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ABSTRACT:

This is one of a series of papers interested mainly in the overall transient behaviour of integrated
power systems. \Vith a target of introducing the whole system in a synchronous machine-wise frame
of reference: the subject paper is devoted for derivation of an expression for the long line as a
machine-terminal constraint. Five versions for long line representation are proposed in an
operational impedance matrix form.These can be left for further investigation for selection of the
optimum. although the author recommends the fifth one.Modification of line parameters due to
inclusion of other distributed and lumped parameter series or shunt elements are discussed.Besides.
available methods in literature for calculations of voltage and current vectors at any point along the
line are given.

LIST OF SYMBOLS

[ 12z Matrix, and impedance matrix.
Lov Instantanous current and voltage at any point along the line.
Lv Fourier transforms of current and voltage.
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" distance along the line.

Zc' z Caracteristic and surge impedance respectively.

RLCG Line constant matrices per conductor per unit length.

7. Y Longitudnal impedance and shunt admittance per conductor per unit length.
A’l‘ Ao eigen values determining propagation current and voltage modes.

qu‘qu Four terminal network parameter matrices.

qu‘qu

1. INTRODUCTION

The general behaviour of a power system is defind during the transient. dynamic and steady state

periods.Analysis of an integrated power system's behayiour makes it desirable to recognize three
distinct periods:

i) A surge pericd in which travelling wave effects predominate and in which system elements are
represented by their surge impedances.

ii) A dynamic period which is transitional between the surge period and the steady state and is
characterized by variable’s variations in an enveloppe which varies aperiodically with time.

iii) And lastly, the steady state period.

It is justifying to note, however. that such classification may become inadequate now. The use of
exciters with automatic control whose action is dependent of first, second and /or higher derivatives
of the controlled variables may make it necessary to allow for wave propagation in a long
transmission line simultaneously with the dynamic transient phenomena.

One aspect to realize such a step, is to introduce a 3-phase long line with its senes and shunt
elements in a convenient impedance-or admittance-matrix form.Solution of this terminal’s
impedance matrix with the generator’s differential equations can give the required solution of the
problgm.

2. REVIEW OF AVALIABLE METHODS

For the purpose of involving wave propagation phenomena. the terminal elements are divided
into two types namely: those whose parameters are essentially lumped. such as transformers.
reactors and capacitors; and distributed; like transmission lines and cables.Idealy the method of
transient calculations should be capable of representing both lumped and distributed parameters, in
addition to the effect of nonlinearities which may be involved equally well.However and up to
author’s knowledge. there methods of calaulations (2) are avaliable in literature.

(a) The lumped parameter method in which lines and cables are represented by artificial lines
made up of lumped elements in a series of “T” or “I1" sections.One of the solutions is
to write down the differential equations of the individual clements, then these are digitally
solved by Runge-Kutta or any similar routine.However. although this method is accurate
when applied to elements having lumped constants. but error is introduced by the
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representation used for lines and cables. The artificial line used behaves in more or less
exactly the same way as the actual line for a particular frequency only but not convenient
for generalization.

i) The Fourier transform method which requires the calculation of response of the connected
svstem over a range of frequencies and the use of the inverse Fourier transform to calculate
the system’s time response.dn this method. a three phase line's equation must first be
transformed into another set of components which have no mutual coupling between
them.The propagation coefficients for cach of the components or modes may then be
calculated as for the single phase line.To perform such transformation. again it is necessary
to calculate the cigenvalues of the transmission  coefficient matrix  y(w) = Zlw) .
Y(w).However.due to the much involved operations, this method is not always considered the
most favourite.

(c) The travelling wave methods which are principally based up on the solution of transmission
line partial differential equations. Two of which in wide use areisolution of the line voltage
and current cquations by laplace transform method. and the second by the well known
lattice diagram method.In this latter method which is widely used for digital computation of
switching transients; lines and cables are specified by their surge travel times and surge
impedance matrices.Reflected and refracted voltage and current waves at junctions of
terminations are calculated by the use of reflection and refraction coeflicients.In this method.
lumped elements are represented by transmission line stubs i.c. short lines which are shorted
at remote ends. or open circuited. or infinitely long lines.tHowever. due to the presence of the
svnchronous generator. this method will not he typically applied.

3. ADOPTED METHOD

Due to complex function of the synchronous machine involved with its associated regulators.
hence a thorough analysis probibits its representation by a lumped reactance (or impedance)
system.So for a synchronous generator-wise sotution it is assumed that the generator will look to
the line as if it were a three phase clement represented by its characteristic impedance (surge
impedance: for perfect carth) in matrix operational form. This is right so long as voltage and current
at any point along the line: including its sending end: are related always by its surge impedance.The
eflect of intermediate lumped series and shunt clements will be involved by modifying the line
constants: and consequently its surge impedance matrix.Once the surge impedance matrix is
obtained in operational form: it can be solved simultancously with the gencrator's differential
eguations in any sclected machine's frame of reference. as will be seen in the accompanying papér.

4. TRANSMISSION LINE EQUATIONS

The involved transmission line is assumed to be three phase and compctely transposed.The
magnitude of the distributed parameters associated with each conductor is considered to be the
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same for all conductors considering the case balanced components of potentials and currents, then
the dilferential equations describing the electromagnetic waves on the transmission line will be:

_EX_:L_fi_.+R.l (1)
0x 0t
o oV '
il — = G 6.V 2)
0x ot

Where
i and V are column matrices of line currents and voltages respectively.

R=RU,L=LU=(LS-M).U

Where Ls is line self inductance per unit length

M is line mutual inductance per unit length
U is a unit 3 X3 matrix.
C is a square symmetrical matrix whose main diagonal elements are equal to C. i.e. line

capacitance to ground per unit length, and the sub-diagonal elements are *c” i.e. line

capacitance between any pair of conductors per unit length.
is a square symmetrical matrix whose main diagonal elements are equal to G i.e. line
conductance to ground per unit length and the sub-diagonal elements are "'g"" i.e. line

conductance between any pair of conductors per unit length.

G

Line surge impedance matrix is given by:
=51 1/2
Z, =Y (X )" (3)

where '
G + PC (4a)

and
Z=R + PL (4b)

e
il

) d
P designates —,
dt

Obtaining Z rigorously and explicity in operational form is very difficult if not impossible.What
already published in this concern was given by reference (1) for a single frequency.

5. DERIVATION OF AN APPROXIMATE EXPRESION
FOR (Y 2)'7

Let us assume; approximately that:
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(YZ2)'?=PM +N (5)
Squaring both sides of this last equation and substituting from (4a) and (4b). we get:
G+pCO.R+PL=({PM + N)?

Equating corresponding terms on cach side. we get the following identities, which should be

consistent:

a) M=CL=LC (6a)
b MN+NM=CR+GL=RC+ LG (6b)
c)N>’=GR =RG (6¢)

It is clear that, we have three equations and two unknown matrices, namely M and N . and
hence solution is indeterminate. _
However, some assumptions can be made. which result in a solvable set of equations.These may

be:-

1) Assume R =0, and from equations (6c) and (6b), this will lead necessarily to the identity G =
O.Thus, we have only one equation (6a) in one unkown matrix M.
Solving this latter will yield:-

M m m
M = m M m
m m M
where M = + = L(C+3c) (7a)
2
L(C + 3¢)

andm = — /L(C—c)+ (7b)

However, this assumption, will lead to imbigiousity while calculating currents and voltages at
other points along the line, due to discard of R and G, hence attenuation effect.

2) Assumption (1) can be refined by taking the resistance and leakance matrices outside the line,
as a lumped series impedance and shunt admittance matrices respectively.
Although expected results will be better than first assumption, yet it will lead to zero
attenuation results for the artificial line.

3) Assume a value for G matrix, matched with the R matrix such that equation set (6) reduces to
only two.In other words. let us proceed as follows:

From equation (6a) we get:
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M =L'2CHA
From equation (6c) we get:

o pli2pl2

N =R Ga
Where Ga is assumed value matched with R to obtain only two equation set.
Substituting for M and N into (6b), we get:

L-HS = (RL)I/Z { C]/z Gallz + Gal/z. CI‘/Z

R.H.S

RC+LGa.

Thus equality of both sides of equation (6b) necessitates the assumption that both the C and
Ga matrices should be diagonal ones.Such an assumption may lead to serious errors as the

nondiagonal elements of above mentioned matrices may be quite appreciable with respect to
diagonal elements.

Hence this assumption will be rejected.
4) Assume the following hybrid method:
ii — Assume a part of resistance R, let, it be denoted by r’. as a distributed element.The remainder:
for all the line i.e. (R — r’) as a lumped element.Value of r’ will be determind sooner.

ii — Assume that the conductance matrix is imparted into a distributed parameter one given by:-

. G Ba Ba
G i g, G B4
Ba Ba <

and a lumped parameter matrix given by:

0 8 Bp
g gy 0
Where
g, is mutual conductance per phase per unit length and will be calculated sooner.
Bh =8~ 8y
From equations (6a). and (6c) respectively we get:
M m m N n n
M= m M m .and N = n N n (Ba)
m m M n n N
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wherc:

o JL(C + 3¢)

M ,
2 (8b)
= -l —a = VE(C+3C)
m = V Ot©T A L
2 (8c)
= i\/r(G+3ga)
(8d)
2
5 (G + 3ga
n=-— r(G—ga)i\/r(’ >e) (8e)
H 2
From equation (6b), we have
MN+NM=1LG, +rC (9)
From this last equation, we get the following versions Either:-

MN = LGa (10a)
and NM=r¢C (10b)
Or MN=rC (10c)
and NM =LG, (10d)
Substituting from equation (ba) and (6c) into (10a). we get:

— [T el T 12
MN = /L.c'"?.{/7G,
=JrL.c'*G,” (1

But, from equation {10a). we have
MN =LG,

. — 1
Thus LG, =rL.C~ G;"’
But squaring both sides of this last equation. we get:—

r!
G, =(—).C
T g

It can be easily proved that equation (12) will be arrived at by trying any of versions (10b), (10c) or
(10d).

From equation (12), we can write down:-

[
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G ga ga ’
r
g G g =) ¢ €
a a C
c
g, By G ¢

r
iee. G=(—).C
L

From which r' can be calculated

' (L) G
r=(—).
C (13)
r G
and ga=(F).c=(F) .C (14)
J

Summary of this method is given as:-

The actual line simulated hybridly by:-

i - Artificial distributed parameter line with inductance and capacitance parameters as the actual
line, but with resistance diagonal matrix with elements r’ given by equation (13). The
conductance matrix, having the actual line diagonal elements, but with subdiagonal elements

: ga given by equation (14).

ii - A lumped series diagonal 3 x3 matrix given by | r’ U where U is 3 x3 indentity matrix.

iii - A lumped shunt admittance 3 X3 matrix whose diagonal elements are zero. and subdiagonal
elements or I(g — g,)-

5) Another, hybrid method similar to method (4) but with the exception that the subdiagonal
elements of the conductance matrix of the artificial line are assumed to be the same as the
actual line. The main diagonal elements of artificial line will be assumed to be G,.

Thus, repeating procedure mentioned in method (4) we

ﬁz:' the distributed parameter artificial line
G, g g |
G, = g G, g
8 8 G,

and for the lumped parameter conductance matrix:--

Gp
Gy, =1. Gy, =l.6,.U
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“’hcre'. Gb =G - Ga
from cquations (6a), and (6c). respectively we get:

V(G +3g)
N=+Y ™8

2 - (I5a)
e (G
=‘\/r((.a—g) i\/r( Nt} (15b)

2

M. and m are the same given by (8b) and (8c) respectively. Proceeding as above, we finally get:

' B
r=L.(—) {16)
C

r g
and Ga=(—) .C=C.(—) (17)
L C

Summary of this method can be given as:-
The actual line can be hybridly simulated by:-
i) Artilicial distributed-parameter line the inductance and capacitance parameters of which are as
the actual line, but with resistance diagonal 3 x3 matrix with element r’ given by cquation
(6). The conductance matrix, having diagonal elements G, given by equation (17). but with
the actual line subdiagonal elements.
ii) A lumped series per phase resistance given by l(r — r’).
iii) A lumped shunt conductance of admittance per phase given by I (G — G,).
Although the live methods. mentioned above, need more investigation. yet it seems to the
author that the fifth method is the most favourite, as it imparts the line into an artificial
distributed-parameter line and a lumped diagonal matrix element, which allows to be casily
combined into perphase values of the other lumped elements. Besides. it gencraily deos not
involve matrices with zero diagonal elements ( like metohd (4) ). which may make time of

computation more lengthly.

6. CALCULATION OF VOLTAGES AND CURRENTS ALONG
THE LINE

After decomposition of a line a lumped element and an artificial distributed parameter line; the
equations of system as a whole, are solved simultaneously with the generator €s equations to
find out the generator «s terminal voltage and line current. The line sending end voltage and
current are consequently found out at any time. Voltage and current at any point along the
line; at a definite time can be found after the equations (1) and (2) are transformed by Fourier

transformer into:-
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and
where
Va
2 \%
Yy b
VC
X
and

Z(w) = R(w) + jw L(w)

Y(w) = G(w) + jw C(w)

dVy = 2(w).1,
dx
A _yw.v,
dx

lx=

Z(w) = R(w) + jw L(w)
Y(w) = G(w) + jw C(w)

(18a)

{18b)

It is worthmentioning here. that an approximation is made here whrn assuming that voltages

and currents are purely sinusoidal with a single frequency.

Equations (18a) and (18b) can be combined into the matrix form:-

dx
I X

which is the state transition equation:

where

z||v,
(¢ I
X
d
—X=AX
dx
" A=

44
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Equ at

iii -

ion (19b) has the solution:
X = c""".xo (20)

where XO is the vector centaining the voltage and current at line sending end.

The calculation of the state transition matrix ¢**can be carried out in several ways (6). Up to
author's knowledge three possible ways can be applied; the direct expansion, the use of eigen
values and eigenvectors, and the use of sylvester formula. The direct expansion is not
recommended due to slow conversion of exponential series (Appendix I).

The Sylvester formula yields an efficient method for calculating the transition matrix e* &
(Appendix 11).

The eigen values and ecigen vectors of matrix A (order 6) can be related to the eigen values and
cigen vectors of the transmission coefficient matrix Z Y (order 3). However. when this
technique is applied. the eigen values. eigen vector method becomes more efficient than the
Svlvester method.

Using this technique. yields the solution (Appendix 111).
H(x) K(x)

D(x) E(x)

where

G(x). K(x). D(x) and E(x) are given in equations (48b) up to (48e¢).
Thus. one can summarize the calculational process of a synchronous machine with connected
long line at its terminal as:
The line is considered as imparted into a lumped element and an artificial line whose
characteristic (surge) impedance Z, can be easily calculated in the operational form. For this
purpose. equation sets (3) and (15a) up to (17) are proposed for the artificial line.
The synchronous machine’s equations can be solved simultancously. with the line: represented
as mentioned in (i): as a terminal constraint to give the line sending and receiving end
variables with travelling wave transients involved. Detail of this step will be given in the
accompanying paper.
Voltage and current vectors at any point along the line are calculated by equations (20) and
(21).

7. INCLUSION OF OTHER CONNECTED ELEMENTS

In usual cases. other series or shunt elements are connected with the long line, and hence the
above mentioned equations should be modified to take into account the effects these connected
clements. These are calssified here into three types: naely: distributed parameter eclements
(lines or cables): series lumped elements (such as series connected reactors, transformers and
capacitor banks):and shunt lumped elements (such as loads. shunt reactors, shunt capacitors,
voltage transformers and generators).
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7.1 Distributed Parameter Elements: '
For an element (line or cable) of length pq connected between points p and q. the current-

voltage relation at both ends of the line is given by (see Appendix IV).

(22)
F v
' | Cap qp q

where:
I__is vector containing the set of line currents {lowing at end p towards q.

V_ is vector containing the set of phase to ground voltages at bus bars p.

G and qu are 3 X3 matrices given by equations set (54a) and (54b).

F_. . G
PQ@ PqQ Pq
Thus, for any number of distributed parameter elements connected to bus bar p. the
admittance matrix Tpp is given by

Y. = Z F (23)

- (24)
and Yp q qu

The summation in equation (23) is carried out over all the lines connected to bus bar p.
Ypa is equal to O if there is no connection between bus bars p and bus bars q.

7.2 Series Elements:
An element connected between bus bars p and q can be represented in a similar form as
in equation (22). The parameter matrices F__, F__and G__ can be claculated from the
equivalent circuit or they can be measured. In case that the series element is, or can be

replaced by an impedance Z_ . these parameters matrices take the values

Pq
F =F =71} = s 1 25)
pa = Fgp=Zpq and Gpg =Gy = —Zq :
These parameter matrices can now be incorporated in the Y matrices of equations (23) and
(24).
If an element connected between bars p and q; has the parameter matrices F q° qu- qu

and G_ : is connected in series with an element qn. having the parameter matrices Fqn' an-

an an Gnq' then we shall be have the current-voltage relation:

1 %
]p qu qu 0 p
i = \Y 26)
q qu qu + Fqn an q (
|
h 0 Gnq an o
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-——

Eliminating V. and remembering that Iy = O. finally get:

F' '
lpn pn Gpn Vp
= (27a)
Inp an an Vn |
where: 1
o — = F - -
Fon = Fpa ~ Fog Fop * Fan)  Cpq (27b)
P _ =1 -
anp = an Gnq (qu + Fqn) an (27¢)
P = -
Gpn = (qu (qu + Fqn) an (27d)
JR— _1 -
an = Gnq (qu + Fgn) qu (27€)

. The combined element can be incorporated in the Y matrix as mentioned before.

7.3 Shunt Elements:

A shunt element connected to the bus bare p and of admittance Yp equal to the inverse of its
impedance matrix can be included in the Y matrix by adding the su[t)nmatrix Y _to the revelunt
diagonal matrix.Also. if a network can be divided into two independent parts. the equivalent
impedance of one part can be trcated as a shunt clement to the other.

| CONCLUSION

1) Five methods are proposed here to take into account travelling wave effects of a long line
while investigation of transient behaviour of an integrated power system contituting a
synchronous machine.The one which is recommended by the author imparts the long line into
an artificial distributed parameter line plus a lumped series resistance plus shunt conductance
element.

2) The paper gives a general survey of available methods for calculation of voltages and currents
along the line in terms of its sending end values, and recommends the eigen values eigen
vectors method for such type of problems.

3) It discusses cases of inclusion of more than one long line connected to the system: of
connected series and shunt clements upon the changes of system's parameters.

However, how to calculate the line's sending end values is the problem which is solved in the

@ccompanying paper.
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APPENDIX 1
EVALUTION OF I AND V BY DIRECT EXPANSION (2)

By transforming equations (1) and (2) into Fourier domain. we get:

Nt (28a)
dx
and
d—l- =Y(w).V e}
dx
where

Zw) = R(w) + jwL(w)
Y{w) = G(w) + jw C(w)

Sumultaneous solution of equations (28a), (28b) gives:-

2

— =Z(w).Y(w).V (29a)
dx?
and
d?#1
=Y(w).Zw).1 (29b)
dx?

Equations (29a) and (29b) are solved by assuming a solution of the form:-

V=e**.T (30a)
and

I=e " W (30b)

where A and )‘i arc square matrices, refered to as propagation constants, T, and W arc column
matrices of voltages and currents at line's sending end.

The exponentional function can be expanded by Cayley-Hamilton theorm (7):
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X x?
c"",_\__l—')» _+ )\.2—
11 21
x}
- }.S et e
1 (31)
Taking the X derivative, we get:
—7.X X
| i Do 11— h—
dx 11
x4 %!
A W —
v 21 31
—_— )»C.C_"t'x
and the second derivative of V and | yield:-—
d."v B
- ='P'é V (32)
)
and
d*l
F= 231 (33)
X

Substituting from equation (32) into (29a). we get:
?6 V = Zw) . Yiw) . V
Again substituting from equation (33) into (29b) we obtain:-
v: I = Yiw) . Zw) . |
Hence, %, and %; are now culculated to pe:
b = (Z(W). Y(w) ) 2

hich can-be substituted into cquation (31) to get the required-state transition. matrix.Simularly
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i = (VW) Z(w) )2
APPENDIX 11
EVALUTION OF I AND V BY SYLVESTER FORMULA (2.7)

The expansion of the exponential function is given by:

n
i = k; PU\K) .ZK(lf) (34
ﬂ(lr— )LrU)
ZK”‘f) _—_L , . (33)
H(KK— lr)
K#r

where

o e R
P(RK) =e K f-
f designatis i.e
and )‘K . }‘r are the eigen values of ).f
Uis 3 x3 identity matrix.

For three conductor line. three distinct characteristic roots (eigen values) will exist for each of le ;
and l.‘.

Let these for lf be \,and \,and A,. then:-

e g { i, }Lu}
= Ae— AUYL (A —
A, T Ujtdggds
=AyX
e "2
+ dp— s U [k 1]
% e—l;x

{Ae— 2 U} {A—2,U}
Raolilha—Ryf L CF B

Thus. substituting into equations (30a) and (30b) . we get the voltage and current vectors at any
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point along the line.

APPENDIX 111
EVALUATION OF TRANSITION MATRIX ¢** BY THE EIGEN VALUES
METHOD (1.4.,5.6)

To calculate the transition matrix the eigen values and cigen vectors of the state matrix A are
calculated.However. it has been proved that the cigen values of it has been proved that the eigen
values of the A matrix are the positive and negative square roots of the cigen values of the
transmission coeflicient matrix 7 .Y (7).This reduces the computation time considerably since the
transmission coeflicient matrix is of the order 3, while that of the state matrix is 6.To find the
relation between the cigen vectors of the state matrix A and the cigen vectors of the transmission
coeflicient matrix Z.Y, let us proceed as follows:

Let us denote the cigen values of the matrix Z Y by 27, %, 2.4, and let us storethem in the diagonal
matrix Q.. The corresponding cigen vectors stored in the matrix Q columnwise.Q and Q, satisly the
relation:

2Y Q0= Q Q (361
The cigen vectors matrix to the matrix A is denoted by P and is divided into four 3 >3 square
matrices P, . P, Py and Py.

Thus .the eigen values equation of matrix A will be:

0 /A P, P, P, P, Q 0
_ (37)
Y 0 I, P, P, P, 0 Q
where Q is a diagonal matrix containing %, %, and b
Equation (37) gives the equation set:-
ZP, =P, Q (38a)
2P, = =P, © (38h)
¥, = B 0 (380)
and YP, = -P, Q (38d)
From cquation (38c) we get:-
(39)

P’ = \r PI Q_l
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Substituting P, from equation (39) into (38a) and postmultiplying by Q yields:
Z Y P] = p[ Ql (‘“”

Comparison between equations (4()) and (36) shows that P is the eigen vector matrix 2

Y.Calculation of P, . P, and P, from equations (38b) , (38d) and (39) gives the eigen vector matrix
P of the state matrix A as:

Q Q
(41)

27'QQ x27'Q Q

To calculate P~", then P is divided into four 3 x3 submatrices S, . S; . S, and S, . which satisfv the
relation:

Q Q S S, U 0
= (42)
{0 0y (-27'Q Q) S, S, 0 u
where U and O are 3 X3 unit and zero matrices prespectively.
Solving this last equation for Si i =1.2,3.4 yields:
0! Q'o 'z
prt =) (43)
Q—l _ Q—l Q—l 7

But .as P: which is denoted by the modal matrix: is containing the eigen vectors of matrix A as
mentioned aboveithen it should satisfy the relations:-

AP =P Q

(44)
and
cx:\ =Per-P—[ (45)
Substituting from equations (41) and (43) into (45) . we get:-
Q cosh (xQ) Q! Q O 'sinh xQ) Q™' Z
& = (46)
7' Qsinh (xQ) Q! 27'Qcosh (x) Q7 'Z |

But .it has been shown in reference (2), that the surge impedance 2, = Z_ (for perfect earth), and is
given by:
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r . _‘ _l
I,O—QQ Q™' Z

T ———

(47)
gubstituting from equation (47) into (46) we finally:
"(X) K(x'
A _
&t = (48a)
D(x) E(x)
\\‘h(’l’ﬂ
Hix) = cosh x (Z Y)'/? (48b)
K(x) = sin x (ZYV)'"?.7 (48¢)
D(x) = 2" sinh x (Z y)' 2 (48d)
E(x) = ZO'I cosh x (2 Y)l 12 ZO (48e)
APPENDIX IV
DERIVATION OF CURRENT-VOLTAGE RELATIONS ALONG A LINE (4,5.6)
Re-writing equation (20):
¥ = XA 8 (20)
and for line connecting bus bars p and q. we have:-
" 1%
Pl _ Al @ (49)
lpq IQP
substituting for XAfrom equation (21) into (49) we get:-
|
v | |
5 | H(x) K(x) Vq
|
bq D(x) E(x) ltlp
- log = D). Vg + Ex). I
But Vp = H(x). V_ + K(x). I p (
or I =K lx v - H(x) vy (5

Substituting from (50b) into (50a), we get:-
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_ = T |
lpq = D(x). Vq + E(x) K™ *(x) Vp E(x) (x) H(x) Vq

(D) ~ Bx) K100, HoV + Ex) KT M) v (51)
Combining the current vectors into one matrix we obtain:-
I EK ™ %) Dx)—ExK~ 1 wHx)| |V
pa| _ P (52)

e —1 e
'pq K™ (x) K™ *(x) H(x) Vq
Substituting from the set of equations (48b) up to (48e) into (52) we get:
F
Ipq Pq qu VP -
— (53)

lqp qu qu Vq
where:

= = -1 -1 5S4
Foa = Fap = Z%pq Ypq Ppq ot Qpqlpg) (O bukl
and

=G,, =2, i 54b
Gpq = Cqp =Zpq Qpq “hpq cosech(159) Qpq (=Rl

REFERENCES

—

. L.M. WEDEPHOL: *‘Application of matrix methods to.the solution of travelling wave phenomena
in polyphase systems*. Proc. IEE. Vol. 110. No. 12. 1963, pp. 2200-2212.

. D. E. HEDMAN: *‘Propagation of Overhead Transmission lines-Theory of Modal Analysis”. LEEE
Transactions on PAS. March. 1965, pp. 200-205.

. ].P. BICKFORD. P.S. DOEPEL: *‘Calculation of Switching Transients with Particular Reference to
Line Energization’' Proc. of IEE. Vol. 114, April 1967, pp. 465 - 477.

. T. CHOLEWICKI: “Matrix methods applied to the analysis of transients in a long transmission

N

w

Y

line” Bulletin De I'Academie Polonaise des Sciences. Serie des Sciences Techniques, Vol. XVI.
No.7. 1968.pp. 611 - 616.
5. T. CHOLEWICKI: *“Analysis of transients in a uniform unsymmetric three phase long
transmission line’" Ibid, Vol. XVI. No. 1, pp. 97 - 104.
6. L.M. WEDEPHOL. R.C. WASLEY: “Solution of travelling wave problems in multiconductor lines
using eigen value techniques”, Proc. PSCC. Rome 1969, paper S.3.
. F.B. HILDEDRAND: *‘Methods of Applied Mathematics'’, Prentice-Hall, Inc.. 1965.

|

34



https://v3.camscanner.com/user/download



