
86

Received 3/August/2021; Accepted 18/October/2021

Iraqi Journal of Computers, Communications, Control & Systems Engineering (IJCCCE), Vol. 22, No. 1, March 2022

DOI: https://doi.org/10.33103/uot.ijccce.22.1.9

Task Scheduling in Cloud Computing Based on The

Cuckoo Search Algorithm

Sajjad Jaber1, Yossra Ali2, Nuha Ibrahim3
1,2,3Department of Computer Science, University of Technology, Baghdad, Iraq

1sajjad.sh.jaber@gmail.com, 2110017@uotechnology.edu.iq, 3110009@uotechnology.edu.iq

Abstract— Task scheduling is one of the very crucial facets of cloud computing.

The task scheduling method must assign jobs to virtual machines. In cloud

computing, task scheduling includes a frontal influence on a system's resource

utilization and operational costs. Diverse meta-heuristic algorithms, in addition

to their modifications, have been developed to improve the efficiency of task

executions in the cloud. In this paper, a multiobjective optimization model is

applied using the metaheuristics cuckoo search optimization algorithm (MCSO)

to enhance the performance of a cloud system with limited computing resources

while minimizing the time and cost. Finally, we analyze the performance of the

proposed MCSO with the existing methods, such as Bee Life Algorithm (BLA), A

Time–Cost aware Scheduling (TCaS) algorithm, Modified Particle Swarm

Optimization (MPSO), and Round Robin (RR), for the evaluation metrics

makespan and cost. Based on the outcomes of the experiments, it can be

inferred that the proposed MCSO provides essential schedule jobs with the

shortest makespan and average cost.

Index Terms— Task Scheduling, Multiobjective, Cloud Computing, Cost, Makespan.

I. INTRODUCTION

Cloud computing is becoming more common in industry, academia, and society as

access to the Internet and big data rise in volume, velocity, and variety over the Internet.

Distributed computing, utility computing, grid computing, and autonomous computing all

fall under the umbrella of cloud computing [1]. It's a new model that uses the Internet to

deliver software, infrastructure, databases, security, platforms, storage, computing, and

hardware as services. Computing entities are virtualized, dynamically configurable, and

driven by economic scale in a cloud computing environment [2]. Recently, researchers are

becoming enthusiastic about the topic of task scheduling in a distributed system. Task

scheduling is an essential problem in the cloud computing environment since it takes into

account a variety of aspects such as completion time, the total cost of executing all users'

activities, power consumption, resource utilization, and fault tolerance. A bi-objective

optimization challenge is finding the best balance between resolution time and makespan in

a precedence-constrained concurrent program [3]. Scheduling is a way of making decisions

and provides an important role in most manufacturing and production systems as well as

most of the information processing environments that are used daily in a variety of

industrial settings [4], [5]. Scheduling in the cloud entails mapping n

independent/dependent tasks to m resources to be able to meet a set of user-defined or

system-defined requirements. If none of the objective functions could be improved without

worsening a few of the other objective values, the solution is recognized as Pareto

optimum. All non-dominated solutions constitute the Pareto-optimal front [6], [7].

https://doi.org/10.33103/uot.ijccce.22.1.9
mailto:sajjad.sh.jaber@gmail.com
mailto:110017@uotechnology.edu.iq
mailto:110009@uotechnology.edu.iq

87

Received 3/August/2021; Accepted 18/October/2021

Iraqi Journal of Computers, Communications, Control & Systems Engineering (IJCCCE), Vol. 22, No. 1, March 2022

DOI: https://doi.org/10.33103/uot.ijccce.22.1.9

Since the cloud scheduling issue is Non-deterministic Polynomial-time hard (NP-hard),

finding optimal scheduling solutions in polynomial time is impossible [8]. If such issues are

solved utilizing an exhaustive search, the time it will take to generate a scheduling solution

might be exceedingly long. Several research projects have been launched to get near-

optimal scheduling solutions using evolutionary and swarm intelligence-based algorithms.

Through the scheduling process, two or more opposite objectives are examined for

optimization in multi-objective scheduling [9]. Several optimization scheduling issues need

the optimization of more than one objective function. There is no single solution to such

issues. Rather, good barter solutions that act the most effective potential compromises

between the scheduling criteria or objectives can be identified [10]. Many factors should be

considered to formulate the multi-objective optimization problem, such as a system to

maintain non-dominated solutions over populations, a technique to maintain population

variety, and a mechanism to lead the search to the Pareto-optimal front.

By using the cuckoo search optimization algorithm, we introduced a Multi-objective

Cuckoo Search Optimization (MCSO) based task scheduling in this study. The makespan

and cost multi-objective functions are utilized in this paper. We get the near-optimal

scheduled task using the multi-objective function. Our approach was evaluated and

compared to the Modified Particle Swarm Optimization (MPSO) algorithm, Bee Life

Algorithm (BLA) algorithm, TCaS algorithm, and RR algorithm on a variety of datasets of

various sizes. The findings show that the proposed algorithm provide the optimal Quality of

Service while also being faster and less expensive than the other options. The following are

the significant contributions to task scheduling research:

 For task scheduling, an approach known as MCSO is used, which includes the

benefits of swiftly converging and simply realization, provide a near-optimal

solution.

 Multiobjective task scheduling problems are formulated for cloud computing

which intended to minimize makespan and cost in the cloud environment.

The following sections of the paper are organized as follows: Section 2 discusses a

review of related work on existing task scheduling techniques. The definition of the task

scheduling problem is presented in Section 3. Section 4 discusses the methodology. The

results and comparison are described in Section 5. The conclusion is found in section 6.

II. RELATED WORK

Several scheduling approaches for cloud computing are presented in the curent state of

art. For creating near-optimal schedules, Pan et al. [11] suggested a new artificial chemical

reaction optimization approach. The objects react with each other inside their chemical

reaction process to achieve the lowest possible energy case, which optimizes grid

scheduling's makespan. The proposed method is compared to the Gentic Algorithm (GA)

algorithm and the Heterogeneous Earliest Finish Time Algorithm (HEFT). While Salimi et

al. [12] presented Non-dominated Sorting Genetic Algorithm (NSGA-II), which uses a

fuzzy variance-based crossover technique to maximize two scheduling objectives: resource

use cost and makespan. In [13], they introduced multi-objective task scheduling utilizing a

cuckoo and particle swarm optimization technique. The major goal of this work is to reduce

the time, cost, and rate of deadline violations, to get the near-optimal task scheduling using

the multi-objective function. Mohamed Abd Elaziz et al. [14] have proposed the Moth

Search Differential Evolution (MSDE) algorithm as an alternate way for solving the task

scheduling issue in a cloud computing milieu, which combines the Moth Search Algorithm

https://doi.org/10.33103/uot.ijccce.22.1.9

88

Received 3/August/2021; Accepted 18/October/2021

Iraqi Journal of Computers, Communications, Control & Systems Engineering (IJCCCE), Vol. 22, No. 1, March 2022

DOI: https://doi.org/10.33103/uot.ijccce.22.1.9

(MSA) and Differential Evolution (DE). They conclusioned that the suggested MSDE can

efficiently schedule tasks to the Virtual Machine (VM) while consuming the least amount

of time. Whereas V. M. Arul Xavier and S. Annadurai. [15] handle the challenge of job

scheduling in heterogeneous virtual computers, a chaotic social spider algorithm based on a

social spider. This work focuses on minimizing the overall makespan with proper load

balancing by modeling the swarm intelligence of social spiders utilizing chaotic inertia

weight-based random selection. A work scheduling strategy for cloud-based on the

multiobjective Artificial Bee Colony Algorithm (TA-ABC) is presented in [16]. The

suggested algorithm optimizes the cloud environment's cost, resource utilization, processing

time, and energy. Mohit Agarwal and Gur Mauj Saran Srivastava [17] introduced a meta-

heuristic technique Genetic Algorithm enabled Particle Swarm Optimization (PSOGA). In

this work the problem of task scheduling in a cloud computing milieu, of hybrid version of

the PSO and GA algorithms is presented. PSOGA reduces makespan time by combining the

PSO's variegation and GA's condensation properties, and the approach has only been tested

on small datasets. In [18] a new approach was described to the prognosis of Tasks

Computation Time. using Principle Components Analysis (PCA) and diminishing the

Expected Time to Compute (ETC) matrix, the suggested mechensim improves the

makespan and decreases computation and complexity. According to Xu et al [19] , the Min-

min-based time and cost barter (MTCT) was a multi-objective heuristic approach for

optimizing time and cost metrics with fault-tolerant considerations, based on particle swarm

optimization (PSO) technique.[20] presented cloud task scheduling based on a multi-

objective model and the Grey Wolf Optimization (GWO) algorithm to reduce cost and time

in cloud environments. A multiobjective scheduling strategy for hybrid clouds with the goal

of reducing Makespan and Cost was presented by Zhou et al [21]. Bitam et al. [22]

suggested the Bee Life Algorithm (BLA) as a task scheduling technique. The emphasis of

the study is on key goals: memory and execution time, and the approach has only been

tested on small datasets. In a Cloud–Fog computing scenario, Binh et al [23] introduced a

task scheduling technique based on a Genetic Algorithm (GA). This strategy seeks to strike

a good time-cost balance. The proposed technique outperforms the Bee Life approach;

however, because the algorithm was only evaluated on short datasets, the tests were limited.

Most existing task scheduling algorithms, as previously indicated, are useful for short

datasets and only evaluate cost or makespan as a single aim. Although some trade-off study

has been done previously, those tradeoffs are unlikely to truly reflect reality. When coping

with two or more competing goals, Pareto optimization approaches, also referred to as multi

optimization algorithms, are crucial. Kumar and Venkatesan [24] proposed a hybrid

genetic-ACO algorithm to solve a multiobjective task scheduling approach to tackle a

multiobjective task scheduling issue. Multiobjective problems are more practical than

single-objective issues in today's task scheduling systems [25], [26], [27]. To make the

better decision suitable, the multi-objective issue necessitates a barter between numerous

goals. As a result, this research points to a problem with multi-objective task scheduling in

cloud environments. To accomplish so, we developed the MOCS algorithm, which is

capable of effectively addressing multi-objective optimization problems.

III. FORMULATION AND DEFINITION OF PROBLEM

Consider the case where there are n tasks [T1, T2, T3,... Tn] and m processing

machines [M1, M2, M3,... Mm] which are obtainable to compute those tasks that must

fulfill the situation m < n, that is, the numeral of tasks should be more than the number of

processing or Virtual Machines (VMs),if there is no interdependence between tasks, they

https://doi.org/10.33103/uot.ijccce.22.1.9

89

Received 3/August/2021; Accepted 18/October/2021

Iraqi Journal of Computers, Communications, Control & Systems Engineering (IJCCCE), Vol. 22, No. 1, March 2022

DOI: https://doi.org/10.33103/uot.ijccce.22.1.9

could be performed in just about any order. The task length is expressed in MI (Million

Instructions) and the useful resource ability is measured in MIPS (Million Instructions Per

Second). By dividing the job length by the resource capacity, the Expected Time to

Complete (ECT) of each task on a single processor is computed. The goal is to schedule the

supplied tasks on VMs to obtain the lowest cost, shortest time to completion, and highest

VM usage. Table I lists the notations for the majority of mathematical symbols. The

mathematical model we used in this research is based on [28].

TABLE I. THE SYMBOLS USED IN THE WORK

Symbol Description

Pi number machine i

Tj number task j

Ti
j task j is handled by machine i

I(Tj) total number of j task instructions

RB(Tj) the desired bandwidth for task j

RM(Tj) desired memory for task j

Sr(Pi) computing average of machine i

BWc(pi) cost of bandwidth usage for machine i

Sc(pi) computing cost for machine i

Mc(pi) cost of memory usage of machine i

A. Cost

When a task is completed in the cloud system, a fee is charged to cover processing

costs (Sc), memory costs(Mc), bandwidth costs (BWc), and all other procsessing cost. The

following is how the total cost of all tasks to be completed in the Cloud system is

calculated:

Minimize: ∑ (∑ (𝑇𝑜𝑡𝑎𝑙𝑐𝑜𝑠𝑡(𝑇𝑗
𝑖)))𝑇𝑗 ∈ 𝑃𝑖

𝑀
𝑖=1 (1)

TotalCost(Tij) = Sc (Tij) + Mc (Tij) + Bc (Tij) (2)

The following three formulae can be used to compute each cost separately. The

equations show the computational, RAM, and bandwidth expenses that node i will incur to

complete task j.

Sc (Ti
j) = Sc(Pi)× (

𝐼(𝑇𝑗)

𝑆𝑟(𝑃𝑖)
) (3)

Mc(Ti
j) = Mc(Pi) × RM(Tj) (4)

Bc(Ti
j) = BWc(Pi) × RB(Tj) (5)

B. Makespan

The maximum time wanted by tasks in a specific schedule to complete their execution

is known as makespan. We used Eq. (6) to get the ETC (Expected Time to Complete) for

each task.

𝐸𝑇𝐶 =

[

𝐸𝑇𝐶1,1 𝐸𝑇𝐶1,2 𝐸𝑇𝐶1,3 ⋯ 𝐸𝑇𝐶1,𝑁𝑣𝑚

𝐸𝑇𝐶2,1 𝐸𝑇𝐶2,2 𝐸𝑇𝐶2,3 ⋯ 𝐸𝑇𝐶2,𝑁𝑣𝑚

𝐸𝑇𝐶3,1 𝐸𝑇𝐶3,2 𝐸𝑇𝐶3,3 ⋯ 𝐸𝑇𝐶3,𝑁𝑣𝑚

⋮ ⋮ ⋮ ⋯ ⋮
𝐸𝑇𝐶𝑁𝑡𝑠𝑘,1 𝐸𝑇𝐶𝑁𝑡𝑠𝑘 ,2 𝐸𝑇𝐶𝑁𝑡𝑠𝑘 ,3 ⋯ 𝐸𝑇𝐶𝑁𝑡𝑠𝑘𝑁𝑣𝑚]

 Minimize: ∑ (max1 ≤ 𝑗 ≤ 𝑁 (
𝐼(𝑇𝑗)

𝑆𝑟(𝑃𝑖)
) , ∀ 𝑇𝑗 ∈ 𝑃𝑖)

𝑀
𝑖=1 (6)

Where (
𝐼(𝑇𝑗)

𝑆𝑟(𝑃𝑖)
) is the time taken for node i to complete task j, which might be

calculated by divide the quantity of instructions in task j (I) by node i's processing unit rate

(Sr).

https://doi.org/10.33103/uot.ijccce.22.1.9

90

Received 3/August/2021; Accepted 18/October/2021

Iraqi Journal of Computers, Communications, Control & Systems Engineering (IJCCCE), Vol. 22, No. 1, March 2022

DOI: https://doi.org/10.33103/uot.ijccce.22.1.9

The scheduling problem has been reformulated as a multi-objective optimization

problem, in which two objectives are optimized at the same time, where the makespan and

total cost are reduced. In each scenario, both functions are prioritized and minimized at the

same time. For each scenario, there's no single ideal answer, but instead, some viable

solutions that are all optimal in some ways. The distance metric measures how close an

algorithm's non-dominated solutions are to the reference Pareto-optimal front. The box

plots and spread measure provide information on solution variety and distribution in the

search space.

IV. METHODOLOGY

In this part, the Cuckoo Search (CS) algorithm is discribed for individual optimization

and multi-objective optimization to handle the issue of job scheduling in a cloud computing

milieu. The following sections include the preface to cuckoo conduct, the efficiency of

Levy flight, and the debate of the MCSO algorithm.

A. Basic Terminologies

Cuckoo Search (CS) algorithm is a swarm-intelligence-based algorithm [29]. The

naturalist conduct of cuckoos was used to create this algorithm. Every egg in a den

represents a possible solution in this method. Generally, each cuckoo can only put one egg

in a nest with a unique shape, yet each nest can contain multiple eggs representing a variety

of solutions as shown in Algorithm.1. CS's major goal is to develop new solutions to

replace the present population's worst solutions. Below is a step-by-step guide to the

process.

Step 1 (Initialization): In this portion, a nest (solution) inhabitance is generated at

random (Si, where I = 1,2,...n).

Step 2 (Fitness ssessment): Calculate the fitness function after generating solutions and

then select the best one.

fitness = minimum objective functions (7)

Step 3 (Creating a New Cuckoo): In this phase, we'll use levy flights to create new cuckoos. The

objective function of each solution is then calculated to determine the quality of the solutions.

Step 4 (Updating): After calculating fitness, Eq.(8) is used to build a new solution.

𝐼𝑖
𝑁𝑒𝑤 = 𝐼𝑖

(𝑡+1)
= 𝐼𝑖

𝑡+∝ ⨁𝐿𝑒𝑣𝑦(𝜆) (8)

where Ii
t denotes an older solution and ⊕ denotes entry-wise multiplication. A random walk with

a random step size ∝ > 0 following a levy distribution is known as levy flight.

Levy u =𝑡−𝜆 (1 < 𝜆 ≤ 3) (9)

Step 5 (Reject the worst-case scenario): We reject the worst fitness value solution after the update

process. The best solution is thought to be the best option.

Step 6 (Criterion stage Comes to an End): This method is repeated until the maximum iteration is

reached. For further processing, the best option is picked.

we modified the original algorithm so that we can convert it from continuous to discrete to match

the representation of the scheduling problem in the cloud computing system as shown in the next part.

Algorithm 1. Cuckoo Search Algorithm

1: begin

2: Objective function f(x), x=(x1,…., xn)T;

3: Initial a population of n host nests xi(i= 1,2,….,n);

4: while (t < Maximum Generation) or (stop criterion);

5: Get a cuckoo (say i) randomly and generate a new solution by Levy flights;

6: Evaluate its quality/fitness Fi

https://doi.org/10.33103/uot.ijccce.22.1.9

91

Received 3/August/2021; Accepted 18/October/2021

Iraqi Journal of Computers, Communications, Control & Systems Engineering (IJCCCE), Vol. 22, No. 1, March 2022

DOI: https://doi.org/10.33103/uot.ijccce.22.1.9

7: Choose a nest among n (say j) randomly;

8: if (Fi > Fj)

9: Replace j with a new solution;

10: end

11: Relinquish a fraction (Pa) of worst nests;

12: Keep the better solutions (or nests with quality solutions);

13: Rank the solutions and find the current best;

14: end while

15: Post-process results and visualization;

16: end

Where f(x) is fitness function, xi denoted to population nest, Fi old fitness, and Fj new

fitness

B. Multi-objective Cuckoo Search Optimization (MCSO) Algorithm

The original CS algorithm deals with individual optimization functions and utilizes the

3 idealized rules:

 Every cuckoo place one ovum at a time, which it deposits in a nest that is picked

at random.

 The better nest with the finest fineness eggs will be passed down to the

following generation.

 The number of reachable steward nests is firm, and a host has a chance of

discovering an unusual egg (0 or 1). In this instance, the steward has the option

of throwing the egg or abandoning the nest and starting over in a new place.

Only the first and third rules are adjusted to include the multi-objective criteria for

multi-objective optimization with kth various objectives.

Mathematically, the first rule is randomly transformed to create a new random solution

using Levi's trip or random walk, where a random switch occurs on the solutions, while the

second law remains the same in principle to ensure that the best solutions are provided to

the next generation, and the third law is applied to the transformation process and in this

way solutions are rejected the worst. The MCSO algorithm's efficiency is ensured by these

one-of-a-kind functions. In the MOCS algorithm, the below parameters are utilized.

 Pa ∈ [0, 1] The probability that a bad nest is likely to be abandoned.

 α > 0 step size, which should be related to the magnitude of the attention issue. In the vast

majority of cases, α > 1.

 λ random step length.

In the process of creating new solutions to replace old ones. The worst solutions were

replaced by randomly generating solutions in the state space in the standard CS generating

solution. This can make convergence to an optimal solution more difficult. Therefore, it

was used to create the proposed task scheduling model. Since continuous values generated

by the CS algorithm cannot be allocated to appropriate computing nodes, the operators are

ineffective for task scheduling in dynamic cloud environments. Levy Flight is applied for

continuous space. As a result, there have been some changes to the Levy flight equation to

solve this problem by searching in discrete space, as shown in Algorithm.2.

Algorithm 2. Multi-Objective Cuckoo Search Optimization (MCSO)

Input: Population of the problem, pa

Output: Sbest

1 Initialize the objective functions f1(x),f2(x) …. Fk(x), x = (x1, … , xd)T;

2 Initial a population of n host nests xi (i = 1, 2, ..., n),

https://doi.org/10.33103/uot.ijccce.22.1.9

92

Received 3/August/2021; Accepted 18/October/2021

Iraqi Journal of Computers, Communications, Control & Systems Engineering (IJCCCE), Vol. 22, No. 1, March 2022

DOI: https://doi.org/10.33103/uot.ijccce.22.1.9

3 Probability Pa ∈ [0,1] and Maximum number of iteration Maxitr;

4 while : ((t < Maxitr) or (Stop Condition)) do

5 Get a Cuckoo (say i) randomly by Levy flights; // new solution xi
(t+1)

6 Evaluate its quality/fitness Fi; // Fi = f(xi
(t+1))

7 Choose a nest among n (say j) randomly; //old solution xi
t

8 Evaluate the K solutions for nest j

9 if (Fi > Fj) then // xi
(t+1) > xi

t

10 Replace Fj ← Fi; // old solution xi
t with new solution xi

(t+1)

11 end if

12 Relinquish a fraction (Pa) of worst nests and build new ones at new locations via Levy

flights;

13 Keep the better solutions (or nests with quality solutions);

14 Rank the solutions and find the current best Pareto optimal solutions;

15 t← t+1;

16 end while

17 return Sbest;

end

In single optimization situations where one egg occurs in a nest with regards to the worth of the

objective function, ranking the nests based on the quality of the solution is simple. However, ranking

the nests is a substantial task in multi-objective situations with multiple eggs in each nest. The strategy

of contrasting the solutions is dependant on objective function principles, which will be wrong and

results in an incorrect evaluation. It could happen if your objectives are in dispute with each other. Nests

are separated into two classes using Pareto dominance to accomplish this. Non-dominated nests with

Pareto optimal solutions are of interest to the first collection, while dominated nests with non-Pareto

optimal dominated solutions are of interest to the second set.

V. RESULT AND COMPARISON

The tests in this study were conducted on a PC running Windows Ten, with a 2.8 GHz

Core i7 processor and 16 GB of RAM. Python is used to code the proposed algorithm.

Different task (11) separate task-scheduling problems with varying numbers have been

solved to assess the efficiency of the proposed MCSO (40 to 500 tasks). The computing

power and resource consumption costs of cloud nodes are different. Each node is presumed

to have its processing power, as calculated by MIPS (million instructions per second), as

well as memory, and bandwidth usage costs. The cloud system was built with thirteen

processing nodes, which have the characteristics described in Table II. Servers or virtual

computers in high-performance data centers undertake tasks at the Cloud tier. As a result,

cloud nodes process data significantly more quickly. These costs are calculated according to

Grid Dollars (G$)— a currency unit used in the simulation to substitute for real money

TABLE II. THE CLOUD INFRASTRUCTURE'S CHARACTERISTICS[28]

Parameters Cloud tier Unit

Number of nodes 13 node

CPU usage cost [0.1, 1.0] G$/s

Memory usage cost [0.01, 0.05] G$/MB

Bandwidth usage

cost

[0.01, 0.1] G$/MB

CPU rate [500, 5000] MIPS

All user queries are routed through the cloud system. Each request is dissected into

numerous tasks, which are then assessed and the resources required determined. The

quantity of memory required the number of instructions, how big is the I/O file are all

https://doi.org/10.33103/uot.ijccce.22.1.9

93

Received 3/August/2021; Accepted 18/October/2021

Iraqi Journal of Computers, Communications, Control & Systems Engineering (IJCCCE), Vol. 22, No. 1, March 2022

DOI: https://doi.org/10.33103/uot.ijccce.22.1.9

assumed to be features of each task. With regards to the demand, the number of tasks

directed at each request may differ significantly. The attributes listed in Table III were used

to define the roles for every dataset at random. The experiment may cover numerous

situations, with some requiring plenty of computing and others demanding more bandwidth

utilization or memory because several distinct forms of jobs were constructed. The

characteristics used in Tables II and III depend on the research paper [28]

TABLE III. ATTRIBUTES OF TASKS[28]

Property Value Unit

Input file size

Memory required

[10, 100]

[50, 200]

MB

MB

Output file size [10, 100] MB

Number of instructions [1, 100] 109 instructions

We compared our approach to the BLA algorithm [19], MPSO algorithm [30], and

TCaS algorithm [25], as well as RR algorithm [31]. The parameter settings for these

methods are obtained from their original paper, and the halting condition (maximum

number of iterations) is defined at 500 generations for all of them, including the proposed

approach. They also ran 30 times to have better results, and Table IV shows the scheduling

tallness and treatment cost of the five algorithms. Two key components contributed to the

fitness function: makespan and total expenses. As a result of its high fitness value, the

MOCS algorithm outperformed the competition on most all datasets in terms of both cost

and time.

TABLE IV. COMPARISON OF THE FIVE ALGORITHMS' MAKESPAN AND OVERALL COST.

Makespan Cost

No.

Of Task

MCSO TCaS BLA MPSO RR MCSO TCaS BLA MPSO RR

40 186.385 191.44 207.57 215.27 456.11 666.364 733.85 730.88 740.38 755.98

80 374.022 394.69 416.09 445.35 963.08 1486.427 1540.23 1540.85 1533.4 1581.82

120 526.768 607.71 654.92 686.2 1495.66 2142.036 2363.37 2367.59 2381.2 2418.9

160 780.356 819.97 917.67 932.33 1912.08 3038.373 3176.17 3183.8 3197 3246.69

200 906.207 940.87 1067.49 1065.94 1905.7 3692.464 3755.21 3767.37 3778.3 3835.4

250 1187.904 1270.96 1490.65 1479.84 3054.8 4745.663 4988.94 5017.17 5007.6 5079.06

300 1481.412 1473.79 1765.49 1712.76 3309.14 5776.545 5832.69 5877.41 5862.5 5935.94

350 1681.50 1949.04 2010.74 1911.27 3638.19 6649.928 6607.52 6653.37 6632.4 6738.19

400 1933.379 1944.58 2421.98 2300.51 4347.64 7645.429 7738.56 7816.04 7760 7875.39

450 2298.365 2235.16 2840.79 2751.29 5350.35 8810.026 8845.9 8926.57 8876.3 9016.59

500 2475.335 2503.09 3174.39 3067.26 6023.74 9693.355 9902.64 9995.97 9921.8 10097.7

https://doi.org/10.33103/uot.ijccce.22.1.9

94

Received 3/August/2021; Accepted 18/October/2021

Iraqi Journal of Computers, Communications, Control & Systems Engineering (IJCCCE), Vol. 22, No. 1, March 2022

DOI: https://doi.org/10.33103/uot.ijccce.22.1.9

FIG. 1. TOTAL COST COMPARISON OF THE FIVE ALGORITHMS.

Total–cost for five strategies is compared in Fig. 1. Every dataset with a high average

fitness showed that our suggested algorithm, MCSO, dominated the first place. Meanwhile,

Fig. 2 compares the Makespan of the proposed model MCSO algorithm to the four others

while the number of tasks changed, while Fig. 3 explained competition the time and

makespan, demonstrating that our suggested MCSO algorithm outperforms the others.

Based on the results, our suggested method, MCSO, could achieve the best barter among

make-span and overall cost than the other four algorithms, as well as demonstrating the

supremacy of time optimization. In complicated situations, MPSO proved to be more

powerful than BLA. The RR algorithm produced poor results due to its simplistic

methodology.

FIG. 2. MAKESPAN COMPARISON OF THE FIVE ALGORITHMS

0

2000

4000

6000

8000

10000

12000

40 80 120 160 200 250 300 350 400 450 500

Total Cost

MOCS TCaS BLA MPSO RR

0

1000

2000

3000

4000

5000

6000

7000

40 80 120 160 200 250 300 350 400 450 500

Makespan

MOCS TCaS BLA MPSO RR

https://doi.org/10.33103/uot.ijccce.22.1.9

95

Received 3/August/2021; Accepted 18/October/2021

Iraqi Journal of Computers, Communications, Control & Systems Engineering (IJCCCE), Vol. 22, No. 1, March 2022

DOI: https://doi.org/10.33103/uot.ijccce.22.1.9

FIG. 3. TIME AND MAKESPAN COMPARISON OF THE MOCS ALGORITHMS

VI. CONCLUSION

This paper provides a multiobjective cuckoo search optimization (MCSO)

metaheuristic technique to solve the problem of task scheduling in a cloud computing

context. Task scheduling in cloud computing is an NP-hard problem, which means that any

deterministic solution will fail to produce the desired results. When compared to a single

objective function, the multi-objective optimization strategy improves scheduling

performance. The results suggest that our method was eminent to others. In terms of cost

and time, it outperforms the existing BLA, MPSO, TCaS, and RR algorithms.

As a future work, we will examine offering more advanced ways to further optimize

the balance between exploration and exploitation in the MCSO approach to obtain

improved performance on convergence speed and accuracy in task scheduling. Meanwhile,

we will investigate parallel implementations of our methodology in cloud environments to

reduce the method's scheduling overhead in the presence of enormous workloads. We will

also add some more advanced features to the suggested performance model and method for

cloud computing task scheduling. For example, we'll aim to solve difficulties with Quality

of Service (QoS), where some jobs are prioritized higher than others. There is also an

intention to apply our method to more complicated task jobs, such as workflows, tasks that

are not independent of one another, and cloud-based deep learning workloads.

REFERENCES

[1] S. Srichandan, T. A. Kumar, and S. Bibhudatta, “Task scheduling for cloud computing using multi-

objective hybrid bacteria foraging algorithm,” Futur. Comput. Informatics J., vol. 3, no. 2, pp. 210–230,

2018.

[2] I. Foster, Y. Zhao, I. Raicu, and S. Lu, “Cloud computing and grid computing 360-degree compared,” in

2008 grid computing environments workshop, 2008, pp. 1–10.

[3] Z.-G. Chen, K.-J. Du, Z.-H. Zhan, and J. Zhang, “Deadline constrained cloud computing resources

scheduling for cost optimization based on dynamic objective genetic algorithm,” in 2015 IEEE

Congress on Evolutionary Computation (CEC), 2015, pp. 708–714.

[4] A. T. S. Al-Obaidi and S. A. Hussein, “Two improved cuckoo search algorithms for solving the flexible

job-shop scheduling problem,” Int. J. Perceptive Cogn. Comput., vol. 2, no. 2, 2016.

[5] A. T. S. Al-Obaidi and H. S. Abdullah, “Camel herds algorithm: A new swarm intelligent algorithm to

solve optimization problems,” Int. J. Perceptive Cogn. Comput., vol. 3, no. 1, 2017.

[6] A. Certa, G. Galante, T. Lupo, and G. Passannanti, “Determination of Pareto frontier in multi-objective

maintenance optimization,” Reliab. Eng. Syst. Saf., vol. 96, no. 7, pp. 861–867, 2011.

0

2000

4000

6000

8000

10000

12000

40 80 120 160 200 250 300 350 400 450 500

makespan cost

https://doi.org/10.33103/uot.ijccce.22.1.9

96

Received 3/August/2021; Accepted 18/October/2021

Iraqi Journal of Computers, Communications, Control & Systems Engineering (IJCCCE), Vol. 22, No. 1, March 2022

DOI: https://doi.org/10.33103/uot.ijccce.22.1.9

[7] G. Chiandussi, M. Codegone, S. Ferrero, and F. E. Varesio, “Comparison of multi-objective

optimization methodologies for engineering applications,” Comput. Math. with Appl., vol. 63, no. 5, pp.

912–942, 2012.

[8] Y. Kessaci, N. Melab, and E.-G. Talbi, “Multi-level and multi-objective survey on cloud scheduling,” in

2014 IEEE International Parallel & Distributed Processing Symposium Workshops, 2014, pp. 480–488.

[9] M. Kaur and S. Kadam, “A novel multi-objective bacteria foraging optimization algorithm (MOBFOA)

for multi-objective scheduling,” Appl. Soft Comput., vol. 66, pp. 183–195, 2018.

[10] Q. Bai, “Analysis of particle swarm optimization algorithm,” Comput. Inf. Sci., vol. 3, no. 1, p. 180,

2010.

[11] G. Pan, Y. Xu, A. Ouyang, and G. Zheng, “An improved artificial chemical reaction optimization

algorithm for job scheduling problem in grid computing environments,” J. Comput. Theor. Nanosci.,

vol. 12, no. 7, pp. 1300–1310, 2015.

[12] R. Salimi, H. Motameni, and H. Omranpour, “Task scheduling using NSGA II with fuzzy adaptive

operators for computational grids,” J. Parallel Distrib. Comput., vol. 74, no. 5, pp. 2333–2350, 2014.

[13] T. P. Jacob and K. Pradeep, “A multi-objective optimal task scheduling in cloud environment using

cuckoo particle swarm optimization,” Wirel. Pers. Commun., vol. 109, no. 1, pp. 315–331, 2019.

[14] M. Abd Elaziz, S. Xiong, K. P. N. Jayasena, and L. Li, “Task scheduling in cloud computing based on

hybrid moth search algorithm and differential evolution,” Knowledge-Based Syst., vol. 169, pp. 39–52,

2019.

[15] V. M. A. Xavier and S. Annadurai, “Chaotic social spider algorithm for load balance aware task

scheduling in cloud computing,” Cluster Comput., vol. 22, no. 1, pp. 287–297, 2019.

[16] R. K. Jena, “Task scheduling in cloud environment: A multi-objective ABC framework,” J. Inf. Optim.

Sci., vol. 38, no. 1, pp. 1–19, 2017.

[17] M. Agarwal and G. M. S. Srivastava, “Genetic algorithm-enabled particle swarm optimization

(PSOGA)-based task scheduling in cloud computing environment,” Int. J. Inf. Technol. Decis. Mak.,

vol. 17, no. 04, pp. 1237–1267, 2018.

[18] B. A. Al-Maytami, P. Fan, A. Hussain, T. Baker, and P. Liatsis, “A task scheduling algorithm with

improved makespan based on prediction of tasks computation time algorithm for cloud computing,”

IEEE Access, vol. 7, pp. 160916–160926, 2019.

[19] H. Xu, B. Yang, W. Qi, and E. Ahene, “A multi-objective optimization approach to workflow

scheduling in clouds considering fault recovery,” KSII Trans. Internet Inf. Syst., vol. 10, no. 3, pp. 976–

995, 2016.

[20] A. Alzaqebah, R. Al-Sayyed, and R. Masadeh, “Task scheduling based on modified grey wolf optimizer

in cloud computing environment,” in 2019 2nd International Conference on new Trends in Computing

Sciences (ICTCS), 2019, pp. 1–6.

[21] J. Zhou, T. Wang, P. Cong, P. Lu, T. Wei, and M. Chen, “Cost and makespan-aware workflow

scheduling in hybrid clouds,” J. Syst. Archit., vol. 100, p. 101631, 2019.

[22] S. Bitam, S. Zeadally, and A. Mellouk, “Fog computing job scheduling optimization based on bees

swarm,” Enterp. Inf. Syst., vol. 12, no. 4, pp. 373–397, 2018.

[23] H. T. T. Binh, T. T. Anh, D. B. Son, P. A. Duc, and B. M. Nguyen, “An evolutionary algorithm for

solving task scheduling problem in cloud-fog computing environment,” in Proceedings of the Ninth

International Symposium on Information and Communication Technology, 2018, pp. 397–404.

[24] A. M. S. Kumar and M. Venkatesan, “Multi-objective task scheduling using hybrid genetic-ant colony

optimization algorithm in cloud environment,” Wirel. Pers. Commun., vol. 107, no. 4, pp. 1835–1848,

2019.

[25] W. Wu, H. R. Maier, and A. R. Simpson, “Single-objective versus multiobjective optimization of water

distribution systems accounting for greenhouse gas emissions by carbon pricing,” J. Water Resour.

Plan. Manag., vol. 136, no. 5, pp. 555–565, 2010.

[26] Y. Sun, F. Lin, and H. Xu, “Multi-objective optimization of resource scheduling in fog computing using

an improved NSGA-II,” Wirel. Pers. Commun., vol. 102, no. 2, pp. 1369–1385, 2018.

[27] Y. Chen, J. Huang, C. Lin, and X. Shen, “Multi-objective service composition with QoS dependencies,”

IEEE Trans. Cloud Comput., vol. 7, no. 2, pp. 537–552, 2016.

[28] B. M. Nguyen, H. Thi Thanh Binh, and B. Do Son, “Evolutionary algorithms to optimize task

scheduling problem for the IoT based bag-of-tasks application in cloud–fog computing environment,”

Appl. Sci., vol. 9, no. 9, p. 1730, 2019.

[29] X.-S. Yang and S. Deb, “Cuckoo search via Lévy flights,” in 2009 World congress on nature &

biologically inspired computing (NaBIC), 2009, pp. 210–214.

[30] S. Abdi, S. A. Motamedi, and S. Sharifian, “Task scheduling using modified PSO algorithm in cloud

computing environment,” in International conference on machine learning, electrical and mechanical

engineering, 2014, vol. 4, no. 1, pp. 8–12.

[31] I. S. Rajput and D. Gupta, “A priority based round robin CPU scheduling algorithm for real time

systems,” Int. J. Innov. Eng. Technol., vol. 1, no. 3, pp. 1–11, 2012.

https://doi.org/10.33103/uot.ijccce.22.1.9

