investigation of the travedung wave bfects
 in analysis of synchronous machine transient behaviolr

11. THE SYNCHRONOUS MACHINE PERFORMANCE
by
Dr . m . Serry Taha College of Engincering Sulaimaniya University Iraq
[^0]
وراسة لتِم أثر الموجات المـافرة في كعلبل السلوك العابر
 لهَالات (المكانز) المتزامنة - (Y) سلولك المكائن المزامنة

> جكمور عحمود سري طلم السلمِنية - كلبة الندسة

 المعادلات الخاصة بالمكانن المتزامنة في صورة جدبدة آخذا في الاعتبار الثـكل المدبد والذي اقتراحه المؤلف في البحث

الاول من هذه الــلـلـة
بذلك امكن تصمـــم نموذج رفي جديد لمدراسة النظام الكهرباني متكامال اثناء الـلمكك العابر اللفترات المُجبة والكهرومغناطـــية وذلك بعل استبعاد أثر منظم, المهيه للمكائن المتزامنة .

ABSTRACT:

This is the second of a series of papers interested mainly in the overall transient behaviour of an integrated power system constituting a synchronous machine connected to a large network through a long line. After deriving an expression for the long line as a synchronous machine's terminal constraint in the first paper, this paper investigates the machine's electromagnetic transients involving line's short lived travelling wave effects. A digital model is derived for the study of the transient behaviour of the system involving the long line effects but excluding, the action of machine's automatic excitation regulator.
NOMENCLATURE

[]. A	Matrix
p	d/dt.
d. q. O	Direct. quadrature and zero components respectively.
D. Q	Direct and quadrature damper respectively.
a. b. c	Phase values.
i. v.	Instantaneous current. voltage and flux linkage respectively.
a. f. D. Q	Stator. field, direct axis and quadrature axis damper circuits respectively.
R.L.C.G.Z	Resistance. Inductance, capacitance, conductance and impedance respectively.
w. w	Rotor angular velocity in per unit and radians respectively.

1. INTRODUCTION

Analysis of an integrated power system's behaviour makes it desirable to recognize three distant periods; namely the surge period, the dynamic period and the steady state period. This classification
depends mainly upon the fact that always exists a wide span between the system's time constants. Such classification of course greatly facilitates the solution of the problem whose nature necessitates the applications of more than one transformation to the involved equations. However, such a classification: with the use of modern derivative type excitation system regulator's becomes inadequate. The use of regulators whose action is dependent upon changes of first, second and /or higher erivatives of the controlled variables: makes it necessary to allow for wave propagation in a long line simultaneously with the dynamic transient phenomena [6. Hence, with the long line represented as in the first paper, the whole system electromagnetic transient allowing for line's is investigated throughout the subject paper.

2. SYSTEM EQUATIONS

From the accompanying paper, a long line can be represented by the matrix equation:

$$
\begin{equation*}
\mathbf{G V}+\mathbf{P C V}=\mathbf{N}^{\prime} \mathbf{I}+\mathbf{P} \mathbf{M I} \tag{1}
\end{equation*}
$$

where for completely transposed system we have:-

$$
\begin{aligned}
& M=\left|\begin{array}{ccc}
M & m & m \\
m & M & m \\
m & m & M
\end{array}\right| \\
& M= \pm \frac{\sqrt{L(C+3 c)}}{2} \\
& m=-\sqrt{L(C-c}+M \\
& N^{\prime}=\left|\begin{array}{lll}
N^{\prime} & n^{\prime} & n^{\prime} \\
n^{\prime} & N^{\prime} & n^{\prime} \\
n^{\prime} & n^{\prime} & N^{\prime}
\end{array}\right| \\
& N^{\prime}=\frac{\sqrt{r^{\prime}\left(G+3 g^{\prime}\right)}}{2} \\
& n^{\prime}=-\sqrt{r^{\prime}\left(G-g^{\prime}\right)+N^{\prime}}
\end{aligned}
$$

A capital letter designates diagonal element and a small letter designates a ofl-diagonal element of a matrix.
Applying the modified park's transformation [3] (power invariant) to both sides of equation (1). we obtain:

$$
\begin{equation*}
\mathrm{k}[\mathrm{GV}+\mathrm{PCV}]=\mathrm{K}\left[\mathbf{N}^{\prime} \mathrm{I}+\mathrm{P} \mathbf{M I} \mathrm{I}\right] \tag{2}
\end{equation*}
$$

Substituting for K from equation (22), bearing in mind, for balanced operation,

$$
\sum_{i=a}^{c} \quad F_{i}=0
$$

where F may be i , v or Ψ, we get:-
For direct axis:-

$$
\begin{align*}
& (G-g) \cdot V_{d}+(C-c)\left(p V_{d}-w V_{q}\right) \\
& \quad=\left(N^{\prime}-n^{\prime}\right) I_{d}+(M-m)\left(p I_{d}-w I_{q}\right) \tag{3}
\end{align*}
$$

For quadrature axis:
$(\mathrm{G}-\mathrm{g}) \cdot \mathrm{V}_{\mathrm{g}}+(\mathrm{C}-\mathrm{c})\left(\mathrm{wV}_{\mathrm{d}}+\mathrm{p} \mathrm{V}_{\mathrm{q}}\right)$
$=\left(N^{\prime}-n^{\prime}\right) I_{q}+(M-m)\left(w I_{d}+p I_{q}\right)$
Re-writting equations (3) and (4) in matrix form, and after collecting voltage terms in one side, and current terms in the other sids, we get:-

From the last equation, we get:

$$
\begin{aligned}
& \left.=\frac{1}{(A+p B)^{2}+K^{2}}\left|\begin{array}{ll}
(A+p B)(e+ & K(e+p f)- \\
p f)+K h & h(A+p B) \\
h(A+p B) & (A+p B)(e+ \\
-K(e+p f) & p f)+K h
\end{array}\right| \begin{array}{l}
i_{d} \\
i_{q}
\end{array} \right\rvert\,
\end{aligned}
$$

where:

$$
A=(G-g), \quad B=(C-c)
$$

$$
\begin{array}{ll}
e=\left(N^{\prime}-n^{\prime}\right) . & f=(M-m) \\
K=w(C-c) . & h=w(M-m)
\end{array}
$$

Re-writting from the appendiix equation (30):
V_{d}
\(=\left|\begin{array}{cc}r_{a} \& 0

0 \& r_{a}\end{array}\right	\)	i_{d}
i_{q}	\(-w

\end{gathered}\)

| 1 |
| :--- | :--- | :--- |
| 0 |\(\left|\left|\begin{array}{l}\Psi_{\mathrm{d}}

\Psi_{\mathrm{q}}\end{array}\right| $$
\begin{array}{l}\Psi_{\mathrm{d}} \\
\mathrm{w}_{\mathrm{d}} \\
\Psi_{\mathrm{q}}\end{array}
$$\right|\)

Substituting for the voltage matrix in this last equation from (5), and collecting the flux terms in one side, we obtain:-

$$
\begin{aligned}
& \left.-w\left|\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right| \begin{array}{c}
\Psi_{d} \\
\Psi_{q}
\end{array}\left|-\frac{p}{w_{b}}\right| \begin{array}{c}
\Psi_{d} \\
\Psi_{q}
\end{array} \right\rvert\, \\
& =\frac{1}{(A+p B)^{2}+K^{2}}\left|\begin{array}{ll}
(A+p B)\left(r_{a} A+e\right) & (K e-A h) \\
+p\left(r_{a} B+f\right) \\
+K\left(r_{a} K+h\right) & +p(K f-B h) \\
(A h-K e) \\
+p(B h-K f) & (A+p B)\left(r_{a} A+e\right) \\
+p\left(r_{a} B+f\right) \\
& +K\left(r_{a} K+h\right)
\end{array}\right|\left|\begin{array}{l}
i_{d} \\
\\
i_{q}
\end{array}\right|
\end{aligned}
$$

Re-writting equation (29) from appendix, then:
$\left|\begin{array}{l}i_{d} \\ i_{q}\end{array}\right|=\left\lvert\, \begin{aligned} & 1 / x_{d}{ }^{d}+ \\ & 0\end{aligned}\right.$
$1 / \mathrm{x}_{\mathrm{q}}^{\prime \prime}\left|\begin{array}{r|r|}0 \\ \Psi_{\mathrm{d}} & \\ \Psi_{\mathrm{q}}\end{array}\right|$
$-\left(x_{a D}-\frac{x_{a f} x_{f D}}{x_{f}}\right) \cdot i_{D}$
$+E_{q}$
$E_{d}^{\prime \prime}$

Substituting for the current matrix in equation (6) from this last equation. and multiplying both sides by $\left\{(\mathrm{A}+\mathrm{pB})^{2}+\mathrm{K}^{2}\right\}$. we get:-
$\left\{(A+p B)^{2}+K^{2}\right\}$.

Collecting homogeneous terms, and rearranging, we get:-
$\frac{\left(\frac{m}{\overline{x_{n}}}+\mathrm{pw}_{\mathrm{b}} \mathrm{U}\right)}{\left(\frac{x_{q}^{\prime \prime}}{x_{q}^{\prime \prime}}+w u\right)}$
Ψ_{d}
($\mathrm{wu}-\frac{\mathrm{n}}{\mathrm{x}_{\mathrm{d}}}$)

$\frac{-m}{x_{d}^{\prime}}$
$\frac{\mathrm{n}}{\mathrm{x}_{\mathrm{q}}^{\prime \prime}}$
$E_{q}^{\prime}-\left(x_{a D}-\frac{x_{a f} x_{f D}}{x_{f}}\right) i_{d}$
$\frac{-n}{x_{d}^{\prime}}$
$\frac{-m}{x_{q}^{\prime \prime}}$
$E_{d}^{\prime \prime}$
where

$$
\begin{align*}
& M=K\left(r_{a} K+h\right)+(A+p B) \cdot\left(r_{a} A+c\right)+p\left(r_{a} B+f\right) \\
&=P^{2} p\left(r_{a} B+f+p \quad B_{B}\left(r_{a} A+e\right)+A\left(r_{a} B+f\right)+A\left(r_{a} A+c\right)+K\left(r_{a} K+h\right)\right. \\
& n=h(A+p B)-K(e+p f)=p(B h-K f)+A h-K e) \\
& u\left.=(A+p B)^{2}+K^{2}=P^{2} B^{2}+P(2 A B)+A^{2}+K^{2}\right) \tag{7b}\\
&
\end{align*}
$$

Substituting from appendix equations (25b). (24) and (27b) for E_{q}^{\prime}, i_{D} and $D_{d}^{\prime \prime}$ into equation (7a). we get:
$\left[\begin{array}{lc}\left(\frac{m}{x_{d}^{\prime}}+p w_{b^{u}}\right) & \left(w u-\frac{n}{x_{q}^{\prime \prime}}\right) \\ \left(w u-\frac{n}{x_{d}^{\prime}}-\right) & \left.\frac{m}{x_{q}^{\prime \prime}}+p w_{b} u\right)\end{array}\left|=\left|\begin{array}{l}\Psi_{d} \\ \Psi_{q}\end{array}\right|=\right.\right.$

$$
\frac{-n}{x_{d}^{\prime}}
$$

Re-aranging this last equation. we get:

where

$$
\mathrm{b}=\left(\mathrm{x}_{\mathrm{af}} \mathrm{x}_{\mathrm{fD}} / \mathrm{x}_{\mathrm{f}}\right)-\mathrm{x}_{\mathrm{aD}}
$$

Now. let us accomplish the coefficient matrix by adding 3 rows, and hence it becomes a square matrix, whose inverse, generally (if nonosignular) exists. These rows, as the author proposes. can be derived by differentiating twice the appendix equations (36). (37) and (38). Thus equation (8) now cant e changed into:
62

$\left(\frac{m}{x_{d}^{\prime}}+p w_{b} u\right)$	$\left(w u-\frac{n}{x_{q}^{\prime \prime}}\right)$	$\frac{m p}{w_{b} \cdot r_{D}{ }^{x_{d}}} \underbrace{\mathrm{x}_{\text {af }}{ }^{\mathrm{x}_{\mathrm{fD}}}} \mathrm{x}_{\mathrm{f}} \mathrm{x}_{\mathrm{aD}}$		$\frac{\mathrm{mx}_{\text {af }}}{\mathrm{x}_{\mathrm{f}} \mathrm{x}_{\mathrm{d}}}$	$\Psi_{\text {d }}$
$\left(w u-\frac{n}{x_{d}^{\prime}}\right)$	$\left(\frac{m}{x_{q}^{\prime}}+p w_{b}{ }^{\text {a }}\right.$)		$\frac{\mathrm{nx}_{\mathrm{af}}}{\mathrm{xf}_{\mathrm{fx}} \mathrm{~d}}$	Ψ_{q}	
$\begin{aligned} & \frac{p^{2} \cdot r_{D}}{a} \times \\ & \left(x_{\mathrm{fD}} \mathrm{x}_{\mathrm{af}}-x_{\mathrm{aD}} \mathrm{x}_{\mathrm{f}}\right) \end{aligned}$	0	$\frac{\mathrm{p}^{3}}{\mathrm{w}_{\mathrm{b}}}+\frac{\mathrm{p}^{2} \cdot r_{\mathrm{D}}\left(\mathrm{x}_{\mathrm{f}} \mathrm{x}_{\mathrm{d}}-\mathrm{x}_{\mathrm{af}}^{2}\right)}{\mathrm{a}}$	0	$\begin{array}{r} \frac{\mathrm{p}^{2} \cdot \mathrm{r}_{\mathrm{D}}}{\mathrm{a}} \times \\ \left(\mathrm{x}_{\mathrm{aD}^{\mathrm{x}} \mathrm{xaf}-}^{\left.\mathrm{x}_{\mathrm{d}^{\mathrm{x}} \mathrm{fD}}\right)}\right. \end{array}$	Ψ_{Q}
0	$\frac{p^{2} r_{Q} x_{a Q}}{\left(x_{a Q}^{2}-x_{q}{ }^{x_{Q}}\right)}$	0	$\begin{gathered} \frac{\mathrm{p}^{3}}{\mathrm{w}_{\mathrm{b}}}+ \\ \mathrm{p}^{2} \cdot \mathrm{r}_{\mathrm{Q}} \cdot x_{\mathrm{q}} \\ \left.\mathrm{x}_{\mathrm{q}} \mathrm{x}_{\mathrm{Q}}-\mathrm{x}_{\mathrm{aQ}}^{2}\right) \end{gathered}$		$\Psi_{\text {f }}$
$\frac{\mathrm{p}^{2} \mathrm{x}_{\mathrm{af}} \mathrm{x}_{\mathrm{aD}}}{\left(\mathrm{x}_{\mathrm{aD}} \mathrm{x}_{\mathrm{af}}-\mathrm{x}_{\mathrm{d}} \mathrm{x}_{\mathrm{fD}}\right)}$	0	$\begin{gathered} \frac{\mathrm{p} 3\left(\mathrm{x}_{\mathrm{a}}^{2} \mathrm{D}\right.}{\left.\mathrm{w}_{\mathrm{b}} \cdot r_{\mathrm{D}}-\mathrm{x}_{\mathrm{d}} \mathrm{p}^{x_{D}} \mathrm{x}_{\mathrm{d}}\right)_{\mathrm{x}}} \\ \frac{\mathrm{x}_{\mathrm{af}}}{\left(\mathrm{x}_{\mathrm{aD}} \mathrm{x}_{\mathrm{af}}-\mathrm{x}_{\mathrm{d}} \mathrm{x}_{\mathrm{fD}}\right)} \end{gathered}$		$\frac{\mathrm{p}^{3} \cdot \mathrm{x}_{\mathrm{af}} \mathrm{T}^{\prime}{ }^{\prime}{ }^{\text {do }}}{\mathrm{x}_{\mathrm{f}}}$	$\Psi_{\text {D }}$

$$
=\left[\begin{array}{lllll}
0 & 0 & 0 & 0 & p^{2} E_{f d}
\end{array}\right]^{T}
$$

where $a=x_{d} x_{f} x_{D}+x_{a D}^{2} x_{f}-x_{a F}^{2} x_{D}-x_{f D}^{2} x_{d}$
equation (9) can be put in the matrix concise form:

$$
\begin{equation*}
\left\{P^{3} W_{3}+P^{2} W_{2}+P W_{1}+W_{0}\right\} \quad Y=F \tag{10}
\end{equation*}
$$

where:

$\underset{\omega}{\omega}$

		"		
		"		
		"		

(1+a)
$(1+b)$
$(1+c)$

	-
\geqslant	\#
$=0$	$=$
$=$	$=$
$⿻^{-}$	$=$
\ddagger	$=$
$>$	$\stackrel{11}{\square}$

In solving the investigated system equation (9). throughout this paper. we shall discuss its solution with the discard of the elfec'. of the excitation regulator. i.e ${ }^{\prime}{ }^{\prime} \mathrm{E}_{\mathrm{fd}}$ will be replaced by zero. However. inclusion of excitation regulator's elfect will be discussed in a third paper.
Thus equation (10) becomes:-

$$
\begin{equation*}
\left(p^{\prime} W_{3}+p^{\prime} W_{1}^{\prime}+p W_{1}+W_{()}^{\prime}\right) Y=0 \tag{13}
\end{equation*}
$$

To solve this last equation. let us proceed as follows:-
Let $Y_{1}=Y$

$$
\begin{align*}
& Y_{2}^{\prime}=Y_{1}=p Y \tag{lbb}\\
& Y_{3}^{\prime}=Y_{2}=\mathrm{P}^{2} Y^{\prime} \tag{16c}
\end{align*}
$$

and from equation (15)
$Y \nmid=Y_{3}=p^{3} Y$

$$
\begin{equation*}
=-W_{3}^{-1}\left(W_{2} Y_{3}+W_{1} Y_{2}+W_{0} Y_{1}\right) \tag{16d}
\end{equation*}
$$

The set of equations (l ha) up to (1 fd) can be rearranged into the form:
$\mathrm{p}\left|\begin{array}{c}\mathrm{Y}_{1} \\ \mathrm{Y}_{2} \\ \mathrm{Y}_{3}\end{array}\right|=\left|\begin{array}{cccc}0 & \mathrm{I} & 0 \\ 0 & 0 & \mathrm{I}_{1} \\ -W_{3}^{-1} W_{0} & -W_{3}^{-1} W_{1} & -W_{3}^{-1} W_{2}\end{array}\right|\left|\begin{array}{l}\mathrm{Y}_{1} \\ \mathrm{Y}_{2} \\ \mathrm{Y}_{3}\end{array}\right|$
where
$Y_{1} . Y_{2}$ and Y_{3} designate $; \times 1$ matrices.
O. 1 designate zero and identity matrices of $5^{\text {th }}$ order respectively.
Equation (17) can be re-written in the concise form:

$$
\begin{equation*}
P X=\lambda X \tag{18}
\end{equation*}
$$

where
$\mathrm{X}=\left|\begin{array}{l}\mathrm{Y}_{1} \\ \mathrm{Y}_{2} \\ \mathrm{Y}_{3}\end{array}\right|$ i.e. a $15^{\text {th }}$ order column matrix.
$\lambda=\left|\begin{array}{ccc}0 & 1 & 0 \\ 0 & 0 & 1 \\ -W_{3}^{-1} W_{11}^{\prime} & -W_{3}^{-1} W_{1} & -W_{3}^{-1} W_{2}\end{array}\right|$
Owing to the fact that thediagonal elements involve zeros. hence a convergent solution by Rungkutta method is practivally impossible.

Solution of equation is readily known (4) and is:-

$$
\begin{equation*}
X=c^{1 \wedge} \cdot X_{()} \tag{19}
\end{equation*}
$$

where $X_{()}$is the matrix X at $t=0$

Substituting from the appendix equation (42) for the transition matrix $e^{\text {th }}$. we finally get the solution:

$$
\begin{align*}
X & =-\left[\frac{\mathrm{e}^{-\lambda_{1} t}}{\left(\lambda_{1}-\lambda_{2}\right) . .\left(\lambda_{1} \lambda_{15}\right)}\left\{A+\lambda_{2} \mathrm{I}\right\} \ldots \Omega+\lambda_{15} \mathrm{I}\right. \\
& +\frac{\mathrm{e}^{-\lambda_{2} t}}{\left(\lambda_{2}-\lambda_{1}\right)\left(\lambda_{2}-\lambda_{3}\right) . .\left(\lambda_{2}-\lambda_{15}\right)}\left\{\Lambda+\lambda_{1} I\right\}\left\{\Lambda+\lambda_{3} \mathrm{I}\right\} \ldots \\
& \left\{\mathrm{A}+\lambda_{15} \mathrm{I}\right\}+\ldots \\
& \left.+\frac{\mathrm{e}^{-\lambda_{15} 5^{t}}}{\left(\lambda_{15}-\lambda_{1}\right) . .\left(\lambda_{15}-\lambda_{1+5}\right.}\left\{\mathrm{A}+\lambda_{1} \mathrm{I}\right\} \ldots\left\{\mathrm{A}+\lambda_{1+} \mathrm{I}\right\}\right] \mathrm{X}_{0} \tag{20}
\end{align*}
$$

where $\lambda_{1}, \lambda_{2} \ldots \lambda_{1}$; are the eigen values of $-\Lambda$.
Once finding out the time variation of the flux linkage (and its first and second derivative) matrix \mathbf{X}. then: back substitution from equation (20) into the appendix equation (29a): i_{d} and i_{q} are calculated. Again. substituting into into equation (30) V_{d} and V_{g} are calculated. and consequently the machine terminal voltage is calculated by aid of equation (24 i).
Itage and current any point along the line are calculated by aid of the formula ifrom the accomanying paper):-

$$
\left|\begin{array}{l}
V \\
I
\end{array}\right|_{x}=e^{-x A} \quad\left|\begin{array}{l}
V \\
I
\end{array}\right|_{0}
$$

where () designates sending end.

NUMERICAL EXAMPLE

Using the above mentioned algorithm. a computer run is made with the data given in Table I. referred to 500 kV and 1236 MVA base.

Table I

	Gen. stator values p.v.					Total reacts. of rotor wdgs.		
X_{d}	X_{q}	$\mathrm{X}_{\mathrm{d}}^{\prime}$	$\mathrm{X}_{\mathrm{q}}^{\prime \prime}$	r_{a}	X_{f}	X_{D}	X_{O}	
I	0.67	0.33	0.23	0.003	1.11	0.995	0.61	

Mutual reacts. of rotor wdgs				Rotor circuit resistances				
$\chi_{\text {af }}$	$\mathrm{X}_{\text {fi) }}$	$\mathrm{X}_{\mathrm{al} \text {) }}$	$\mathrm{Xa}_{\mathrm{a}}($	${ }^{\text {r }}$	$\mathrm{r}_{\text {I }}$	${ }^{\text {r }}$ (
0.87	0.87	0.87	(1.52	0.00004	0.018	0.00603		
Time const			(Line Parameters/Km) $\times 10^{-6}$					
T ${ }_{\text {do }}$	$\mathrm{T}_{\mathrm{qo}}^{\prime \prime}$	w_{b}	r	1.	g	C	c	
8.54	0.31	314	60	$3 \quad 0.5$	0.2	3	1	800

Figure (1) shows the computed values for the per unit gencrator terminal voltage (v_{b}). receiving end voltage (v_{R}) . line sending end current variations for the case of sudden switching off of line remote end breadder when the system initially with the following conditions:

Recciving end load
$=1+$ ¡0.3 P.U
Receiving end voltage
$=0.955 \quad \mathrm{P} . \mathrm{U}$
Sending end voltage
Generator terminal voltage
$=1.035 \quad$ P.U
Shunt reactor reactive power compenstion

$$
=1.045 \quad \text { P.U. }
$$

$$
=0.5 \quad \text { P.U. }
$$

CONCLUSION:

Throughout this paper formulae are derived to link the fast transient line switching domain with the synchronous machine electromagnetic transient time domain. Although the excitation regulator effect is not investigated in the subject paper. yet the derived equations are the natural entrance for this target. however. the influence of excitation regulator upon the overall line switching and synchronous generator's electromagentic (stator) transient behaviour is reserved for a future paper.

APPENDICRS

I. SYNChronous macline eouations

According to Park equations [1.2 and after proper selection of transformation matrices such that power should be invariant anywhere in the system [we have:

$$
\left|\begin{array}{c}
\mathrm{F}_{\mathrm{d}} \\
\mathrm{~F}_{\mathrm{q}} \\
\mathrm{~F}_{\mathrm{o}}
\end{array}\right| \quad=\mathrm{K}\left|\begin{array}{c}
\mathrm{F}_{\mathrm{a}} \\
\mathrm{~F}_{\mathrm{b}} \\
\mathrm{~F}_{\mathrm{c}}
\end{array}\right|
$$

$\left.=\sqrt{3}\left|\begin{array}{ccc}\cos \theta & \cos \left(\theta-\frac{4 \pi}{}\right) & \cos \left(\theta+\frac{3}{}\right) \\ \sin \hat{\theta} & \sin \left(\hat{\theta}-\frac{4 \pi}{3}\right) & \sin \left(\theta+\frac{3}{3}\right) \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}\end{array}\right| \begin{gathered}F_{a} \\ F_{b} \\ F_{c}\end{gathered} \right\rvert\,$
where F designates v, i, and Ψ
d.q,o. designate direct, quadrature and zero componentis respectively.
a.b.c designate phase values.

Conversely
$\left|\begin{array}{c}\mathrm{F}_{\mathrm{a}} \\ \mathrm{F}_{\mathrm{b}} \\ \mathrm{F}_{\mathrm{c}}\end{array}\right| \quad=\mathrm{K}^{-1}\left|\begin{array}{c}\mathrm{F}_{\mathrm{d}} \\ \mathrm{F}_{\mathrm{q}} \\ \mathrm{F}_{\mathrm{c}}\end{array}\right| \quad=\mathrm{K}^{\prime} \quad\left|\begin{array}{c}\mathrm{F}_{\mathrm{d}} \\ \mathrm{F}_{\mathrm{q}} \\ \mathrm{F}_{0}\end{array}\right|$

Applying transformation matrices (22) and (23) it had been proved elsewhere [7] , that the following relationships are derived:

$\mathrm{I}_{\mathrm{q}}=\mathrm{x}_{\mathrm{q}} \mathrm{i}_{\mathrm{q}}+\mathrm{x}_{\mathrm{aQ}} \mathrm{i}_{\mathrm{Q}}$
$l_{0}=x_{0}{ }_{0}$
$I_{f}=x_{a f d}+x_{f f}^{i}+x_{f D} D_{D}$
$I_{D}=x_{a D}{ }^{i_{d}}+x_{f D}{ }^{i_{f}}+x_{D}{ }^{i_{D}}$
$I_{Q}=x_{a Q} q^{l}+x_{Q} Q_{Q}^{i}$
$V_{d}=-r_{a} i_{d}-\left(1 / w_{b}\right) p \Psi_{d}-w \Psi_{q}$
$V_{d}=-r_{a} i_{q}-\left(1 / w_{b}\right) p \Psi_{q}+w \Psi_{d}$
$V_{t}=\sqrt{V_{d}^{2}+V_{q}^{2}}$
$V_{o}=-r_{0} i_{0}-\left(1 / w_{b}\right) p \Psi_{0}$
$V_{f}=r_{f} d_{f}+\left(1 / w_{b}\right) p \Psi_{f}$

Multiplying out both sides of equation (24d) by ($x_{a f} / x_{f}$) then subtracting from equation (24a). we get:
$\Psi_{d}-\left(\frac{x_{a f}}{x_{f}}\right) \Psi_{f}=\left(x_{d}-\frac{x_{a f}^{2}}{x_{f}}\right) i d+\left(x_{a D}-\frac{x_{a f} \cdot x_{f D}}{x_{f}}\right) . i_{D}$

But $\quad x_{d}-\frac{x_{a f}^{2}}{x_{f}}=x_{d}^{\prime}$
$=$ Direct axis transient reactance and

$$
\begin{equation*}
\frac{\mathrm{x}_{\mathrm{af}}}{\mathrm{x}_{\mathrm{f}}} \cdot \Psi_{\mathrm{f}}=\mathrm{E}_{\mathrm{q}}^{\prime} \tag{25b}
\end{equation*}
$$

e.m.f. behind transient reactance.

Thus, equation (25) becomes, after rearrangement:-

$$
\begin{equation*}
x_{d}^{\prime} i_{d}=\left(\Psi_{d}-E_{q}^{\prime}\right)+\left(x_{a D}-\frac{x_{a f} \cdot x_{f D}}{x_{f}}\right) \cdot i_{D} \tag{26}
\end{equation*}
$$

Again, multiplying out both sides of equation (24f) by ($\mathrm{x}_{\mathrm{aQ}} / \mathrm{x}_{\mathrm{Q}}$); then subtacting from equation (24b), we get:

$$
\begin{align*}
& \qquad \Psi_{q}-\left(\frac{x_{a Q}}{x_{Q}}\right) \quad \cdot \Psi_{Q}=\left(x_{q}-\frac{x_{a Q}}{x_{Q}}\right) i_{q} \tag{27}\\
& \text { and } x_{q}^{\prime \prime}=x_{q}-\frac{x_{a Q}^{2}}{x_{Q}} \tag{27a}
\end{align*}
$$

$=$ Quadrature axis subtransient reactance.
and let us define:

$$
\begin{equation*}
\mathrm{E}_{\mathrm{d}}^{\prime \prime}=\left(\frac{\mathrm{x}_{\mathrm{aQ}}}{\mathrm{x}_{\mathrm{Q}}}\right) \cdot \Psi_{\mathrm{Q}} \tag{27b}
\end{equation*}
$$

Thus, equation (27) becomes:

$$
\begin{equation*}
\Psi_{-} E_{d}^{\prime \prime}=x_{q}^{\prime \prime} i_{q} \tag{28}
\end{equation*}
$$

From equations (26) and (28), we can weite down:-

$\left.-\left|\begin{array}{c}E_{q}^{\prime}-\left(\frac{x_{a f} \cdot x_{D}}{x_{a D} \cdot x_{f}}\right) \\ E_{d}^{\prime \prime}\end{array}\right|\right\}$
$\left|\begin{array}{c}\Psi_{d} \\ \Psi_{q}\end{array}\right|$

Substituting into equation (29) for i_{D} from equation (24L), and for $\mathrm{E}_{\mathrm{d}}{ }^{\prime}$ from equation (27b) and for $\mathrm{E}_{\mathrm{q}}^{\prime}$ from equation (25b) we get:
$\left|\begin{array}{c}i_{d} \\ i_{q}\end{array}\right|=\left|\begin{array}{ccc}1 / x_{d}^{\prime} & . & 0 \\ 0 & & \\ i / x_{q}^{\prime \prime}\end{array}\right| \quad\left\{\quad\left|\begin{array}{c}\Psi_{d} \\ \Psi_{q}\end{array}\right|-\right.$
$\left.\left|\begin{array}{c}\left(\mathrm{x}_{\mathrm{af}} \Psi_{\mathrm{f}} / \mathrm{x}_{\mathrm{f}}\right)+\left(\mathrm{x}_{\mathrm{aD}}-\left(\mathrm{x}_{\mathrm{aD}}-\frac{\mathrm{x}_{\mathrm{af}} \mathrm{x}_{\mathrm{fD}}}{\mathrm{x}_{\mathrm{f}}}\right) \mathrm{p} \Psi_{\mathrm{D}} / \mathrm{w}_{\mathrm{b}} \mathrm{r}_{\mathrm{D}}\right. \\ \left(\mathrm{x}_{\mathrm{aQ}} / \mathrm{x}_{\mathrm{Q}}\right) \Psi_{\mathrm{Q}}\end{array}\right|\right\}$
Also, rewritting equations (24g). (24h) in matrix form, then:

$$
\left|\begin{array}{|c|}
\mathrm{v}_{\mathrm{d}} \tag{30}\\
\mathrm{v}_{\mathrm{q}} \\
\text { where } \\
\mathrm{i}_{\mathrm{d}} \\
\mathrm{i}_{\mathrm{q}}
\end{array}\right|+\mathrm{A}_{\mathrm{L}}\left|\begin{array}{c}
\Psi_{\mathrm{d}} \\
\Psi_{\mathrm{q}}
\end{array}\right|+\mathrm{A}_{\mathrm{R}} \mathrm{P}\left|\begin{array}{l}
\Psi_{\mathrm{d}} \\
\Psi_{\mathrm{q}}
\end{array}\right|
$$

$$
\begin{equation*}
A_{R}=-1 / w_{b} \cdot I_{2 \times 2} \tag{30c}
\end{equation*}
$$

To find out explicit expressions for machin's current; then, from the set of appendix equations (24a) up (24f) excluding (24c), we have:

i_{d}		x_{d}	0	$\mathrm{xaD}_{\text {d }}$	0	$\mathrm{xaf}_{\text {a }}$	-1	$\Psi_{\text {d }}$
i_{q}		0	x_{q}	0	$\mathrm{x}_{\mathrm{a} Q}$	0		Ψ_{q}
i_{D}	$=$	x_{ab}	0	${ }^{\text {D }}$	0	x_{D}		$\Psi_{\text {D }}$
i_{0}		0	$\mathrm{xaQ}_{\mathrm{a}}$	0	${ }^{\text {Q }}$	0		Ψ_{Q}
i_{f}		$\mathrm{xaf}_{\text {af }}$	0	x_{D}	0	x_{f}		Ψ_{f}

Or

$$
\left|\begin{array}{c}
i_{d} \tag{31}\\
i_{q} \\
i_{D} \\
i_{Q} \\
i_{f}
\end{array}\right|=\left|\begin{array}{ccccc}
a_{11} & \cdot & \cdot & \cdot & a_{15} \\
\cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot \\
a_{51} & \cdot & \cdot & \cdot & a_{55} \\
\Psi_{q} \\
\Psi_{D} \\
\Psi_{Q} \\
\Psi_{f}
\end{array}\right|
$$

Since relations between i_{d}, i_{q} and machine fluxes have be implicity obtained when investigating the machine's terminal constraint, then we shall the $\mathrm{i}_{\mathrm{D}}, \mathrm{i}_{\mathrm{Q}}$, and i_{f} - fluxes relationships.

Thus, after executing (31a), we get:

$$
i_{D}=\frac{\left(x_{f} x_{d}-x_{a f}^{2}\right) \Psi_{D}+\left(x_{f D} x_{a f}-x_{a D} x_{f}\right) \Psi_{d}+\left(x_{a D}-x_{d} x_{f d}\right) \Psi_{f}}{\left(x_{d} x_{f} x_{D}+x_{a D}^{2} x_{f}-x_{a f}^{2} x_{D}-x_{a f}^{2} x_{D}-x_{f D}^{2} x_{d}\right)}
$$

To avoid complication. i_{D} in the expression of i_{f} will be substituted from (24L) and i_{q} in the expression of i_{Q} will be substituted from (24m). Thus, after elimininating i_{d} from equations (24a) and (24d), we get:

$$
\begin{align*}
i_{f}=\frac{1}{\left(x_{a D} x_{a f}-x_{d} x_{f D}\right)}\left\{x_{a D} \Psi_{d}-x_{d} \Psi_{D}\right. & \\
& \left.+\frac{\left(x_{a D}^{2}-x_{d} x_{D}\right)}{w_{h} \cdot r_{D}}-. p \Psi_{D}\right\} \tag{33}
\end{align*}
$$

Substituting for i_{Q} from equation (24b), we get:-

$$
\mathrm{i}_{\mathrm{q}}=\frac{1}{\mathrm{x}_{\mathrm{q}}}\left(\Psi_{\mathrm{q}}-\mathrm{x}_{\mathrm{aQ}} \mathrm{i}_{\mathrm{Q}}\right)
$$

Substituting from this last equation into (24 L), we get:

$$
\begin{align*}
& \begin{aligned}
\Psi_{Q} & =\frac{x_{a Q}}{x_{q}}\left(\Psi_{q}-x_{a Q} i_{Q}\right)+x_{Q} i_{Q} \\
& =\frac{x_{a Q}}{x_{q}}\left\{\Psi_{q}+i_{Q}\left(x_{Q}-\frac{x_{a Q}^{2}}{x_{q}}\right)\right\} \\
\text { Thus } i_{Q} & =\frac{x_{q}\left\{\Psi_{Q}-\left(x_{a Q} / x_{q}\right) \Psi_{q}\right\}}{\left(x_{Q} \cdot x_{q}-x_{a Q}^{2}\right)} \\
& =\frac{\left(x_{q} \Psi_{Q}-x_{a Q} \Psi_{q}\right)}{\left(x_{Q} x_{q}-x_{a Q}^{2}\right)}
\end{aligned}
\end{align*}
$$

Multiplying out both sides of equation (24 K) by $\mathrm{x}_{\mathrm{af}} / \mathrm{r}_{\mathrm{r}}{ }^{\prime}$ we get:
Lastly substituting for i_{Q} from equation (34) into (24 m) we get the equality:

$$
\begin{equation*}
\left|\frac{r_{Q}}{x_{Q} x_{q}-x_{a Q}^{2}}\right|\left|-x_{a Q} \Psi_{q}+x_{q}+\frac{p}{w_{b} \cdot r_{Q}}\left(x_{Q} x_{q}-x_{a Q}^{2}\right) \Psi_{Q}\right|=0 \tag{38}
\end{equation*}
$$

II. SOLUTION OF A MATRIX DIFFERENTIAL EQUATION:

To evaluate the solution of the equation:

$$
\mathrm{p} X=A X
$$

The solution is generally given by:

$$
\begin{equation*}
x=e^{(A} \cdot X_{o}=e^{-t(-A)} \cdot X_{o}=e^{-t A^{\prime}} \cdot X_{o} \tag{39}
\end{equation*}
$$

where X_{o} is the vector X at $\mathrm{t}=0$, and $\mathrm{A}^{\prime}=-\mathrm{A}$.
To calculate the transition matrix $e^{-t} A^{\prime}$, the eigen values of the state matrix A^{\prime} are calculated. Let these be $\lambda_{1} \cdot \lambda_{2} \ldots \ldots \lambda_{15}$. This, with the aid of sylvester: formula, the expansion of the exponential function is given by:

$$
\begin{equation*}
e^{-\lambda^{i}}=\sum_{k=1}^{n} \quad P\left(\lambda_{K}\right) Z_{K}\left(A^{\prime}\right) \tag{40}
\end{equation*}
$$

where

$$
Z_{K}\left(A^{\prime}\right)=\frac{\prod_{K \neq r}\left(A^{\prime}-\lambda_{r} I\right)}{\prod_{K \neq r}\left(\lambda_{K}-\lambda_{r}\right)}
$$

$P\left(\lambda_{K}\right)=e^{-\lambda_{K}}$
where $\lambda_{K}{ }^{\prime} \lambda_{r}$ are the cigen values of $A^{\prime} . K, r=1,2 \ldots . \ldots 15$ and I is the unit matrix of order 15. Interpreting equation (40) for the $15^{\text {th }}$ order state matrix A^{\prime}. we get:-

$$
\begin{align*}
e^{-t A^{\prime}}= & \frac{e^{-\lambda_{1} \tau}}{\left(\lambda_{1}-\lambda_{2}\right) . .\left(\lambda_{1}-\lambda_{15}\right)}\left\{A^{\prime}-\lambda_{2} I\right\} \ldots\left\{A^{\prime}-\lambda_{15} I\right\} \\
& +\frac{e^{-\lambda_{2} t}}{\left(\lambda_{2}-\lambda_{1}\right)\left(\lambda_{2}-\lambda_{3}\right) . .\left(\lambda_{2}-\lambda_{15}\right)}\left\{A^{\prime}-\lambda_{1} I\right\} . \\
& .\left\{A^{\prime}-\lambda_{3} I\right\} \ldots\left\{A^{\prime}-\lambda_{15} I\right\}+\ldots \\
& +\frac{e^{-\lambda_{15} t}}{\left(y_{15}-\lambda_{1}\right) . .\left(\lambda_{15}-\lambda_{14}\right)}\left\{A^{\prime}-\lambda_{1} I\right\} . .\left\{A^{\prime}-\lambda_{14} I\right\} \tag{42}
\end{align*}
$$

REFERENCES

I. R.H. PARK. "Two Reaction Theory of Synchronous Machines-Generalized Method of Analysis-I' AIEE Trar actions on PAS. July 1929, pp. 716-730.
2. R.H. PARK. 'Two Reaction Theory of Synchronous Machinies-II', Ibid, June 1933, pp. 352-355.
3. N. N. HANCOCK. 'Matrix Analysis of Electrical Machinery' Pergamon Press, 1964.
4. D. E. HEDMAN, 'Propagation on Overhead Transmission Lines. Theory of Modal Analysis' IEEE Transactions on PAS. March 1965, pp. 20()-205.
5. M. J. BATTISON, 'Calculation of Switching Phenomena in Power Systems' Proc. IEE, Vol. 114. April 1967. pp. 468-486.
6. V. A. VENIKOV. ' Transient Phenomena in Electrical Power Systems' Pergamon Press, 1964.
7. M. SERRY. New Digital Model for Study of electromagentic transient time domain following load rejection of a hydro generation long transmission system' a Ph.D. Thesis Submitted to Cairo University, 1974.

[^0]: Scientific journal
 VIII. 1

 The Inducesity of Tochuciores.
 Paphdad

