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Full State Feedback 𝐇𝟐 and H-infinity

Controllers Design for a Two Wheeled 

Inverted Pendulum System 

Abstract - In this work, two robust controllers, which are full state feedback, 

𝐻2 and full state feedback 𝐻∞ controllers are proposed for the two wheeled

inverted pendulum system. The nonlinear equations for the two wheeled 

inverted pendulum system are developed using Euler – Lagrange equation. 

The system parameters changes are considered to show the effectiveness of 

the proposed robust controllers. These controllers are proposed not only to 

stabilize the pendulum in upright position  but  also  to  drive  the  position 

to  track  a  given reference input. The results show that more desirable 

robustness and time response specifications can be achieved using the 

proposed controllers. The effectiveness of the proposed controllers is 

verified experimentally using real two wheeled inverted pendulum system. 
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1. Introduction

Since it is flexible and efficient in many industrial 

operations, the two-wheeled inverted pendulum is 

considered one of very important [1]. It has a 

possible application chance in many fields, such as 

medical applications, laboratory illustrations, 

military applications, automation industries, 

aerospace applications, space industry and 

entertaining applications. The features of the two-

wheeled inverted pendulum systems, which make 

them attractive for users, are: no need of fuels, high 

ease of use and great maneuverability because of 

independent control of two wheels and lower cost of 

energy than fuels.   The problems of this kind of 

systems are unstable, nonlinear, nonholonomic 

constraint and under actuated.   The control of the 

under actuated system becomes more discomfort for 

the researchers to resolve. The under actuated 

system is a category of systems where the control 

inputs are less than DOFs to be stabilized. For the 

two wheeled inverted pendulum system, there are 

only two inputs (torque) from the motors installed to 

the two wheels, but there are three DOFs, which are 

position system, pendulum angle and rotating angle 

of the system. Further, the two-wheeled system is a 

MIMO system where the two inputs might directly 

control the three outputs and it is essentially a 

nonminimum phase system. Further, the variation in 

system parameters causes an uncertainty in a number 

of model’s parameters and leads to variation in 

system dynamics [2]. Several researches have been 

introduced for developing a mathematical model and 

control of the two wheeled inverted pendulum 

system. Newton-Euler equations of motion and 

Euler Lagrange method are the most used methods 

[3]. On the other hand, different control approaches 

have been proposed to control this system, for 

instance, Sliding Mode Control (SMC)[4], LQR 

Controller [5], Adaptive Sliding Mode Control [2] 

and Back stepping Control [6]. The robust control is 

one of the important techniques that are used to 

stabilize the plant and achieve an acceptable 

performance in the presence of disturbance, noise, 

unmodelled plant dynamics and plant parameters 

uncertainties. Further, when a linearized model is 

used to represent a nonlinear plant, a model plant 

mismatch may be occurred and in this case, a robust 

control becomes a need [7, 8]. In this paper, the 

model of the two wheeled inverted pendulum system 

is obtained by Euler equations of motion. The full 

state feedback controller is designed using H2 and

H∞ approaches to achieve the required robustness in

stability and performance.  
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2. System Modeling  

The dynamic modeling of the two wheeled inverted 

pendulum system includes deriving the equations of 

motion using Euler Lagrange method, determining 

the nonlinear state-space model, assigning suitable 

state space variables and obtaining the linear model 

from the nonlinear model. Figure 1 shows the 

schematic diagram of the two-wheeled inverted 

pendulum system [9]. It is shown that the system has 

three degrees of freedom i.e. about the 𝑋, 𝑌 and 𝑍 

axis. The angles are illustrated for the wheeled 

inverted pendulum system in Figure 1. The rotation 

around the lateral axis 𝑋 is known as roll and the 

rotation around the vertical axis 𝑌 is known as yaw 

and the rotation around the lateral axis 𝑍 is known as 

pitch [10]. The Lagrangian is the difference between 

system’s kinetic and potential energies. The 

Lagrangian function of the system is described by 

[11]: 

𝐿 = 𝐸 − 𝑉                                                                   (1) 

where  𝐸 is the total kinetic energy of the system 

and  𝑉 is the total potential energy of the system. The 

next step is to put  𝐿  from the Lagrangian function 

into the Lagrangian equation. The Euler Lagrange 

equation of motion for the system is given by [3]: 
𝜕

𝜕𝑡
(

𝜕𝐿

𝜕�̇�
) −

𝜕𝐿

𝜕𝑥
= 𝐹𝑖                                                  (2) 

𝜕

𝜕𝑡
(

𝜕𝐿

𝜕�̇�
) −

𝜕𝐿

𝜕𝜙
= 𝐹𝑖                                                 (3) 

𝜕

𝜕𝑡
(

𝜕𝐿

𝜕�̇�
) −

𝜕𝐿

𝜕𝜓
= 𝐹𝑖                                                 (4) 

where 𝐹𝑖 represents the forced function of the 

system, (𝑥, 𝜙, 𝜓) represent generalized states for the 

system. 
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Figure 1: The two wheeled inverted pendulum 

structure [18] 
 

 

 

 

 

 

Total kinetic energy for the two wheeled inverted 

pendulum system is [11]:  

𝐸 =
1

2
 𝑀𝑏 [�̇�

2 + 2ℎ �̇� �̇� 𝑐𝑜𝑠𝜙 + ℎ2 �̇�2 + ℎ2 �̇�2 sin2 𝜙]            

    + 
1

2
  [𝐼𝑥�̇�

2 + 𝐼𝑦�̇�2𝑠𝑖𝑛2𝜙 + 𝐼𝑧�̇�
2𝑐𝑜𝑠2𝜙] +

1

2
(𝑀𝑤 +

         
𝐼𝑎

𝑅2)(�̇�
2 + 𝑙�̇�2)                                                                (5) 

where 𝑀𝑏 is the mass of body (𝐾𝑔), 𝐼𝑥 is the 

moment of inertia of body 𝑥-axis (𝐾𝑔𝑚2), 𝐼𝑦 is the 

moment of inertia of body 𝑦-axis (𝐾𝑔𝑚2), 𝐼𝑧 is the 

moment of inertia of body 𝑧-axis (𝐾𝑔𝑚2), 𝑀𝑤 

represents the mass of each wheel (𝐾𝑔), 𝑅 

represents the radius of each wheel (𝑚), 𝑙 represents 

the distance between the wheels (𝑚), 𝜃 represents 

angle  of  wheel (𝑑𝑒𝑔𝑟𝑒𝑒) and 𝐼𝑎 is the moment of 

inertia of wheel about the center (𝐾𝑔𝑚2).  

Total potential energy 𝑉 is; 

𝑉 = 𝑀𝑏𝑔ℎ 𝑐𝑜𝑠𝜙 + 𝑀𝑏𝑔𝑅                                        (6) 
 

where 𝑔 is the acceleration due to gravity (𝑚𝑠−2). 

The total energy 𝐿 in equation (1) is given by: 

𝐿 = [
𝑀𝑏

2
+ 𝑀𝑤 +

𝐼𝑎

𝑅2] �̇�2 + [𝑀𝑏ℎ
2 +

1

2
𝐼𝑥] �̇�2 +

𝑀𝑏ℎ𝑐𝑜𝑠𝜙�̇��̇� − [𝑀𝑏𝑔ℎ𝑐𝑜𝑠𝜙 + 𝑀𝑏𝑔𝑅] + [(𝑀𝑤 +
𝐼𝑎

𝑅2) 𝑙2 +
1

2
(𝐼𝑦𝑠𝑖𝑛2𝜙 +  𝐼𝑧𝑐𝑜𝑠2𝜙 +  𝑀𝑏ℎ𝑠𝑖𝑛2𝜙)] �̇�2    (7) 

By partial differentiation of the equation (7) for each 

of (�̇�, �̇�, �̇�) then, To linearize the nonlinear  

equations that describe the two wheeled inverted 

pendulum system, the Jacobian method is used as 

follows [12]: 

�̈�(𝑡) =
[𝑀𝑏𝑅2+2𝑀𝑤𝑅2+2𝐼𝑎]𝑀𝑏𝑔ℎ

[(𝑀𝑏+2𝑀𝑤)𝑅2+2𝐼𝑎]𝐼𝑥+2𝑀𝑏ℎ2(𝑀𝑤𝑅2+𝐼𝑎)
𝜙(𝑡)   

 −
[𝑀𝑏𝑅2+2𝑀𝑤𝑅2+2𝐼𝑎]+𝑀𝑏ℎ𝑅

[(𝑀𝑏+2𝑀𝑤)𝑅2+2𝐼𝑎]𝐼𝑥+2𝑀𝑏ℎ2(𝑀𝑤𝑅2+𝐼𝑎)
(𝑇1 + 𝑇2)                                                                     

(8) 

�̈�(𝑡) = −
𝑀𝑏

2𝑔𝑅2ℎ2 

(𝑀𝑏ℎ2+𝐼𝑥)[(𝑀𝑏+2𝑀𝑤)𝑅2+2𝐼𝑎]−(𝑀𝑏𝑅ℎ)2
𝜙(𝑡)  

+
𝑅(𝑀𝑏ℎ2+𝑀𝑏ℎ𝑅 +𝐼𝑥)

(𝑀𝑏ℎ2+𝐼𝑥)[(𝑀𝑏+2𝑀𝑤)𝑅2+2𝐼𝑎]−(𝑀𝑏𝑅ℎ)2
 (𝑇1 + 𝑇2)                                                                                             

(9)  

�̈�(𝑡) =
𝑙

𝑅[2(𝑀𝑤+
𝐼𝑎
𝑅2)𝑙2+𝐼𝑧]

(𝑇1 − 𝑇2)                           (10)  

 

Equations (8), (9) and (10) are linearized about the 

operating state. The obtained linearized model is:      

Yaw 

Roll 

Pitch 𝜙 
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[
 
 
 
 
 
 
�̇�(𝑡)

�̈�(𝑡)

�̇�(𝑡)

�̈�(𝑡)

�̇�(𝑡)

�̈�(𝑡)]
 
 
 
 
 
 

[
 
 
 
 
 
0 1 0 0           0           0
0 0 0 0         −𝑎1          0
0 0 0 1           0           0
0 0 0 0           0           0
0 0 0 0           0           1
0 0 0 0         𝑎2              0]

 
 
 
 
 

[
 
 
 
 
 
 
𝑥(𝑡)

�̇�(𝑡)

𝜓(𝑡)

�̇�(𝑡)

𝜙(𝑡)

�̇�(𝑡)]
 
 
 
 
 
 

+

[
 
 
 
 
 

0
 𝑏1

0
𝑏3

0
−𝑏5

0
 𝑏2

0
−𝑏4

0
−𝑏6]

 
 
 
 
 

[
𝑇1

𝑇2
]                                                                   (11) 

[

𝑥(𝑡)

𝜓(𝑡)
𝜙(𝑡)

] = [
1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0

]

[
 
 
 
 
 
 
𝑥(𝑡)

�̇�(𝑡)
𝜓(𝑡)

�̇�(𝑡)

𝜙(𝑡)

�̇�(𝑡)]
 
 
 
 
 
 

+ 𝐷 [
𝑇1

𝑇2
]               (12)                       

where  

𝑎1 = 
𝑀𝑏

2𝑔𝑅2ℎ2 

(𝑀𝑏ℎ2+𝐼𝑥)[(𝑀𝑏+2𝑀𝑤)𝑅2+2𝐼𝑎]−(𝑀𝑏𝑅ℎ)2
                       

𝑎2 = 
[𝑀𝑏𝑅2+2𝑀𝑤𝑅2+2𝐼𝑎]𝑀𝑏𝑔ℎ

[(𝑀𝑏+2𝑀𝑤)𝑅2+2𝐼𝑎]𝐼𝑥+2𝑀𝑏ℎ2(𝑀𝑤𝑅2+𝐼𝑎)
                       

𝑏1 =
𝑅(𝑀𝑏ℎ2+𝑀𝑏ℎ𝑅 +𝐼𝑥)

(𝑀𝑏ℎ2+𝐼𝑥)[(𝑀𝑏+2𝑀𝑤)𝑅2+2𝐼𝑎]−(𝑀𝑏𝑅ℎ)2
                 

𝑏2 =
𝑅(𝑀𝑏ℎ2+𝑀𝑏ℎ𝑅 +𝐼𝑥)

(𝑀𝑏ℎ2+𝐼𝑥)[(𝑀𝑏+2𝑀𝑤)𝑅2+2𝐼𝑎]−(𝑀𝑏𝑅ℎ)2
                       

𝑏3 =
𝑙

𝑅[2(𝑀𝑤+
𝐼𝑎
𝑅2)𝑙2+𝐼𝑧]

                                                  

𝑏4 =
𝑙

𝑅[2(𝑀𝑤+
𝐼𝑎
𝑅2)𝑙2+𝐼𝑧]

                                                     

𝑏5 =
[𝑀𝑏𝑅2+2𝑀𝑤𝑅2+2𝐼𝑎]+𝑀𝑏ℎ𝑅

[(𝑀𝑏+2𝑀𝑤)𝑅2+2𝐼𝑎]𝐼𝑥+2𝑀𝑏ℎ2(𝑀𝑤𝑅2+𝐼𝑎)
                        

𝑏6 =
[𝑀𝑏𝑅2+2𝑀𝑤𝑅2+2𝐼𝑎]+𝑀𝑏ℎ𝑅

[(𝑀𝑏+2𝑀𝑤)𝑅2+2𝐼𝑎]𝐼𝑥+2𝑀𝑏ℎ2(𝑀𝑤𝑅2+𝐼𝑎)
             

Table 2.1 lists the nominal parameters of the real two 

wheeled inverted pendulum system. 
 

Table 2.1: System nominal parameters. 

Symbol Value Unit 

𝑀𝑏 0.502 𝐾𝑔 

𝑀𝑤 0.054 𝐾𝑔 

ℎ 0.31 𝑚 

𝑅 0.065 𝑚 

𝑙 0.18 𝑚 

𝐼𝑥 9.1196 × 10−4 𝐾𝑔𝑚2 

𝐼𝑧 6.693 × 10−3 𝐾𝑔𝑚2 

𝐼𝑎 

2.851585
× 10−5 𝐾𝑔𝑚2 

𝑔 9.81 𝑚𝑠−2 

 
 

3. System Set up   

In this section, the different components of the real 

two-wheeled inverted pendulum system are 

demonstrated. The two main parts of the system are 

the mobile robot and the inverted pendulum. Figure 

2 shows the SainSmart InstaBots Upright Rover Kit 

V 3.0 Pro Updated 2 Wheel Self Balancing Robot 

Kit Mega 2560 which represents the mobile robot 

part [13]. To construct the two wheeled inverted 

pendulum system, we have connected a pendulum to 

the mobile robot body at the center of the chassis. 

The   constructed mobile inverted pendulum system 

is shown in Figure 3. 

 

Figure 2: SainSmart InstaBots Upright Rover Kit 

Wheel Self Balancing [22]. 
 

 

Figure 3: The constructed real two wheeled inverted 

pendulum system. 

 

4. Controllers Design   

In this section, the design of full state feedback 

controller using  H2 control and H∞ control is 

presented. The main objective of the proposed 

controllers is to stabilize the mobile inverted 

pendulum system and achieve an acceptable 

robustness with a more desirable performance.   
 

I. Statement of the Problem   

Consider the linear time invariant control system 

expressed by:  
�̇�(𝑡) = 𝐴𝑥(𝑡) + 𝐵1 𝑑(𝑡) + 𝐵2 𝑢(𝑡)                       (13) 

𝑒(𝑡) = 𝐶1𝑥(𝑡) + 𝐷12 𝑢(𝑡)                                          (14) 

𝑦(𝑡) = 𝑥(𝑡)                                                                 (15) 

 

where 𝑥(𝑡) ∈ 𝑅𝑛 represents the state vector, 𝑒(𝑡) ∈
𝑅ℎ represents the controlled output vector, 𝑦(𝑡) ∈
𝑅𝑟 represents the output, 𝑢(𝑡) ∈ 𝑅𝑛 represents the 

control vector and 𝑑(𝑡) ∈ 𝑅𝑛 represents the 

disturbance. For design requirements, it is necessary 

to assume that the the system matrix 𝐴 is of full rank, 

the pairs (𝐴, 𝐵1) and (𝐴, 𝐵2) are stabilizable, and the 

pair (𝐶1, 𝐴) is detectable. Also, it is required that all 

state measurements can be made. Obtaining a scalar 

state feedback control is the main objective of this 

work. The state feedback control can be expressed 

as: 
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𝑢(𝑡) = 𝐾 𝑥(𝑡)                                                     (16)       

where 𝐾 is called the state feedback gain matrix. 

The control law assigns the closed loop eigenvalues 

required to stabilize the system and achieve a 

desirable performance in the presence of disturbance 

and over a range of system parameters changes. 

Further, this work focuses on the system position 

and pendulum angle and the goal is to follow a 

predetermined input position with a minimum 

deviation in pendulum angle. 
 

II.  𝐻2 Controller 

Assume that: 

  𝑀 = [
𝐴 𝐵1 𝐵2

𝐶1 0 𝐷12

𝐼 0 0

]                                             (17) 

The block diagram of H2 control is shown in Figure 

4. 

 
 

 
 

 

 
 

 
 

      

Figure 4: 𝐇𝟐 control block diagram[24]. 
 

where 𝑤(𝑡) represents the external inputs (set point, 

disturbance) [14].  

The H2 norm of the system error due to a white noise 

input is:  
‖𝑇𝑒𝑑‖𝐻2

2 = 𝐸(𝑒𝑇(𝑡)𝑒(𝑡))                                        (18)     
 

where 𝑇𝑒𝑑 is the transfer function from 𝑑(𝑡) to 𝑒(𝑡), 

then  
𝑒𝑇(𝑡)𝑒(𝑡) = 𝑥(𝑡)𝑇𝑄𝑓𝑥(𝑡) + 2𝑥(𝑡)𝑇𝑁𝑓𝑢(𝑡) +

𝑢(𝑡)𝑇𝑅𝑓 𝑢(𝑡)                                                            (19) 

where 𝑄𝑓 = 𝐶1
𝑇𝐶1 ,  𝑁𝑓 = 𝐶1

𝑇𝐷12 , 

𝑅𝑓=𝐷12
𝑇𝐷12.                                   

Hence, the resulting cost function to be minimized 

is:   

𝐽 = ∫ [
𝑡𝑓
𝑡0

𝑥(𝑡)𝑇𝑄𝑓𝑥(𝑡) + 2𝑥(𝑡)𝑇𝑁𝑓𝑢(𝑡) +

                𝑢(𝑡)𝑇𝑅𝑓 𝑢(𝑡)]𝑑𝑡                                           (20)              

And the optimal control action is expressed by: 
𝑢(𝑡) = −𝐾2 𝑥(𝑡)                                                          (21)  

where 

𝐾2 = 𝑅𝑓
−1(𝐵2

𝑇𝑃 + 𝑁𝑓
𝑇)                                  (22)   

where 𝑃 is symmetric and positive definite 

transformation matrix. It is determined using the 

following Riccati equation:       
         

(𝐴 − 𝐵2𝑅𝑓
−1 𝑁𝑓

𝑇)
𝑇
𝑃 +  𝑃(𝐴 − 𝐵2𝑅𝑓

−1 𝑁𝑓
𝑇)  −

𝑃𝐵2 𝑅𝑓
−1𝐵1

𝑇𝑃 + 𝑄𝑓 − 𝑁𝑓  𝑅𝑓
−1𝑁𝑓

𝑇 = 0                (23) 

 

III. Structured Uncertainty Construction 

The robust control techniques are taking 

uncertainties methodically into account when 

designing a controller or when analyzing a control 

system. Model uncertainty is called "structured" 

when there is real parameter uncertainty in the 

model, or if there are multiple unstructured 

uncertainties located at various points within the 

system at the same time [15]. Consider the state 

space model block shown in Figure 5 and assume 

that 

 𝑀 = [
𝑀11 𝑀12

𝑀21 𝑀22
]                                                   (24) 

 

 

 

 

 
 

 

 

 
 

Figure 5: Block diagram of state space model [18]. 
 

The equation of upper linear fractional 

transformation (ULFT) can be expressed by [16, 17]:  

𝐹𝑢(𝑀, ∆) = 𝑀22 + 𝑀21∆  (𝐼 − 𝑀11∆)−1𝑀12         (25) 

where  𝐹𝑢(𝑀, ∆) is the upper linear fractional 

transformation of  𝑀 and ∆. To obtain the (ULFT) 

representation of a state space model expressed by:  

𝐺(𝑠)  = 𝐷 + 𝐶 (𝑠𝐼 − 𝐴)−1𝐵                              (26) 

The transfer function matrix 𝐺(𝑠) is compared to 

equation (25) to give: 

𝑀22 = 𝐷,𝑀21 = 𝐶,𝑀11 = 𝐴,𝑀12 = 𝐵 and ∆ =  
1

𝑠
𝐼                                                                                                

The system upper linear fractional transformation is 

shown in Figure 6.  
 

 

 

 

 
 

 

 

 
 

Figure 6: Block Diagram of system with upper linear 

fractional transformation [18]. 
 

𝒚(𝒕) 

𝒘(𝒕) 

𝒖(𝒕) 

𝒆(𝒕) 

    𝑴
< 

 
 −𝑲𝟐            

𝒚(𝒕)  
𝒖(𝒕) 

𝑀 

∆ 

𝒆(𝒕) 𝒘(𝒕) 

𝒙(𝒕) 
�̇�(𝒕) 

[
𝐴 𝐵
𝐶 𝐷

] 

𝟏

𝒔
𝑰 

𝒖(𝒕) 𝒚(𝒕) 
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 Consider the uncertain linear system 

(𝐴𝛿 , 𝐵𝛿 , 𝐶𝛿  𝑎𝑛𝑑  𝐷𝛿) with 𝑘 uncertain 

parameters 𝛿1, … , 𝛿𝑘  and assume that    

𝐴𝛿 = 𝐴0 + ∑ 𝛿𝑖
𝑘
𝑖=1 �̂�𝑖                                              (27)  

𝐵𝛿 = 𝐵0 + ∑ 𝛿𝑖
𝑘
𝑖=1 �̂�𝑖                                               (28) 

 𝐶𝛿 = 𝐶0 + ∑ 𝛿𝑖
𝑘
𝑖=1 �̂�𝑐                                               (29) 

 𝐷𝛿 = 𝐷0 + ∑ 𝛿𝑖
𝑘
𝑖=1 �̂�𝑖                                               (30) 

where (𝐴0, 𝐵0, 𝐶0 𝑎𝑛𝑑 𝐷0) is the nominal matrices 

of the plant and 𝑘 represents the number of variation 

parameters. The uncertain matrices 

(�̂�𝑖, �̂�𝑖, �̂�𝑖 𝑎𝑛𝑑 �̂�𝑖) are known, and they describe 

how uncertain parameters  𝛿1,  𝛿2, … , 𝛿𝑘 enter into 

the model. It will be assumed that there are 𝑛 states, 

𝑚 inputs, 𝑝 outputs [18].  

Reformulating equations (27), (28), (29) and (30), 

the following equations are obtained: 
 

𝑁𝛿 = [
𝐴0 + ∑ 𝛿𝑖

𝑘
𝑖=1 �̂�𝑖 𝐵0 + ∑ 𝛿𝑖

𝑘
𝑖=1 �̂�𝑖

𝐶0 + ∑ 𝛿𝑖
𝑘
𝑖=1 �̂�𝑖 𝐷0 + ∑ 𝛿𝑖

𝑘
𝑖=1 �̂�𝑖

]                  (31) 

 

where 𝑁𝛿  represents 𝐴𝛿, 𝐵𝛿, 𝐶𝛿 and 𝐷𝛿. The 𝛿𝑖 

matrix can be defined as:  
𝛿𝑖 = 𝑑𝑖𝑎𝑔[𝛿𝑎1

, 𝛿𝑎2
, 𝛿𝑏1

, 𝛿𝑏2
, 𝛿𝑏3

, 𝛿𝑏4
, 𝛿𝑏5

, 𝛿𝑏6
]           (32) 

 Reformulating equation (31), gives: 

𝑁𝛿 = [
𝐴0 𝐵0

𝐶0 𝐷0
] + ∑ 𝛿𝑖

𝑘
𝑖=1 𝑝𝑖                                      (33)  

  

where the 𝑝𝑖 matrices are appropriately partitioned. 

The 𝑝𝑖  matrices are found with the expansion for the 

uncertainty matrices having zero-order cross-

product, and then rewriting equations (33) yields: 
𝛿𝑖𝑝𝑖 = 𝛿𝑎1

𝑝1 + 𝛿𝑎2
𝑝2 + 𝛿𝑏1

𝑝3 + 𝛿𝑏2
𝑝4 +

             𝛿𝑏3
𝑝5 + 𝛿𝑏4

𝑝6 + 𝛿𝑏5
𝑝7 + 𝛿𝑏6

𝑝8                   (34) 

The matrix 𝑝𝑖 can be decomposed into the product 

of appropriately partitioned column and row 

matrices as follows: 

𝑝𝑖 = [
𝐻𝑖

𝑊𝑖
] [𝑅𝑖

𝐻 𝑍𝑖
𝐻] = [

𝐻𝑖

𝑊𝑖
] 𝛿𝑖𝐼𝑞𝑖[𝑅𝑖

𝐻 𝑍𝑖
𝐻]            (35)  

The rank of the matrix 𝑃𝑖 is 𝑞𝑖 and 𝐻𝑖,𝑊𝑖 , 𝑅𝑖 𝑎𝑛𝑑 𝑍𝑖 

are 𝑛 ×  𝑞𝑖, 𝑝 ×  𝑞𝑖, 𝑛 ×  𝑞𝑖 and 𝑚 ×  𝑞𝑖 matrix, 

respectively.                                                        

Substituting equation (35) into equation (33) yields: 
 

𝑁𝛿 = [
𝐴 𝐵
𝐶 𝐷

] + [
𝐻1 … … . 𝐻8

𝑊1 …… 𝑊8
] [

𝛿𝑎1
𝐼𝑞1 ⋯ 0

⋮ ⋱ ⋮
0 ⋯ 𝛿𝑏6

𝐼𝑞8

] 

           [

𝑅1
𝐻 𝑍1

𝐻

. ..
𝑅8

𝐻
.

𝑍8
𝐻

]                                                          (36) 

By comparison with equation (25), we obtain: 

𝑀𝛿 = [
𝑀11 𝑀12

𝑀21 0
]𝑀11 = [

𝐴 𝐵
𝐶 𝐷

]  

𝑀12 = [
𝐻1 …… . 𝐻8

𝑊1 … … 𝑊8
]  𝑀22 = 0             

𝑀21 = [

𝑅1
𝐻 𝑍1

𝐻

. ..
𝑅8

𝐻
.

𝑍8
𝐻

] ∆𝑝= [

𝛿𝑎1
𝐼𝑞1 ⋯ 0

⋮ ⋱ ⋮
0 ⋯ 𝛿𝑏6

𝐼𝑞8

]             (37)  

 

where 
𝐵2 = [𝐻1 …… … .    𝐻8]                             
𝐷12 = [𝑊1 … … .… 𝑊8]                    
𝐶2

𝐻 = [𝑅1
𝐻 … .… .    𝑅8

𝐻]                      
𝐷21

𝐻 = [𝑍1
𝐻 … .… .    𝑍8

𝐻]                               

𝐷22 = 0                                                                
Rewriting equation (46) gives:  

𝑀𝛿 = [

𝐴 𝐵𝛿1 𝐵2

𝐶 𝐷11 𝐷𝛿12

𝐶𝛿2 𝐷𝛿21 0
]                                      (38) 

 

IV.  𝐻∞ Controller  

A full state feedback H∞ control is considered to 

stabilize and track the two wheeled inverted 

pendulum system and guarantee the robustness for 

disturbance attenuation and uncertainties. Figure 7 

shows the block diagram of full state feedback H∞ 

control.  𝑀𝛿  is the coefficient matrix for structured 

uncertainty [17].  

 

𝑀𝛿 = [

𝐴 𝐵𝛿1 𝐵2

𝐶 𝐷11 𝐷𝛿12

𝐶𝛿2 𝐷𝛿21 0
]                                             (39) 

 

 

 

 

 

 

 

 
 

 

 

 

Figure 7: Block diagram of two part system with 

controller and uncertainty [17]. 

 

The stabilizing  H∞ optimal control is obtained such 

that the infinite norm of the overall closed loop 

transfer matrix 𝑇𝑒𝑑 is minimized, that is [16]:  
‖𝑇𝑒𝑑‖∞ <  𝛾                                                                  (40) 

where 𝛾 represents a positive integer number.  

The objective function for  H∞ optimal control is 

[17]: 

𝐽(𝑒, 𝑑) = ∫ (𝑒𝑇(𝑡)𝑒(𝑡)
∞

0
− 𝛾2𝑑𝑇(𝑡)𝑑(𝑡)) 𝑑𝑡  (41) 

 𝑖𝑛𝑓
𝑢

𝑠𝑢𝑝
𝑑

 𝐽(𝑢, 𝑑) < ∞                                                     (42)  

where inf represents infinimum and sup represents 

supremum. The optimal state worst case disturbance 

feedback 𝑑(𝑡) is given by [18]:   

𝒅(𝒕) 
𝒆(𝒕) 

𝟏

𝒔
𝑰 

 

𝒖(𝒕) 

 

−𝑲∞ 

 

𝑴𝜹 

𝒚(𝒕) 



Engineering and Technology Journal                                                                   Vol. 36, Part A, No. 10, 2018 
 

1115 

 

𝑑(𝑡) = 𝐾𝑑  𝑥(𝑡)                                                            (43) 

Substituting equation (22) in equation (41) yields: 

𝐽(𝑥(𝑡), 𝑡) = ∫ 𝑥𝑇(𝑡)(𝑄 + 𝐾𝑇 𝐾
∞

0
− 𝛾2𝐾𝑑

𝑇 𝐾𝑑)𝑥(𝑡) 𝑑𝑡                

                                                                                     (44)  

A constant positive semidefinite symmetric matrix P 

that satisfies equation (42) is supposed to be found, 

then:  

∫ 𝑥𝑇(𝑡)(𝑄 + 𝐾𝑇 𝐾 − 𝛾2𝐾𝑑
𝑇  𝐾𝑑) 𝑥(𝑡)

∞

0

 

= ∫ −
𝑑

𝑑𝑥
(𝑥𝑇(𝑡)𝑃 𝑥(𝑡))

∞

0
                                            (45) 

Reformulating equation (45), yields: 
(𝐴 + 𝐵1 𝐾𝑑 + 𝐵2 𝐾)𝑇𝑃 +  𝑃(𝐴 + 𝐵1 𝐾𝑑 + 𝐵2 𝐾) +

𝐶1
𝑇𝐶1 + 𝐾𝑇 𝐾 − 𝛾2𝐾𝑑

𝑇 𝐾𝑑 = 0                                 (46)  

The condition for maximization of 𝐽(𝑥(𝑡), 𝑡) with 

respect to 𝐾𝑑 is [18 ]: 
∇𝐾𝑑

 𝑃 = 0                                                                   (47)  

The gradient matrix ∇𝐾𝑑
 𝑃 is defined as:                                 

(∇𝐾𝑑
 𝑃)

𝑖𝑗
=

𝜕𝑃

𝜕𝐾𝑑𝑖𝑗

                                                       (48)  

then   

𝐾𝑑 = − 
1

𝛾2 𝐵1
𝑇  𝑃                                                        (49) 

Similarly, the condition for minimization of 

 𝐽(𝑥(𝑡), 𝑡) in equation (46) with respect to 𝐾 is [18]:  

𝐾 = −𝐵2
𝑇 𝑃                                                               (50)  

Substituting equations (49) and (50) in equation 

(46), the Riccati resulting equation is: 

𝑃𝐴 + 𝐴𝑇 𝑃 + 𝐶1
𝑇𝐶1 + 𝑃 (𝐵2𝐵2

𝑇 − 
1

 𝛾2 𝐵1𝐵1
𝑇) 𝑃 = 0       

                                                                                               (51)  

On the other hand, to achieve the criterion in 

equation (56), the following conditions should be 

satisfied:  𝑢(𝑡) = 𝐾 𝑢(𝑡), 𝑃 ≥ 0 and the matrix 
(𝐴 + 𝐵1 𝐾𝑑 + 𝐵2 𝐾𝑐) is stable. 

 

5. Results and Discussion  

The eigenvalues values of the uncontrolled system 

are {0, 0, −10.9719, 10.9719, 0, 0} which indicate 

the system instability. The H2 controller is proposed 

to ensure the stability for the system. Figure 8 

illustrates the time response with H2 controller in 

case of stabilization. It is clear that the proposed H2 

controller can achieve the stability within 4 𝑠𝑒𝑐𝑜𝑛𝑑𝑠 

and the pendulum angle oscillates between −0.92 

to 0.35 𝑑𝑒𝑔𝑟𝑒𝑒. The resulting control signals are 

shown in Figure 9. The resulting state feedback 

gains are:  
K2 

= [
−1.1181  − 1.4113        0.7906          0.7916    − 5.3592   − 1.2632
−1.1181   − 1.4113   − 0.7906   − 0.7916   − 5.3592    − 1.2632

] 

 

and the new closed loop eigenvalues are:{−2.273 +
1.784 𝑖, −2.273 –  1.784 𝑖, −1.395, −1, , −1070.739,
−733.323} which means that the system, became 

stable. In this work, the appropriate values of 𝑄𝑓, 𝑁𝑓 

and 𝑅𝑓 are set by trial and error to be: 

𝑄𝑓 =

[
 
 
 
 
 
200 0 0 0   0 0
 0 100 0 0 0  0
 0 0 100 0 0  0
 0 0 0 100 0  0
 0 0 0 0 100  0
 0 0 0 0  0 100]

 
 
 
 
 

,  𝑅𝑓 = 80 

 𝑁𝑓 = [
1 0 0 0 0 0
0 0 0 0 0 0

]. 

Moreover, it is apparent that the control signal is 

within the allowable range of the input voltage of the 

system. Figure 10 shows the system states 

trajectories. From this figure, it can be observed that 

the system states trajectories with full state feedback 

H∞ controller approach the equilibrium within 

5 𝑠𝑒𝑐. for system position, 4 𝑠𝑒𝑐. for pendulum 

angle and 4 𝑠𝑒𝑐. for rotating angle. Regarding to the 

deviation of the pendulum angle, it is seen that this 

angle deviates between −0.47 and 0.1 𝑑𝑒𝑔𝑟𝑒𝑒. The 

resulting state feedback gains are:                          
Kc = [

−0.0123   − 0.0246         0.0138        0.0148    − 0.2374   − 0.0314
  −0.0123   − 0.0246   − 0.0138   − 0.0148   − 0.2374   − 0.0314 

] 

and 

Kd = [7.493𝑒−10 5.111𝑒−10 1.740𝑒−21 2.201𝑒−22 9.563𝑒−10 1.799𝑒−10  
   0             0                      0                 0                 0                 0

] 

The new closed loop eigenvalues 

are: { −23.66, −5.279, −0.97 +  0.403𝑖, −0.97 −

0.403𝑖, −12.746 , −1.003}.  This means that all the 

roots of the system lie in the left hand side and the 

system is stable. 

 

 
     (a) 

 

 
 

       (b) 

 

0 2 4 6 8 10
-0.05

0

0.05

0.1

0.15

0.2

Time (sec.)

P
os

iti
on

 (m
)

0 2 4 6 8 10
-1

0

1

2

3

Time (sec.)

R
ot

at
in

g 
an

gl
e 

(d
eg

re
e)



Engineering and Technology Journal                                                                   Vol. 36, Part A, No. 10, 2018 
 

1116 

 

 
      (c) 

Figure 8: System state trajectories using 

𝐇𝟐     stabilizing controller   𝒙𝟎 = [𝟎. 𝟏  𝟐. 𝟖𝟔𝟓  𝟎. 𝟓𝟕𝟑 ]  
a) position b) rotating angle c) pendulum angle d) 𝒖𝟏 

e) 𝒖𝟐. 

 

 
            (a) 

 
 

        (b) 

 

Figure 9: The resulting control signals using 𝐇𝟐      

stabilizing controller    a) 𝒖𝟏 and b)  𝒖𝟐. 
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(e) 

Figure 10: System state trajectories using  𝐇∞   

stabilizing controller 𝒙𝟎 = [𝟎. 𝟏   𝟐. 𝟖𝟔𝟓  𝟎. 𝟓𝟕𝟑 ], 

a) position, b) rotating angle, c) pendulum angle, d) 

𝒖𝟏 and e)  𝒖𝟐. 

 

Furthermore, Figure 11 shows the system tracking 

properties using H∞ controller. The time response 

characteristics can be summarized by: 𝑡𝑠 = 5 𝑠𝑒𝑐. 
for system position, 𝑡𝑠 = 5 𝑠𝑒𝑐. for rotating angle 

and  for pendulum  angle  the  settling  time  is  

6.5 𝑠𝑒𝑐.  and  the  pendulum  deviates between  

−1.073  and  3.955  degree. Further, it is shown that 

a low control effort has been resulted and within the 

allowed range of input torque. Figure 12 gives the 

time response specifications of the controlled system 

when the system parameters are changed. 

Comparisons between the results of H2 controller 

and H∞ in both stabilizing and tracking cases are 

shown in Figure 13 and 14. The comparison shows 

that the two controllers yielded relatively the same 

time response specifications in case of system 

position, but in case of pendulum angle deviation, it 

is noted that the full state feedback H∞ controller is 

much improved over that of the full state feedback 

H2 controller. In addition, the H∞ controller yielded 

a very low control signal when it is compared to H2 

controller. These improvements can be attributed to 

the effectiveness of the H∞ control method in 

attenuating the disturbances and resulting a low 

control signal and within the allowed tolerance to 

avoid the saturation problem. Add to all, the full state 

feedback H∞ controller can compensate the system 

parameters uncertainty. 
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                (e) 

Figure 11: Tracking properties of the system using 

𝐇∞  controller, a) position, b) rotating angle,               

c) pendulum angle, d) 𝒖𝟏 and e)  𝒖𝟐. 

 
    (a) 

 
   (b) 

Figure 12: System time response with parameters 

uncertainty using 𝐇∞  controller, a) position, b) 

pendulum angle. 

 

 

Figure 13: System state trajectory using 𝐇𝟐  

stabilizing controller (dotted line) and  𝐇∞ controller 

(solid line). 

 

 

Figure 14: System state trajectory using 𝐇𝟐  

controller (dotted line) and 𝐇∞ controller (solid line). 

 

The experimental results for applying a full state 

feedback H2 controller as a stabilizing controller are 

shown in Figure 15. It is shown that the position 

needs 5 𝑠𝑒𝑐. to settle from the downward position to 

the upright position within −0.04 to 0.04 𝑑𝑒𝑔𝑟𝑒𝑒 

and the pendulum angle deviation is from 0.16 

to −0.05 𝑑𝑒𝑔𝑟𝑒𝑒. The amplitudes of this control 

action are −0.5 to −0.4 𝑣𝑜𝑙𝑡 which are within the 

limits of input torques.   The experimental results for 

applying the full state feedback H∞ controller are 

shown in Figure 16. It is shown that the position 

needs 5 𝑠𝑒𝑐. to settle from the downward position to 

the upright position within −0.05 to 0.0473 𝑑𝑒𝑔𝑟𝑒𝑒 

and the pendulum angle deviation is from −0.005 to 

0.01 degree. The amplitudes of the control action are 

0.76 to −0.01 𝑣𝑜𝑙𝑡 which are within the limits of 

input voltages. 
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            (b) 

 
           (c) 

Figure 15: Experimental response using 

 𝐇𝟐  stabilizing controller, a) position, b) pendulum 

angle, c) control signal. 

 

         

 
              (a) 

 
              (b) 

 
               (c) 

 

Figure 16: Experimental time response using 𝐇∞ 

stabilizing controller, a) position, b) pendulum angle, 

c) control signal. 

 

Furthermore, the experimental results for applying 

the full state feedback H∞ controller as a tracking 

controller are shown Figure 17. The obtained time 

response specifications are: 𝑡𝑠 = 5 𝑠𝑒𝑐. for system 

position and  for pendulum  angle  the  settling  time  

is  5 𝑠𝑒𝑐.  and  the  pendulum  deviates between 

−0.05 and 1.35 degree. Further, it is shown that a 

low control effort has been resulted which is within 

the allowed range of input torque. 
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           (c) 

 

Figure 17: Experimental time response using 𝐇∞   
tracking controller, a) position, b) pendulum angle, c) 

control signal. 

 

5. Conclusion  

The H2 controller is a powerful technique to design 

a robust control for rejecting the disturbance and 

achieving an acceptable time response 

specifications. The full state feedback H∞ control is 

a powerful robust control technique to design a 

robust control with the presence of disturbance and 

uncertainties. The robust stability and performance 

of the system have been assured using the full state 

feedback H∞ controller. This controller could 

achieve time response specifications better than 

those obtained using H2 control in addition to a low 

control effort. The results verified that the proposed 

state feedback controller using H∞ technique can 

stabilize the system and achieve the desirable 

performance despite the presence of uncertainty. 

Moreover, it has been shown that a very small 

deviation in pendulum angle was achieved using the 

proposed controller in comparison to the controllers 

designed in previous works. The experimental 

results showed the superiority of the full state 

feedback H∞ controller. 
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