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Abstract— Task scheduling is one of the very crucial facets of cloud computing. 

The task scheduling method must assign jobs to virtual machines. In cloud 

computing, task scheduling includes a frontal influence on a system's resource 

utilization and operational costs. Diverse meta-heuristic algorithms, in addition 

to their modifications, have been developed to improve the efficiency of task 

executions in the cloud. In this paper, a multiobjective optimization model is 

applied using the metaheuristics cuckoo search optimization algorithm (MCSO) 

to enhance the performance of a cloud system with limited computing resources 

while minimizing the time and cost. Finally, we analyze the performance of the 

proposed MCSO with the existing methods, such as Bee Life Algorithm (BLA), A 

Time–Cost aware Scheduling (TCaS) algorithm, Modified Particle Swarm 

Optimization (MPSO), and  Round Robin (RR), for the evaluation metrics 

makespan and cost. Based on the outcomes of the experiments, it can be 

inferred that the proposed MCSO provides essential schedule jobs with the 

shortest makespan and average cost.  

Index Terms— Task Scheduling, Multiobjective, Cloud Computing, Cost, Makespan. 

I. INTRODUCTION 

Cloud computing is becoming more common in industry, academia, and society as 

access to the Internet and big data rise in volume, velocity, and variety over the Internet. 

Distributed computing, utility computing, grid computing, and autonomous computing all 

fall under the umbrella of cloud computing [1]. It's a new model that uses the Internet to 

deliver software, infrastructure, databases, security, platforms, storage, computing, and 

hardware as services. Computing entities are virtualized, dynamically configurable, and 

driven by economic scale in a cloud computing environment [2]. Recently, researchers are 

becoming enthusiastic about the topic of task scheduling in a distributed system. Task 

scheduling is an essential problem in the cloud computing environment since it takes into 

account a variety of aspects such as completion time, the total cost of executing all users' 

activities, power consumption, resource utilization, and fault tolerance. A bi-objective 

optimization challenge is finding the best balance between resolution time and makespan in 

a precedence-constrained concurrent program [3]. Scheduling is a way of making decisions 

and provides an important role in most manufacturing and production systems as well as 

most of the information processing environments that are used daily in a variety of 

industrial settings [4], [5]. Scheduling in the cloud entails mapping n 

independent/dependent tasks to m resources to be able to meet a set of user-defined or 

system-defined requirements. If none of the objective functions could be improved without 

worsening a few of the other objective values, the solution is recognized as Pareto 

optimum. All non-dominated solutions constitute the Pareto-optimal front [6], [7].  
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Since the cloud scheduling issue is Non-deterministic Polynomial-time hard (NP-hard), 

finding optimal scheduling solutions in polynomial time is impossible [8]. If such issues are 

solved utilizing an exhaustive search, the time it will take to generate a scheduling solution 

might be exceedingly long. Several research projects have been launched to get near-

optimal scheduling solutions using evolutionary and swarm intelligence-based algorithms. 

Through the scheduling process, two or more opposite objectives are examined for 

optimization in multi-objective scheduling [9]. Several optimization scheduling issues need 

the optimization of more than one objective function. There is no single solution to such 

issues. Rather, good barter solutions that act the most effective potential compromises 

between the scheduling criteria or objectives can be identified [10]. Many factors should be 

considered to formulate the multi-objective optimization problem, such as a system to 

maintain non-dominated solutions over populations, a technique to maintain population 

variety, and  a mechanism to lead the search to the Pareto-optimal front. 

By using the cuckoo search optimization algorithm, we introduced a Multi-objective 

Cuckoo Search Optimization (MCSO)  based task scheduling in this study. The makespan 

and cost multi-objective functions are utilized in this paper. We get the near-optimal 

scheduled task using the multi-objective function. Our approach was evaluated and 

compared to the Modified Particle Swarm Optimization (MPSO) algorithm, Bee Life 

Algorithm (BLA) algorithm, TCaS algorithm, and RR algorithm on a variety of datasets of 

various sizes. The findings show that the proposed algorithm provide the optimal Quality of 

Service while also being faster and less expensive than the other options. The following are 

the significant contributions to task scheduling research: 

 For task scheduling, an approach known as MCSO is used, which includes the 

benefits of swiftly converging and simply realization, provide a near-optimal 

solution. 

 Multiobjective task scheduling problems are formulated for cloud computing 

which intended to minimize makespan and cost in the cloud environment. 

The following sections of the paper are organized as follows: Section 2 discusses a 

review of related work on existing task scheduling techniques. The definition of the task 

scheduling problem is presented in Section 3. Section 4 discusses the methodology. The 

results and comparison are described in Section 5. The conclusion is found in section 6.  

II. RELATED WORK 

Several scheduling approaches for cloud computing are presented in the curent state of 

art. For creating near-optimal schedules, Pan et al. [11] suggested a new artificial chemical 

reaction optimization approach. The objects react with each other inside their chemical 

reaction process to achieve the lowest possible energy case, which optimizes grid 

scheduling's makespan. The proposed method is compared to the Gentic Algorithm (GA) 

algorithm and the Heterogeneous Earliest Finish Time Algorithm (HEFT). While Salimi et 

al. [12] presented Non-dominated Sorting Genetic Algorithm (NSGA-II), which uses a 

fuzzy variance-based crossover technique to maximize two scheduling objectives: resource 

use cost and makespan. In [13], they introduced multi-objective task scheduling utilizing a 

cuckoo and particle swarm optimization technique. The major goal of this work is to reduce 

the time, cost, and rate of deadline violations, to get the near-optimal task scheduling using 

the multi-objective function. Mohamed Abd Elaziz et al. [14] have proposed the Moth 

Search Differential Evolution (MSDE) algorithm as an alternate way for solving the task 

scheduling issue in a cloud computing milieu, which combines the Moth Search Algorithm 
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(MSA) and Differential Evolution (DE). They conclusioned that the suggested MSDE can 

efficiently schedule tasks to the Virtual Machine (VM) while consuming the least amount 

of time. Whereas V. M. Arul Xavier and S. Annadurai. [15] handle the challenge of job 

scheduling in heterogeneous virtual computers, a chaotic social spider algorithm based on a 

social spider. This work focuses on minimizing the overall makespan with proper load 

balancing by modeling the swarm intelligence of social spiders utilizing chaotic inertia 

weight-based random selection.  A work scheduling strategy for cloud-based on the 

multiobjective Artificial Bee Colony Algorithm (TA-ABC) is presented in [16]. The 

suggested algorithm optimizes the cloud environment's cost, resource utilization, processing 

time, and energy. Mohit Agarwal and Gur Mauj Saran Srivastava [17] introduced a meta-

heuristic technique Genetic Algorithm enabled Particle Swarm Optimization (PSOGA). In 

this work the problem of task scheduling in a cloud computing milieu, of hybrid version of 

the PSO and GA algorithms is presented. PSOGA reduces makespan time by combining the 

PSO's variegation and GA's condensation properties, and the approach has only been tested 

on small datasets. In [18] a new approach was described to the prognosis of Tasks 

Computation Time. using Principle Components Analysis (PCA) and diminishing the 

Expected Time to Compute (ETC) matrix, the suggested mechensim improves the 

makespan and decreases computation and complexity. According to Xu et al [19] , the Min-

min-based time and cost barter (MTCT) was a multi-objective heuristic approach for 

optimizing time and cost metrics with fault-tolerant considerations, based on particle swarm 

optimization (PSO) technique.[20] presented cloud task scheduling based on a multi-

objective model and the Grey Wolf Optimization (GWO) algorithm to reduce cost and time 

in cloud environments. A multiobjective scheduling strategy for hybrid clouds with the goal 

of reducing Makespan and Cost was presented by Zhou et al [21]. Bitam et al. [22] 

suggested the Bee Life Algorithm (BLA) as a task scheduling technique. The emphasis of 

the study is on key goals: memory and execution time, and the approach has only been 

tested on small datasets. In a Cloud–Fog computing scenario, Binh et al [23] introduced a 

task scheduling technique based on a Genetic Algorithm (GA). This strategy seeks to strike 

a good time-cost balance. The proposed technique outperforms the Bee Life approach; 

however, because the algorithm was only evaluated on short datasets, the tests were limited.  

Most existing task scheduling algorithms, as previously indicated, are useful for short 

datasets and only evaluate cost or makespan as a single aim. Although some trade-off study 

has been done previously, those tradeoffs are unlikely to truly reflect reality. When coping 

with two or more competing goals, Pareto optimization approaches, also referred to as multi 

optimization algorithms, are crucial. Kumar and Venkatesan [24] proposed a hybrid 

genetic-ACO algorithm to solve a multiobjective task scheduling approach to tackle a 

multiobjective task scheduling issue. Multiobjective problems are more practical than 

single-objective issues in today's task scheduling systems [25], [26], [27]. To make the 

better decision suitable, the multi-objective issue necessitates a barter between numerous 

goals. As a result, this research points to a problem with multi-objective task scheduling in 

cloud environments. To accomplish so, we developed the MOCS algorithm, which is 

capable of effectively addressing multi-objective optimization problems.   

III. FORMULATION AND DEFINITION OF PROBLEM 

Consider the case where there are n tasks [T1, T2, T3,... Tn] and m processing 

machines [M1, M2, M3,... Mm] which are obtainable to compute those tasks that must 

fulfill the situation m < n, that is, the numeral of tasks should be more than the number of 

processing or Virtual Machines (VMs),if there is no interdependence between tasks, they 
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could be performed in just about any order. The task length is expressed in MI (Million 

Instructions) and the useful resource ability is measured in MIPS (Million Instructions Per 

Second). By dividing the job length by the resource capacity, the Expected Time to 

Complete (ECT) of each task on a single processor is computed. The goal is to schedule the 

supplied tasks on VMs to obtain the lowest cost, shortest time to completion, and highest 

VM usage. Table I lists the notations for the majority of mathematical symbols. The 

mathematical model we used in this research is based on [28]. 

 

TABLE I. THE SYMBOLS USED IN THE WORK 

 

Symbol  Description 

Pi number machine i 

Tj number task j 

Ti
j task j is handled by machine i 

I(Tj) total number of j task instructions 

RB(Tj) the desired bandwidth for task j 

RM(Tj) desired memory for task j 

Sr(Pi) computing average of machine i 

BWc(pi) cost of bandwidth usage for machine i 

Sc(pi) computing cost for machine i 

Mc(pi) cost of memory usage of machine i 
 

A. Cost 

When a task is completed in the cloud system, a fee is charged to cover processing 

costs (Sc), memory costs(Mc), bandwidth costs (BWc), and all other procsessing cost. The 

following is how the total cost of all tasks to be completed in the Cloud system is 

calculated: 

Minimize: ∑ (∑ (𝑇𝑜𝑡𝑎𝑙𝑐𝑜𝑠𝑡(𝑇𝑗
𝑖)))𝑇𝑗 ∈ 𝑃𝑖

𝑀
𝑖=1      (1) 

TotalCost(Tij) = Sc (Tij) + Mc (Tij) + Bc (Tij)    (2) 

The following three formulae can be used to compute each cost separately. The 

equations show the computational, RAM, and bandwidth expenses that node i will incur to 

complete task j. 

Sc (Ti
j) = Sc(Pi)× (

𝐼(𝑇𝑗)

𝑆𝑟(𝑃𝑖)
)    (3) 

Mc(Ti
j) = Mc(Pi) × RM(Tj)   (4) 

Bc(Ti
j) = BWc(Pi) × RB(Tj)   (5) 

B. Makespan 

The maximum time wanted by tasks in a specific schedule to complete their execution 

is known as makespan. We used Eq. (6) to get the ETC (Expected Time to Complete) for 

each task. 

𝐸𝑇𝐶 =

[
 
 
 
 
 

𝐸𝑇𝐶1,1 𝐸𝑇𝐶1,2 𝐸𝑇𝐶1,3 ⋯ 𝐸𝑇𝐶1,𝑁𝑣𝑚

𝐸𝑇𝐶2,1 𝐸𝑇𝐶2,2 𝐸𝑇𝐶2,3 ⋯ 𝐸𝑇𝐶2,𝑁𝑣𝑚

𝐸𝑇𝐶3,1 𝐸𝑇𝐶3,2 𝐸𝑇𝐶3,3 ⋯ 𝐸𝑇𝐶3,𝑁𝑣𝑚

⋮ ⋮ ⋮ ⋯ ⋮
𝐸𝑇𝐶𝑁𝑡𝑠𝑘,1 𝐸𝑇𝐶𝑁𝑡𝑠𝑘 ,2 𝐸𝑇𝐶𝑁𝑡𝑠𝑘 ,3 ⋯ 𝐸𝑇𝐶𝑁𝑡𝑠𝑘𝑁𝑣𝑚]

 
 
 
 
 

 

 

 

         Minimize: ∑ (max1 ≤ 𝑗 ≤ 𝑁 (
𝐼(𝑇𝑗)

𝑆𝑟(𝑃𝑖)
) , ∀ 𝑇𝑗 ∈ 𝑃𝑖)

𝑀
𝑖=1     (6) 

Where (
𝐼(𝑇𝑗)

𝑆𝑟(𝑃𝑖)
) is the time taken for node i to complete task j, which might be 

calculated by divide the quantity of instructions in task j (I) by node i's processing unit rate 

(Sr). 
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The scheduling problem has been reformulated as a multi-objective optimization 

problem, in which two objectives are optimized at the same time, where the makespan and 

total cost are reduced. In each scenario, both functions are prioritized and minimized at the 

same time. For each scenario, there's no single ideal answer, but instead, some viable 

solutions that are all optimal in some ways. The distance metric measures how close an 

algorithm's non-dominated solutions are to the reference Pareto-optimal front. The box 

plots and spread measure provide information on solution variety and distribution in the 

search space. 

IV. METHODOLOGY 

In this part, the Cuckoo Search (CS) algorithm is discribed for individual optimization 

and multi-objective optimization to handle the issue of job scheduling in a cloud computing 

milieu. The following sections include the preface to cuckoo conduct, the efficiency of 

Levy flight, and the debate of the MCSO algorithm. 

 

A. Basic Terminologies 

Cuckoo Search (CS) algorithm is a swarm-intelligence-based algorithm [29]. The 

naturalist conduct of cuckoos was used to create this algorithm. Every egg in a den 

represents a possible solution in this method. Generally, each cuckoo can only put one egg 

in a nest with a unique shape, yet each nest can contain multiple eggs representing a variety 

of solutions as shown in Algorithm.1. CS's major goal is to develop new solutions to 

replace the present population's worst solutions. Below is a step-by-step guide to the 

process. 

Step 1 (Initialization): In this portion, a nest (solution) inhabitance is generated at 

random (Si, where I = 1,2,...n). 

Step 2 (Fitness ssessment): Calculate the fitness function after generating solutions and 

then select the best one. 

fitness = minimum objective functions   (7) 

Step 3 (Creating a New Cuckoo): In this phase, we'll use levy flights to create new cuckoos. The 

objective function of each solution is then calculated to determine the quality of the solutions. 

Step 4 (Updating): After calculating fitness, Eq.(8) is used to build a new solution. 

𝐼𝑖
𝑁𝑒𝑤 = 𝐼𝑖

(𝑡+1)
= 𝐼𝑖

𝑡+∝  ⨁𝐿𝑒𝑣𝑦(𝜆)   (8) 

where Ii
t denotes an older solution and ⊕ denotes entry-wise multiplication. A random walk with 

a random step size  ∝ > 0  following a levy distribution is known as levy flight. 

Levy u =𝑡−𝜆 (1 < 𝜆 ≤ 3)                            (9) 

Step 5 (Reject the worst-case scenario): We reject the worst fitness value solution after the update 

process. The best solution is thought to be the best option. 

Step 6 (Criterion stage Comes to an End): This method is repeated until the maximum iteration is 

reached. For further processing, the best option is picked. 

we modified the original algorithm so that we can convert it from continuous to discrete to match 

the representation of the scheduling problem in the cloud computing system as shown in the next part. 
 

Algorithm 1. Cuckoo Search Algorithm 

1: begin 

2:    Objective function f(x), x=( x1,…., xn)T; 

3:    Initial a population of n host nests xi(i= 1,2,….,n); 

4:        while (t < Maximum Generation) or (stop criterion); 

5:             Get a cuckoo (say i) randomly and generate a new solution by Levy flights; 

6:             Evaluate its quality/fitness Fi 
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7:             Choose a nest among n (say j) randomly; 

8:             if (Fi > Fj) 

9:                   Replace j with a new solution; 

10:           end 

11:           Relinquish a fraction (Pa) of worst nests; 

12:           Keep the better solutions (or nests with quality solutions); 

13:           Rank the solutions and find the current best; 

14:       end while 

 

15:       Post-process results and visualization; 

16: end 

 

Where f(x) is fitness function, xi denoted to population nest, Fi old fitness, and Fj new 

fitness 

B. Multi-objective Cuckoo Search Optimization (MCSO) Algorithm 

The original CS algorithm deals with individual optimization functions and utilizes the 

3 idealized rules: 

 Every cuckoo place one ovum at a time, which it deposits in a nest that is picked 

at random. 

 The better nest with the finest fineness eggs will be passed down to the 

following generation. 

 The number of reachable steward nests is firm, and a host has a chance of 

discovering an unusual egg (0 or 1). In this instance, the steward has the option 

of throwing the egg or abandoning the nest and starting over in a new place. 

Only the first and third rules are adjusted to include the multi-objective criteria for 

multi-objective optimization with kth various objectives. 

Mathematically, the first rule is randomly transformed to create a new random solution 

using Levi's trip or random walk, where a random switch occurs on the solutions, while the 

second law remains the same in principle to ensure that the best solutions are provided to 

the next generation, and the third law is applied to the transformation process and in this 

way solutions are rejected the worst. The MCSO algorithm's efficiency is ensured by these 

one-of-a-kind functions. In the MOCS algorithm, the below parameters are utilized. 

 Pa ∈ [0, 1]  The probability that a bad nest is likely to be abandoned. 

 α > 0 step size, which should be related to the magnitude of the attention issue. In the vast 

majority of cases, α > 1. 

 λ random step length. 

In the process of creating new solutions to replace old ones. The worst solutions were 

replaced by randomly generating solutions in the state space in the standard CS generating 

solution. This can make convergence to an optimal solution more difficult. Therefore, it 

was used to create the proposed task scheduling model. Since continuous values generated 

by the CS algorithm cannot be allocated to appropriate computing nodes, the operators are 

ineffective for task scheduling in dynamic cloud environments. Levy Flight is applied for 

continuous space. As a result, there have been some changes to the Levy flight equation to 

solve this problem by searching in discrete space, as shown in Algorithm.2. 

 

Algorithm 2. Multi-Objective Cuckoo Search Optimization (MCSO) 

Input: Population of the problem, pa  

Output: Sbest 

1 Initialize the objective functions f1(x),f2(x) …. Fk(x), x = (x1, … , xd)T; 

2 Initial a population of  n host nests xi (i = 1, 2, ..., n), 
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3 Probability Pa ∈ [0,1] and Maximum number of iteration Maxitr; 

4 while : ((t < Maxitr) or (Stop Condition)) do 

5 Get a Cuckoo (say i) randomly by Levy flights; // new solution xi
(t+1) 

6 Evaluate its quality/fitness Fi; // Fi = f(xi
(t+1)) 

7 Choose a nest among n (say j) randomly; //old solution xi
t 

8 Evaluate the K solutions for nest j 

9 if (Fi > Fj) then             // xi
(t+1) > xi

t 

10       Replace Fj ← Fi; // old solution xi
t with new solution xi

(t+1) 

11 end if 

12 Relinquish a fraction (Pa) of worst nests and build new ones at new locations via Levy 

flights; 

13 Keep the better solutions (or nests with quality solutions); 

14 Rank the solutions and find the current best Pareto optimal solutions; 

15 t← t+1; 

16 end while 

17 return Sbest; 

end 
 

In single optimization situations where one egg occurs in a nest with regards to the worth of the 

objective function, ranking the nests based on the quality of the solution is simple. However, ranking 

the nests is a substantial task in multi-objective situations with multiple eggs in each nest. The strategy 

of contrasting the solutions is dependant on objective function principles, which will be wrong and 

results in an incorrect evaluation. It could happen if your objectives are in dispute with each other. Nests 

are separated into two classes using Pareto dominance to accomplish this. Non-dominated nests with 

Pareto optimal solutions are of interest to the first collection, while dominated nests with non-Pareto 

optimal dominated solutions are of interest to the second set. 

V. RESULT AND COMPARISON 

The tests in this study were conducted on a PC running Windows Ten, with a 2.8 GHz 

Core i7 processor and 16 GB of RAM. Python is used to code the proposed algorithm. 

Different task (11) separate task-scheduling problems with varying numbers have been 

solved to assess the efficiency of the proposed MCSO (40 to 500 tasks). The computing 

power and resource consumption costs of cloud nodes are different. Each node is presumed 

to have its processing power, as calculated by MIPS (million instructions per second), as 

well as memory, and bandwidth usage costs. The cloud system was built with thirteen 

processing nodes, which have the characteristics described in Table II. Servers or virtual 

computers in high-performance data centers undertake tasks at the Cloud tier. As a result, 

cloud nodes process data significantly more quickly. These costs are calculated according to 

Grid Dollars (G$)— a currency unit used in the simulation to substitute for real money 

TABLE II. THE CLOUD INFRASTRUCTURE'S CHARACTERISTICS[28] 

 

Parameters Cloud tier Unit 

Number of nodes 13 node 

CPU usage cost [0.1, 1.0] G$/s 

Memory usage cost [0.01, 0.05] G$/MB 

Bandwidth usage 

cost 

[0.01, 0.1] G$/MB 

CPU rate [500, 5000] MIPS 

 

All user queries are routed through the cloud system. Each request is dissected into 

numerous tasks, which are then assessed and the resources required determined. The 

quantity of memory required the number of instructions, how big is the I/O file are all 
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assumed to be features of each task. With regards to the demand, the number of tasks 

directed at each request may differ significantly. The attributes listed in Table III were used 

to define the roles for every dataset at random. The experiment may cover numerous 

situations, with some requiring plenty of computing and others demanding more bandwidth 

utilization or memory because several distinct forms of jobs were constructed. The 

characteristics used in Tables II and III depend on the research paper [28] 

TABLE III. ATTRIBUTES OF TASKS[28] 

 

Property Value Unit 

Input file size 

Memory required 

[10, 100] 

[50, 200] 

MB 

MB 

Output file size [10, 100] MB 

Number of instructions [1, 100] 109 instructions 

   

 

We compared our approach to the BLA algorithm [19], MPSO algorithm [30], and 

TCaS algorithm [25], as well as  RR algorithm [31]. The parameter settings for these 

methods are obtained from their original paper, and the halting condition (maximum 

number of iterations) is defined at 500 generations for all of them, including the proposed 

approach. They also ran 30 times to have better results, and Table IV shows the scheduling 

tallness and treatment cost of the five algorithms. Two key components contributed to the 

fitness function: makespan and total expenses. As a result of its high fitness value, the 

MOCS algorithm outperformed the competition on most all datasets in terms of both cost 

and time. 

TABLE IV. COMPARISON OF THE FIVE ALGORITHMS' MAKESPAN AND OVERALL COST. 

 

Makespan Cost 

No. 

Of Task 

MCSO TCaS BLA MPSO RR MCSO TCaS BLA MPSO RR 

40 186.385 191.44 207.57 215.27 456.11 666.364 733.85 730.88 740.38 755.98 

80 374.022 394.69 416.09 445.35 963.08 1486.427 1540.23 1540.85 1533.4 1581.82 

120 526.768 607.71 654.92 686.2 1495.66 2142.036 2363.37 2367.59 2381.2 2418.9 

160 780.356 819.97 917.67 932.33 1912.08 3038.373 3176.17 3183.8 3197 3246.69 

200 906.207 940.87 1067.49 1065.94 1905.7 3692.464 3755.21 3767.37 3778.3 3835.4 

250 1187.904 1270.96 1490.65 1479.84 3054.8 4745.663 4988.94 5017.17 5007.6 5079.06 

300 1481.412 1473.79 1765.49 1712.76 3309.14 5776.545 5832.69 5877.41 5862.5 5935.94 

350 1681.50 1949.04 2010.74 1911.27 3638.19 6649.928 6607.52 6653.37 6632.4 6738.19 

400 1933.379 1944.58 2421.98 2300.51 4347.64 7645.429 7738.56 7816.04 7760 7875.39 

450 2298.365 2235.16 2840.79 2751.29 5350.35 8810.026 8845.9 8926.57 8876.3 9016.59 

500 2475.335 2503.09 3174.39 3067.26 6023.74 9693.355 9902.64 9995.97 9921.8 10097.7 
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FIG. 1. TOTAL COST COMPARISON OF THE FIVE ALGORITHMS. 

Total–cost for five strategies is compared in Fig. 1. Every dataset with a high average 

fitness showed that our suggested algorithm, MCSO, dominated the first place. Meanwhile, 

Fig. 2 compares the Makespan of the proposed model MCSO algorithm to the four others 

while the number of tasks changed, while Fig. 3 explained competition the time and 

makespan, demonstrating that our suggested MCSO algorithm outperforms the others. 

Based on the results, our suggested method, MCSO, could achieve the best barter among 

make-span and overall cost than the other four algorithms, as well as demonstrating the 

supremacy of time optimization. In complicated situations, MPSO proved to be more 

powerful than BLA. The RR algorithm produced poor results due to its simplistic 

methodology. 

 

 

FIG. 2. MAKESPAN COMPARISON OF THE FIVE ALGORITHMS 
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FIG. 3. TIME AND MAKESPAN COMPARISON OF THE MOCS ALGORITHMS 

VI. CONCLUSION  

This paper provides a multiobjective cuckoo search optimization (MCSO) 

metaheuristic technique to solve the problem of task scheduling in a cloud computing 

context. Task scheduling in cloud computing is an NP-hard problem, which means that any 

deterministic solution will fail to produce the desired results. When compared to a single 

objective function, the multi-objective optimization strategy improves scheduling 

performance. The results suggest that our method was eminent to others. In terms of cost 

and time, it outperforms the existing BLA, MPSO, TCaS, and RR algorithms. 

As a future work, we will examine offering more advanced ways to further optimize 

the balance between exploration and exploitation in the MCSO approach to obtain 

improved performance on convergence speed and accuracy in task scheduling. Meanwhile, 

we will investigate parallel implementations of our methodology in cloud environments to 

reduce the method's scheduling overhead in the presence of enormous workloads. We will 

also add some more advanced features to the suggested performance model and method for 

cloud computing task scheduling. For example, we'll aim to solve difficulties with Quality 

of Service (QoS), where some jobs are prioritized higher than others. There is also an 

intention to apply our method to more complicated task jobs, such as workflows, tasks that 

are not independent of one another, and cloud-based deep learning workloads. 
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