4
   (10) 

𝜃̈2 =
𝛽1𝜏2−𝛽2𝜏1−𝛽3𝜃̇1𝜃̇2−𝛽5𝜃̇2

2−𝛽6+𝛽7−𝛽8𝜃̇1
2

𝛽4
    (11) 

where, 

𝐾1 = 𝑚1𝑟1
2 + 𝐼1 + 𝑚2𝐿1

2 , 𝐾2 = 𝑚2𝐿1𝑟2, 𝐾3 = [𝑚1𝑟1 + 𝑚2𝐿1]𝑔, 

𝐾4 = 𝑚2𝑔𝑟2, 𝐾5 = 𝑚2𝑟2
2, 𝐾6 = 𝐼2, 

𝑠1 = 𝑠𝑖𝑛(𝜃1), 𝑐1 = 𝑐𝑜𝑠(𝜃2), 𝑠12 = 𝑠𝑖𝑛(𝜃1 + 𝜃2 ), 𝑐12 = 𝑐𝑜𝑠(𝜃1 + 𝜃2 ). 

𝛼1 = [𝐾5 + 𝐾6], 𝛼2 = (𝐾2𝑐2 + 𝐾5), 𝛼3 = (𝐾2𝐾5 + 𝐾2𝐾6)𝑠2 

𝛼4 = [𝐾5 + 𝐾6][𝐾1 + 2𝐾2𝑐2 + 𝐾5 + 𝐾6] − (𝐾2
2𝑐2

2 + 𝐾5
2), 𝛼5 = [𝐾2𝐾5 + 𝐾2𝐾6]𝑠2 

𝛼6 = [𝐾3𝐾5 + 𝐾3𝐾6] 𝑠1, 𝛼7 = [𝐾4𝐾5 + 𝐾4𝐾6]𝑠12,  

𝛼8 = (𝐾2𝐾4𝑐2 + 𝐾4𝐾5)𝑠12, 𝛼9 = (𝐾2
2𝑐2 + 𝐾2𝐾5)𝑠2. 

𝛽1 = [𝐾1 + 2𝐾2𝑐2 + 𝐾5 + 𝐾6], 𝛽2 = (𝐾2𝑐2 + 𝐾5), 𝛽3 = (𝐾2
2𝑐2 + 𝐾2𝐾5)𝑠2, 

𝛽4 = [𝐾5 + 𝐾6][𝐾1 + 2𝐾2𝑐2 + 𝐾5 + 𝐾6] − (𝐾2
2𝑐2

2 + 𝐾5
2), 𝛽5 = (𝐾2

2𝑐2 + 𝐾2𝐾5)𝑠2, 

𝛽6 = (𝐾2𝐾3𝑐2 + 𝐾3𝐾5) 𝑠1, 𝛽7 = [𝐾1𝐾4 + 𝐾2𝐾4𝑐2 + 𝐾4𝐾6]𝑠12, 

𝛽8 = [𝐾1𝐾2 + 2𝐾2
2𝑐2 + 𝐾2𝐾5 + 𝐾2𝐾6]𝑠2. 

Suppose the state variables of the system are: 

𝑥1 = 𝜃1: The shank angular position, 𝑥2 = 𝜃2: The foot angular position. 

𝑥3 = 𝜃̇1: The shank angular velocity, 𝑥4 = 𝜃̇2: The foot angular velocity. 

So that  
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 𝑥̇1  =  𝑥3 ,      (12) 

𝑥̇2  =  𝑥4 ,      (13) 

𝑥̇3 =
𝛼1𝜏1−𝛼2𝜏2+𝛼3 𝑥3𝑥4+𝛼5 𝑥4

2+𝛼6+𝛼7−𝛼8+𝛼9 𝑥3
2

𝛼4
      (14) 

ẋ4 =
β1τ2−β2τ1−β3 x4

2−β5 x3x4−β6+β7−β8 x3
2 

β4
    (15) 

the outputs are: 

𝑦1  =  𝜃1: The shank angular position, 

𝑦2  =  𝜃2: The foot angular position. 

the inputs are: 

𝑢1  = 𝜏1: the external torque at the upper link, 

𝑢2 = 𝜏2: the external torque at the lower link. 

The parameters to be used to develop the KAO system model are as  provided in Table I. 

TABLE I. LIST OF SYSTEM PARAMETERS [1]. 

Parameter Name Symbol Unit Value 

Shank length L1 m 0.2 

Foot length L2 m 0.08 

Shank mass m1 Kg 2.8 

Foot mass m2 Kg 1.17 

Shank inertia I1 Kg.m2 0.075 

Foot inertia I2 Kg.m2 0.012 

Gravity g m/s2 9.8 

        𝐤𝐧(𝛕𝐝) - rad 5sin(4πt) 

B. Linearized Model of the Knee-Ankle Joint:  

By using Jacobean’s method, the nonlinear system represented by Eq. (14) and Eq. (15) can be 

linearized with the equilibrium points listed in Table II. Detailed description of the linearization can be 

referred to in [11]. 

TABLE II. THE SYSTEM EQUILIBRIUM POINTS [2]. 

Equilibrium points     Value Unit 

𝐱𝟏  0.17 rad 

𝒙𝟐 0.35 rad 

𝐱̇𝟏 0.3 rad\s 

𝐱̇𝟐 0.4 rad\s 

𝛕𝟏 0.5 N.m 

𝛕𝟐 0.5 N.m 

The equations could be rewritten as follow: 

𝑥̇(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡)     (16) 

𝑦 (𝑡) = 𝐶𝑥(𝑡) + 𝐷𝑢(𝑡)     (17) 
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 where, 

𝑥: is a state vector, ẋ: is a state differential equation, 𝑦: is the output equation, 𝐴, 𝐵, C, D: are the system 

nominal matrices which obtained as 

𝐴 = [

0 0 1.0000
0 0 0

−0.8044
−10.3545

1.0560
−710.2931

0.0451
−0.3327

     

0
1.000

0.0109
−0.0561

], 𝐵 = 1.0𝑒 + 03 ∗ [

0 0
0

0.0057
0

0
−0.0080
3.9419

] 

𝐶 = [
0 0 1 0
0 0 0 1

], 𝐷 = [0]    (18) 

The parameters of human swing leg system (i.e., support human leg or humanoid robot leg) are 

given in Table I. 

III. CONTROLLER DESIGN 

The proposed strategy is an optimal control which can be used to enhance the 

performance of the system as well as stabilizing it. The main goal of the chosen control is to 

compute the output control signal which creates balance and guarantees that the supposed 

purpose (maximizing or decreasing a Performance Index (PI) or a cost function) is achieved 

for the most dependable and most robust closed-loop system. In this paper, the design of 

"LQR optimal control algorithm" and LQR-servo controller are developed.  

A. LQR Optimal Controller: 

The LQR controller is an effective method applied to control linearized within the 

state-space domain [12], as can be seen in in Fig. 2. The LQR controller offers stability 

securing, performance, and robustness in a closed control loop in the presence of 

uncertainty in the system [13]. The proposed LQR controller aims to determine the state-

feedback control vector K, which gives control vector u. Moreover, the law of linear state 

feedback control shows in Eq. (19), that it attained through minimizing a quadratic cost 

function shown in Eq. (20). Then, the Algebraic Riccati equation gives the Riccati solution, 

P as expressed in Eq. (21), [14-15]. 

𝑢(𝑡) = −𝐾𝑥(𝑡) = −𝑅−1𝐵𝑇𝑃𝑥(𝑡)    (19) 

𝐽 = ∫ [𝑥𝑇(𝑡)𝑄𝑥(𝑡) + 𝑢𝑇(𝑡)𝑅𝑢(𝑡)]𝑑𝑡
∞

0
    (20) 

𝐴𝑇𝑃 + 𝐴𝑃 − 𝑃𝐵𝑅−1𝐵𝑇𝑃 + 𝑄 = 0    (21) 

where, 

Q: is positive definite weight matrix  

R: is positive semi-definite weight factor.  

The Q and R are selected with suitable weightings for the state of the system., 𝑥 =

[𝜃1  𝜃2  𝜃̇1  𝜃̇2]
𝑇

 to create the LQR controller supported on the reduction of quadratic 

performance index, J. 
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FIG. 2. FULL STATE FEEDBACK REPRESENTATION OF KNEE-ANKLE ORTHOSIS. 

B. Linear Quadratic Regulator Servo (LQR-Servo) Optimal Control: 

The LQR control provides quite good activity for regulation responsibilities, however, 

it is incapable to ensure the pursuance of dynamic references due to the lack of integrated 

methods in the controller [16]. The latter is added using an LQR-servo method of control, 

as shown in Fig. 3. The LQ-servo is an idealistic state feedback controller which could keep 

tracking of the dynamic reference and remove the error because of the effect of the integral 

term [17]. This is performed through enhancing the state of system through the output error 

integration shown in the LQR-Servo controller structure below. 

  

e

K

+  ++
_ B

r

A

C
u x y

+
_

 

FIG. 3. TYPICAL IMPLEMENTATION OF THE LQR SERVO. 

The error vector could be written as follow: 

𝑒̇ = 𝑟 − 𝑦 = 𝑟 − 𝐶𝑥     (22) 

where r is the reference signals. 

The state space is a description of the specified system as shown below: 

𝑥̇𝐸 = 𝐴𝐸  𝑥𝐸 + 𝐵𝐸  𝑢 + 𝑟     (23) 

Let: 

𝐴𝐸 = [
𝐴 04,2

−𝐶 02,2
], 𝐵𝐸 = [

𝐵
02,2

], 

 𝐶𝐸 = [𝐶 0], 𝐷𝐸 = [𝐷]     (24) 

The new state vector,  𝑥𝐸 = [𝑥 𝑒]𝑇 

[
𝑥̇
𝑒̇

] = [
𝐴 04,2

−𝐶 02,2
] [

𝑥
𝑒

] + [
𝐵

02,2
] × 𝑢 + [

04,2

12,2
] × 𝑟   (25) 

where, 
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 𝐴𝐸 : The augmented system matrix, 𝐵𝐸 : The augmented input matrix, 𝑥𝐸: The augmented of state 

vectors, both 𝐴𝐸 and 𝐵𝐸 augmented controllable pair of system matrices. 

Now, the control input u is obtained from the augmented system illustration from as following: 

𝑥𝐼 = [∫(𝑥𝑟1 − 𝑥1) ∫(𝑥𝑟2 − 𝑥2)]𝑇    (26) 

𝑥𝐸 = [𝜃1 𝜃2 𝜃̇1 𝜃̇2 𝑥𝐼]
𝑇

     (27) 

𝑢 = −𝐾𝐸 × 𝑥𝐸 = −[𝐾 𝐾𝐼] [
𝑥
𝑥𝐼

]    (28) 

where, 𝑥𝑟: is unmeasured states, 𝐾𝐸: is the control gains, which is calculated by using the lqr 

command in MATLAB using the linear model matrices. 

IV.      SIMULATION RESULTS 

This part of the paper includes the results obtained by MATLAB. The impact of 

optimal control relies upon the choice of weight matrices (Q & R). Broadly, the weight 

matrices (Q & R), if they are not properly selected, the result could not reach the 

performance requirements. So, after getting an appropriate (Q & R), the optimal gain matrix 

K can be calculated. In the following, the simulation results will be illustrated. 

A. LQR: 

By the application of Eqs. 19-21 using MATAB, and selecting the weight matrix as 

follow: 

𝑄 =  [

500
0
0
0

0
500

0
0

0
0

500
0

0
0
0

500

] and 𝑅 = [
0.01 0

0 0.01
]. 

The initial state 𝑥0  =  [0.5; 0.5; 0.5; 0.5]. The feedback gain 𝑲𝒍𝒒𝒓 is obtained as 

follows: 

𝐾𝑙𝑞𝑟 =  [  1.2147𝑒+2 −3.7532𝑒+1 3.1100𝑒+2

 5.0022 1.1336𝑒+2 −2.7493𝑒+1
    5.9136𝑒−1

  2.2367𝑒+2 ] 

The resulted closed-loop response of the system using the LQR Controller is shown in Fig. 4, and 

the control signal is shown in Fig. 5. It is clear that although the resulting control signal needs to be 

concentrated within certain accepted values, the LQR control can effectively regulate the system.       

Fig. 6 shows the error in this case, where the reference signal is considered as zero. In order to track a 

change in the reference signal the LQR needs to be enhanced by adding the integral of the errors, as 

will be described next. 
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(a) The first state x1                                         (b) The second state x2 

  

                                  (d) the thrid state x3                                                                (c) the fourth state x4 

FIG. 4. A CLOSED LOOP RESPONSE USING LQR CONTROLLER. 

  

FIG. 5. THE CONTROL SIGNALS. 
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FIG. 6. THE ERROR SIGNALS USING LQR CONTROL.  

 
B. LQR-servo: 

By using the approach that is described in Section III.B and using the following weight 

matrices: 

𝑄 = 0.2 ∗ ([𝐶𝐸
′ ∗ 𝐶𝐸]), and 𝑅 =  5 ∗ [1    0.1 ;  0    1], 

and initial state 𝑥0  =  [−0.2 ; −0.8 ; 5 ; 1 ; 0 ; 0], the following controller gain 𝐾𝑙𝑞𝑟  has 

been obtained: 

𝐾𝑙𝑞𝑟 =  [  −1.1461𝑒−1 −6.2649𝑒−2 8.1863𝑒−1

2.1089𝑒−3 −1.4160𝑒−1 −2.8218𝑒−2 
   1.5265𝑒−4   
   3.0485𝑒−2     −1.9871 3.9176𝑒−2

6.5794𝑒−2 −1.9823
] 

The applied reference signals for both joints are taken to be ref = 4 rad. 

The KAO-controlled system has efficiently tracked the reference signal. In addition, 

the obtained results using the LQR-Servo controller eliminate the steady-state tracking error 

minimizes the overshoot and the oscillation of the system response in the time domain as 

obtained in figures below. 

Fig. 7 contains a closed-loop response of the system applying LQR-servo control, 

which shows the behavior of the LQR-servo controller in tracking the reference signals, and 

Fig. 8 displays the control input signal u, which is much improved than that in the LQR 

case that shown in Fig. 6, and Fig. 9 shows the resulting error signal. It is clear that the 

error signals were reduced to zero as required. 

https://doi.org/10.33103/uot.ijccce.22.2.10


 119    

Received 1/October/2021; Accepted 7/November/2021 

 

Iraqi Journal of Computers, Communications, Control & Systems Engineering (IJCCCE), Vol. 22, No. 2, June 2022             

DOI: https://doi.org/10.33103/uot.ijccce.22.2.10 

 

 

 
(a) The first state x1                                            (b) The second state x2 

 
(c) The third state x3                                       (d) The fourth state  

FIG. 7. A CLOSED LOOP RESPONSE USING LQR-SERVO CONTROLLER. 

 

FIG. 8. THE CONTROL SIGNALS. 
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FIG. 9. THE ERROR SIGNALS. 

To further examine the robustness of the proposed LQR-Servo control, an external 

sudden disturbance of 0.4 rad is applied to the KAO system at time = 2 𝑠𝑒𝑐, as shown in 

Fig. 10. It may be noticed that the developed LQR-Servo controller can effectively reject 

the external disturbance and  maintain the robustness of the KAO controlled system. Fig. 11 

displays the control input signal u, which shows the signal has defeated the sudden 

disturbance and be stable. Fig. 12 shows the effecting error signal. 

 
(a) The first state x1.                                                (b) The second state x2. 

 
(c) The third state x3.                                          (d) The fourth state  x4. 

FIG.10. A CLOSED LOOP RESPONSE USING LQR-SERVO CONTROLLER WITH DISTURBANCE INPUT. 
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FIG. 11. THE CONTROL SIGNALS. 

 

FIG. 12. THE ERROR SIGNALS. 

Another test has been investigated by considering the effects of noise on the system. 

Although the effect of the noise can be noticed in the control signal, where the disturbance 

is mainly affecting, the controlled system can still maintain the robustness of stability and 

performance. The resulted response is as shown in Fig. 13, while Fig. 14 shows the noise 

effect with the control signal u. Fig. 15 shows the resulting error signal. It can be observed 

that the KAO-controlled system can still maintain robustness and stability. 
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(a) The first state x1.                                                (b) The second state x2. 

  
(c) The third state x3.                                          (d) The fourth state x4. 

FIG. 13. A CLOSED LOOP RESPONSE USING LQR-SERVO CONTROLLER WITH NOISE INPUT. 

 

FIG. 14. THE CONTROL SIGNALS. 
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FIG. 15. THE ERROR SIGNALS. 

The integral action within the suggested LQR-servo controller has considerably 

reduces the steady-state error. This approach does not only achieve a smooth stabilization 

curve with the least amount of overshoot and oscillation of angle and distance. Also, it 

achieves the LQR controller resilience with tracking performance. 

V. CONCLUSIONS 

In this paper, the non-linear model of the KAO system is linearized, and then a linear 

optimal controller has been applied effectively to the system. The implemented LQR 

optimal control approach shows good stability performance. The performance weight 

matrices (Q and R) have been calculated, so the position angles of the robot meet the 

required time domain characteristics in the regulatory mode of operation. Then, the LQR-

servo control method has been applied to the KAO system. The tracking performance has 

been achieved in this case, even with the presence of disturbance. 

The next step of this work will be to enhance the performance of the controlled system 

by using optimization to improve and selection of Q and R values of the optimal controller 

and by considering the nonlinear system’s model and upgrade the controller to include the 

nonlinearities of the system using the computed torque approach. 

REFERENCES 

[1] S. F. Ahmed et al., “Robotic exoskeleton control for lower limb rehabilitation of knee joint,” Int. J. Eng. 

Technol., vol. 7, no. 2, pp. 56–59, 2018. 

[2] V. Sangveraphunsiri, “Mechanical Power to Identify Human Performance for a Lower Limb 

Rehabilitation Robot,” Eng. J., vol. 23, no. 4, pp. 91–105, 2019. 

[3] A. Sutapun and V. Sangveraphunsiri, “A Novel Design and Implementation of a 4-DOF Upper Limb 

Exoskeleton for Stroke Rehabilitation with Active Assistive Control Strategy,” Eng. J., vol. 21, no. 7, 

pp. 275–291, 2017. 

[4] A. T. Phan, H. N. Thai, C. K. Nguyen, Q. U. Ngo, H. A. Duong, and Q. T. Vo, “Trajectory Tracking 

Control Design for Dual-arm Robots using Dynamic Surface Controller,” Eng. J., vol. 24, no. 3, pp. 

159–168, 2020. 

[5] N. Ajjanaromvat and M. Parnichkun, “Trajectory Tracking Using Online Learning LQR with Adaptive 

Learning Control of a Leg-Exoskeleton for Disorder Gait Rehabilitation,” Mechatronics, vol. 51, no. 

September 2017, pp. 85–96, 2018. 

https://doi.org/10.33103/uot.ijccce.22.2.10


 124    

Received 1/October/2021; Accepted 7/November/2021 

 

Iraqi Journal of Computers, Communications, Control & Systems Engineering (IJCCCE), Vol. 22, No. 2, June 2022             

DOI: https://doi.org/10.33103/uot.ijccce.22.2.10 

 

 [6] J. Gupta, R. Datta, A. K. Sharma, A. Segev, and B. Bhattacharya, “Evolutionary Computation for 

Optimal LQR Weighting Matrices for Lower Limb Exoskeleton Feedback Control,” Proc. - 22nd IEEE 

Int. Conf. Comput. Sci. Eng. 17th IEEE Int. Conf. Embed. Ubiquitous Comput. CSE/EUC 2019, pp. 24–

29, 2019. 

[7] J. Chen, Y. Fan, M. Sheng, and M. Zhu, “Optimized Control for Exoskeleton for Lower Limb 

Rehabilitation with Uncertainty,” Proc. 31st Chinese Control Decis. Conf. CCDC 2019, no. 2, pp. 

5121–5125, 2019. 

[8] J. Narayan and S. K. Dwivedy, “Robust LQR-Based Neural-Fuzzy Tracking Control for a Lower Limb 

Exoskeleton System with Parametric Uncertainties and External Disturbances,” Appl. Bionics Biomech., 

vol. 2021, 2021. 

[9]  Hazem I. Ali, “H-infinity Based Full State Feedback Controller Design for Human Swing Leg,” 

Engineering and Technology Journal, vol. 36, no. 3, Mar. 2018. 

[10] M. O. Ajayi, K. Djouani, and Y. Hamam, “Bounded Control of an Actuated Lower-Limb Exoskeleton,” 

J. Robot., vol. 2017, 2017. 

[11]  H. I. Ali, A. F. Hasan, and H. M. Jassim, “Optimal H2PID Controller Design for Human Swing Leg 

System Using Cultural Algorithm,” J. Eng. Sci. Technol., vol. 15, no. 4, pp. 2270–2288, 2020. 

[12] K. Ogata, “Modern control engineering,” Vol. 5. Upper Saddle River, NJ: Prentice hall, 2010. 

[13] T. Teng Fong, Z. Jamaludin, A. Y. Bani Hashim, and M. A. A. Rahman, “Design and Analysis of Linear 

Quadratic Regulator for a Non-Linear Positioning System,” Appl. Mech. Mater., vol. 761, pp. 227–232, 

2015. 

[14]   L. T. Rasheed, “Optimal Tuning of Linear Quadratic Regulator Controller Using Ant Colony Optimization 

Algorithm for Position Control of a Permanent Magnet DC Motor,” IRAQI JOURNAL OF 

COMPUTERS, COMMUNICATIONS, CONTROL AND SYSTEMS ENGINEERING, pp. 29–41, Jul. 

2020. 

[15]   B. F. Midhat, “Optimal LQR Controller Design for Wing Rock Motion Control in Delta wing Aircraft,” 

Engineering and Technology Journal, 2017. 

[16] B. K. Abd-Al Amear, S. M. Raafat, and A. Al-Khazraji, “Glucose Controller for Artificial Pancreas,” 

2019 Int. Conf. Innov. Intell. Informatics, Comput. Technol. 3ICT 2019, no. September, pp. 1–6, 2019. 
[17] S. M. Raafat, B. K. Abd-AL Amear, and A. Al-Khazraji, “Multiple Model Adaptive Postprandial 

Glucose Control of Type 1 Diabetes,” Eng. Sci. Technol. an Int. J., vol. 24, no. 1, pp. 83–91, 2021. 

 

https://doi.org/10.33103/uot.ijccce.22.2.10

