Al-Rafidain Journal of Computer Sciences and Mathematics (RJCM)

# Construction of a complete $(K, b)-\operatorname{span}$ in $P G(3,13)$ Hamid Mohamed khalaf ${ }^{1}$, ${ }^{*}$ Nada Yassen Kasm Yahya ${ }^{2}$ <br> Department of Mathematics, College of Basic Education, University of Telafer, Tall'Afar, Mosul, Iraql, Department of Mathematics, College of Education for Pure Science, University of Mosul, Mosul, Iraq ${ }^{2}$ <br> *Corresponding author. Email: hamid_math_85@yahoo.com ${ }^{1}$ <br> drnadaqasim3@uomosul.edu.iq ${ }^{2}$ 

## Article information

## Article history:

Received: 7/2/2022
Accepted : 19/5/2022
Available online :


#### Abstract

The main goal of this work is to find a spread of $\operatorname{PG}(3,13)$. By construct a complete $(K, \forall)$-span which represents applications of algebraic geometry in 3-dimensional projective space $\operatorname{PG}(3, \mathrm{q})$. We prove that the maximum $(K, b)$-span in $\operatorname{PG}(3,13)$ is $(170, b)$-span, which is a spread.


Keywords:
projective 3-space, spreads.

## Correspondence:

Author :Hamid Mohamed Khalaf
Email: hamid_math_85@yahoo.com

3- There exist $q^{3}+q^{2}+q+1$ of points and there exists $q^{3}+q^{2}+q+1$ of planes.
4- Every line contains exactly $q+1$ points and every point is on exactly $q+1$ lines. [4]
By using computer programs A , we found the points, lines and planes which are in Tables (1 and 2). The purpose of this study is to investigate a geometric construction ( $K, b$ )-span in 3dimensional projective space and find the maximum complete $(170, b)$-span in $P G(3,13)$, equal to all the points of the space.

## 2. Preliminaries

### 2.1 Definition Plane $\Pi$

In $P G(3, q)$ a plane $\Pi$ is the set of all points $\mathrm{p}\left(\mathrm{y}_{1}, \mathrm{y}_{2}, \mathrm{y}_{3}, \mathrm{y}_{4}\right)$ satisfying a linear equation $a_{1} y_{1}+a_{2} y_{2}+a_{3} y_{3}+a_{4} y_{4}=0$. This plane is denoted by $\Pi\left[a_{1}, a_{2}, a_{3}, a_{4}\right]$, where $a_{1}, a_{2}, a_{3}, a_{4}$ are elements in $G F(q)$ with the exception of the quadrable consisting of four zero elements [3], [4].

### 2.2 Theorem

The points of $P G(3, q)$ have a unique forms, which are $(1,0,0,0),\left(\mathrm{x}_{1}, 1,0,0\right),\left(\mathrm{x}_{1}, \mathrm{x}_{2}, 1,0\right)$ and $\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}, 1\right)$ for all $\mathrm{x}_{1}, \mathrm{x}_{2}$, $\mathrm{x}_{3}$ in $G F(q)$, which are $(1,0,0,0)$ is one point, $\left(\mathrm{x}_{1}, 1,0,0\right), \mathrm{q}$ points, $\left(\mathrm{x}_{1}, \mathrm{x}_{2}, 1,0\right), \mathrm{q}^{2}$ points, and $\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}, 1\right), \mathrm{q}^{3}$ points, for all $\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}$ in $G F(q)$ [3].

### 2.3 Theorem

The planes of $\operatorname{PG}(3, q)$ have unique forms, which are [1,0,0,0], $\left.\mathrm{x}_{1}, 1,0,0\right],\left[\mathrm{x}_{1}, \mathrm{x}_{2}, 1,0\right],\left[\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}, 1\right]$ for all $\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}$ in $G F(q)$. which are $[1,0,0,0]$ is one plane, $\left[x_{1}, 1,0,0\right]$, q planes, $\left[x_{1}, x_{2}, 1,0\right], q^{2}$ planes and $\left[x_{1}, x_{2}, x_{3}, 1\right], q^{3}$ planes, for all $\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}$ in $G F(q)$ [3].

### 2.4 Theorem

There exists $\left(q^{2}+1\right)\left(q^{2}+q+1\right)$ of lines, in PG $(3, q)$ [3], [5]. 2.5 The projective space in $P G(3,13)$

The projective space $P G(3,13)$ contains (2380) points, and (2380) planes, such that each point is on (183) planes and every plane contains (183) points, any line contains (14) points, which is the intersection of (14) planes. The points, planes and lines of $P G(3,13)$ given in Tables (1 and 2).

## 3. Spread and $(K, b)$-span

### 3.1 Definition

A $(K, b)$-span, $b \geq 1$, is a set of $K$ spaces $\Pi_{b}(K$ lines) no two of which intersect [6], [7].
3.2 Definition

A maximum ( $K, b$ )-span is a set of $K$ spaces $\Pi_{b}$ which are every points of $P G(3, q)$ lies in exactly one line of $\Pi_{b}$ and every two lines of $\Pi_{\ell}$ are disjoint.
A $K$-span is a ( $K, 0$ )-span, that is, a set of $K$ points.
A $(K, b)$-span is complete if it is not contained in a $(K+$ 1, b)-span [7],[8].
3.3 Theorem

In $P G(3, q), q>2$, there exists a complete $K$-span with $\mathrm{K}=$ $q^{2}-q+1$, or $\mathrm{K}=q^{2}-q+2$ [7].
3.4 Theorem

In $P G(3, q), q$ odd and $q>3$, there exists a complete $\left(q^{2}-\right.$ $q+2)$-span [7].

### 3.5 Definition

In $P G(3, q)$, a spread S is a set of $\left(q^{2}+1\right)$ lines, which are pairwise disjoint and thus, partition the set of points.
A partial spread $\beta$ is a set of mutually skew lines and if $|\beta|=s$, then $\beta$ is also called a s-span. Hence, a $\left(q^{2}+1\right)$-span is a spread of $P G(3, q)$.
A partial spread is called maximal when it is not contained properly in a larger partial spread. [7], [9], [10].

### 3.6 Corollary

A $K$-span with $K>q^{2}-\sqrt{ } q$, can be completed uniquely to a spread [3].

### 3.7 Theorem

In $P G(3, q)$, a partial spread containing more than $q^{2}+1-$ $\sqrt{2} q$ lines, in contained in a spread of $P G(3, q)$ [11], [12].

## 4. Algorithm

- Choose the lines who containing all points of $P G(3, q)$.
- Choose the first line of any plane that we take contains $q+1$ of the ordered and series points which is $1,2,3, \ldots, q+1$, of $P G(3, q)$.
- Searching to next line starting with point $q+2$, but does not intersect the first line.
- searching to next line starting with point $q+3$, but does not intersect the first and second lines.
- searching to next line starting with point $q+4$, but does not intersect the first, second and third lines.
- We continue in this way until we get the line that begins with point $q^{2}+q+1$. It must also be maintained that there is no intersection between all the previous selected lines. In this case, we get that $K$ is equal to $q^{2}+1$.

Table (1): Points and Plans of $P G(3,13)$

| I | 1 | H |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | (1) | 215 | 18 | 41 | 34 | 61 | 30 | 93 | 106 |
|  |  | 119 | 132 | 145 | 158 | 171 | 184 | 197 | 210 |
|  |  | 223 | 236 | 249 | 262 | 275 | 288 | 301 | 314 |
|  |  | 327 | 340 | 353 | 365 | 379 | 392 | 405 | 418 |
|  |  | 431 | 444 | 457 | 470 | 483 | 496 | 509 | 522 |
|  |  | 535 | 548 | 561 | 574 | 587 | 600 | 613 | 626 |
|  |  | 639 | 652 | 665 | 678 | 691 | 704 | 717 | 730 |
|  |  | 743 | 796 | 769 | 782 | 795 | 808 | 821 | 834 |
|  |  | 847 | 860 | 873 | 836 | 899 | 912 | 925 | 938 |
|  |  | 981 | 964 | 977 | 990 | 1003 | 1016 | 1029 | 1042 |
|  |  | 1035 | 1068 | 1081 | 1094 | 1107 | 1120 | 1133 | 1146 |
|  |  | 1159 | 1172 | 1185 | 1198 | 1211 | 1224 | 1237 | 1280 |
|  |  | 1263 | 1276 | 1259 | 1302 | 1315 | 1328 | 1341 | 1354 |
|  |  | 1367 | 1390 | 1393 | 1405 | 1419 | 1432 | 1445 | 1488 |
|  |  | 1471 | 1484 | 1497 | 1510 | 1523 | 1536 | 1.49 | 1562 |
|  |  | 1575 | 1588 | 1601 | 1614 | 1627 | 1640 | 1683 | 1665 |
|  |  | 1679 | 1692 | 1705 | 1718 | 1731 | 174 | 1757 | 1770 |
|  |  | 1783 | 1796 | 1509 | 182 | 1835 | 1848 | 1861 | 1874 |
|  |  | 1887 | 1900 | 1913 | 1926 | 1939 | 1952 | 1965 | 1978 |
|  |  | 1991 | 2004 | 2017 | 2030 | 2043 | 2086 | 2069 | 2052 |
|  |  | 2095 | 2108 | 2121 | 2134 | 2147 | 2160 | 2173 | 2186 |
|  |  | 2199 | 2212 | 223 | 2238 | 2251 | 2254 | 2277 | 2290 |
|  |  | 2303 | 2316 | 2329 | 2342 | 2355 | 2368 |  |  |
| 2 | $(0,1,0,0)$ | 1 | 16 | 17 | 18 | 19 | 20 | 21 | 2 |
|  |  |  | 24 | 25 | 26 | 27 | 184 | 185 | 186 |
|  |  |  | 188 | 189 | 190 | 191 | 192 | 193 | 194 |
|  |  |  | 196 | 353 | 354 | 355 | 396 | 357 | 388 |
|  |  |  | 360 | 361 | 362 | 363 | 364 | 365 | 522 |
|  |  |  | 524 | 525 | 526 | 527 | 528 | 529 | 530 |
|  |  |  | 532 | 533 | 534 | 691 | 692 | 693 | 694 |
|  |  |  | 696 | 697 | 698 | 699 | 700 | 701 | 702 |
|  |  |  | 860 | 851 | 862 | 863 | 854 | 865 | 866 |
|  |  |  | 868 | 869 | 870 | 871 | 872 | 1029 | 1030 |
|  |  |  | 1032 | 1033 | 1034 | 1035 | 1036 | 1037 | 1038 |
|  |  |  | 1040 | 1041 | 1198 | 1199 | 1200 | 1201 | 1202 |
|  |  |  | 1204 | 1205 | 1206 | 1207 | 1208 | 1209 | 1210 |
|  |  |  | 1368 | 1369 | 1370 | 1371 | 1372 | 1373 | 1374 |
|  |  |  | 1376 | 1377 | 1378 | 1379 | 1536 | 1537 | 1538 |
|  |  |  | 1540 | 1541 | 1542 | 1843 | 1344 | 1545 | 1.45 |
|  |  |  | 1548 | 1705 | 1705 | 1707 | 1708 | 1709 | 1710 |
|  |  |  | 1712 | 1713 | 1714 | 1715 | 1716 | 1717 | 1874 |
|  |  |  | 1876 | 1877 | 1878 | 1879 | 1850 | 1881 | 1852 |
|  |  |  | 1884 | 1885 | 1886 | 2043 | 2044 | 2045 | 2045 |
|  |  |  | 2048 | 2049 | 2050 | 2051 | 2052 | 2053 | 2054 |
|  |  |  | 2212 | 2213 | $2214$ | 2715 | 216 | 2217 | 2218 |
|  |  |  | 220 | $2 m 1$ | $2 m$ | $2 m 3$ | 2224 |  |  |
| - |  |  |  |  |  |  |  |  |  |
| 2390 | (12,12,12,1) | 14. | 39 | 51 | 63 | 75 | 87 | 99 | 111 |
|  |  |  | 135 | 147 | 159 | 171 | 185 | 197 | 2 m |
|  |  |  | 246 | 238 | 270 | 282 | 294 | 306 | 318 |
|  |  |  | 342 | 383 | 378 | 390 | 402 | 414 | 426 |
|  |  |  | 450 | 452 | 474 | 486 | 498 | 510 | 534 |
|  |  |  | 588 | 570 | 582 | 594 | 605 | 618 | 630 |
|  |  |  | 684 | 666 | 678 | 702 | 714 | 726 | 738 |
|  |  |  | 762 | 774 | 736 | 798 | 810 | 82 | 834 |
|  |  |  | 870 | 882 | 894 | 906 | 918 | 930 | 942 |
|  |  |  | 966 | 978 | 990 | 1015 | 1027 | 1038 | 1030 |
|  |  |  | 1074 | 1096 | 1098 | 1110 | 1122 | 1134 | 1145 |
|  |  |  | 1183 | 1195 | 1206 | 1218 | 1230 | 1242 | 1254 |
|  |  |  | 1278 | 1290 | 1302 | 1327 | 1339 | 1351 | 1363 |
|  |  |  | 1386 | 1398 | 1410 | 1422 | 1434 | 1446 | 1488 |
|  |  |  | 1498 | 1507 | 1519 | 1331 | 1542 | 1584 | 1566 |
|  |  |  | 1390 | 1602 | 1614 | 1639 | 1651 | 1663 | 1675 |
|  |  |  | 1699 | 1710 | 172 | 1734 | 1746 | 1788 | 1770 |
|  |  |  | 1807 | 1819 | 1831 | 1843 | 1855 | 1867 | 1878 |
|  |  |  | 1902 | 1914 | 1926 | 1951 | 1963 | 1975 | 1987 |
|  |  |  | 2011 | 2023 | 2035 | 2045 | 2088 | 2070 | 2052 |
|  |  |  | 2119 | 2131 | 2143 | 2155 | 2167 | 2179 | 2191 |
|  |  |  | 2214 | 296 | 2238 | 2263 | 275 | 2287 | 2299 |
|  |  |  | 2323 | 2335 | 2347 | 2399 | 2371 |  |  |

Table (2): Plane and lines of $\mathrm{PG}(3,13)$

| 1 | 15 <br> 184 <br> 353 <br> 522 <br> 691 <br> 860 <br> 1029 <br> 1198 <br> 1367 <br> 1536 <br> 1705 <br> 1874 <br> 2043 <br> 2212 | $\begin{aligned} & \hline 2 \\ & 184 \\ & 197 \\ & 210 \\ & 223 \\ & 236 \\ & 249 \\ & 262 \\ & 275 \\ & 288 \\ & 301 \\ & 314 \\ & 327 \\ & 340 \end{aligned}$ | $\begin{aligned} & 171 \\ & 184 \\ & 509 \\ & 665 \\ & 821 \\ & 977 \\ & 1133 \\ & 1289 \\ & 1445 \\ & 1601 \\ & 1757 \\ & 1913 \\ & 2069 \\ & 2225 \end{aligned}$ | 93 <br> 184 <br> 431 <br> 678 <br> 756 <br> 1003 <br> 1081 <br> 1328 <br> 1406 <br> 1653 <br> 1731 <br> 1978 <br> 2056 <br> 2303 | 67 <br> 184 <br> 405 <br> 626 <br> 847 <br> 899 <br> 1120 <br> 1341 <br> 1393 <br> 1614 <br> 1835 <br> 1887 <br> 2108 <br> 2329 | $\ldots$ 54 67 <br> $\ldots$ 314 301 <br> $\ldots$ 353 353 <br> $\ldots$ 561 574 <br> $\ldots$ 769 795 <br> $\ldots$ 977 1016 <br> $\ldots$ 977 185 <br> $\ldots$ 1068  <br> $\ldots$ 1224 1289 <br> $\ldots$ 1432 1510 <br> $\ldots$ 1640 1562 <br> $\ldots$ 1848 1783 <br> $\ldots$ 1887 2004 <br> $\ldots$ 2095 2056 <br> $\ldots$ 2303 2277 | 93 <br> 275 <br> 353 <br> 600 <br> 847 <br> 925 <br> 1172 <br> 1250 <br> 1497 <br> 1575 <br> 1822 <br> 1900 <br> 2147 <br> 2225 | $\begin{aligned} & 171 \\ & 197 \\ & 353 \\ & 678 \\ & 834 \\ & 990 \\ & 1146 \\ & 1302 \\ & 1458 \\ & 1614 \\ & 1770 \\ & 1926 \\ & 2082 \\ & 2238 \end{aligned}$ | $\begin{aligned} & 171 \\ & 197 \\ & 353 \\ & 678 \\ & 834 \\ & 990 \\ & 1146 \\ & 1302 \\ & 1458 \\ & 1614 \\ & 1770 \\ & 1926 \\ & 2082 \\ & 2238 \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| - |  |  |  |  |  |  |  |  |  |
| 2380 | $\begin{aligned} & \hline 171 \\ & 197 \\ & 353 \\ & 678 \\ & 834 \\ & 990 \\ & 1146 \\ & 1302 \\ & 1458 \\ & 1614 \\ & 1770 \\ & 1926 \\ & 2082 \\ & 2238 \end{aligned}$ | $\begin{aligned} & 27 \\ & 185 \\ & 353 \\ & 534 \\ & 702 \\ & 870 \\ & 1038 \\ & 1206 \\ & 1374 \\ & 1542 \\ & 1710 \\ & 1878 \\ & 2046 \\ & 2214 \end{aligned}$ | 14 353 378 390 402 414 426 438 450 462 474 486 498 2301 | $\begin{aligned} & 159 \\ & 222 \\ & 353 \\ & 666 \\ & 810 \\ & 954 \\ & 1098 \\ & 1242 \\ & 1386 \\ & 1699 \\ & 1843 \\ & 1987 \\ & 2131 \\ & 2282 \end{aligned}$ | 87 294 353 594 822 894 1122 1363 1422 1663 1722 1963 2191 2307 |  | 147 222 510 642 774 906 1038 1339 1458 1590 1722 2023 2155 2332 | 14 1374 1386 1398 1410 1422 1434 1446 1458 1483 1495 1507 1519 2326 | 171 197 353 678 834 990 1146 1302 1458 1614 1770 1926 2082 2276 |

4.1 Construction of spread in $P G(3,13)$

### 4.1.1 Theorem

The maximum ( $К, \mathfrak{b}$ )-span in $\boldsymbol{P G}(\mathbf{3}, \mathbf{1 3})$ is $(\mathbf{1 7 0}, \boldsymbol{b})$-span.
Proof: In Table (2), any two non-intersecting lines can be taken in $P G(3,13)$, say
$b_{1}=\{1,2,3,4,5,6,7,8,9,10,11,12,13,14\}$ and $b_{2}=\{15,184,353,522,691,860,1029,1198,1367,1536$, $1705,1874,2043,2212\}$, then $K_{1}=\left\{b_{1}, b_{2}\right\}$ is a $(2, b)-$ span. Can add another line $b_{3}=\{16,197,367,537,707$, 877, 1047, 1217, 1387, 1557, 1727, 1897, 2067, 2237\}, then $K_{2}=\left\{b_{1}, b_{2}, b_{3}\right\}$ is a $(3, b)-$ span, since $b_{3}$ cannot intersect $b_{1}$ or $b_{2}$. Add another lines:
The line $b_{4}=\{17,210,381,552,723,894,1065,1236$, 1394, 1565, 1736, 1907, 2078, 2249\}, this line can not intersect with any line of $K_{2}$, then
$K_{3}=K_{2} \cup b_{4}=\left\{b_{1}, b_{2}, b_{3}, b_{4}\right\}$ is a $(4, b)$ - span.
The line $b_{5}=\{18,223,395,567,739,911,1070,1242$, $1414,1586,1745,1917,2089,2261\}$, this line can not intersect with any line of $K_{3}$, then $K_{4}=K_{3} \cup b_{5}=$ $\left\{b_{1}, b_{2}, b_{3}, b_{4}, b_{5}\right\}$ is a $(5, b)$ - span.
The line $b_{6}=\{19,236,409,582,755,915,1088,1261$, $1421,1594,1767,1927,2100,2273\}$, this line can not intersect with any line of $K_{4}$, then
$K_{5}=K_{4} \cup b_{6}=\left\{b_{1}, b_{2}, b_{3}, b_{4}, b_{5}, b_{6}\right\} \quad$ is a $(6, b)-$ span. The line $b_{7}=\{20,249,423,597,758,932,1106$, $1267,1441,1602,1776,1950,2111,2285\}$, this line can not intersect with any line of $K_{5}$, then
$K_{6}=K_{5} \cup b_{7}=\left\{b_{1}, b_{2}, b_{3}, b_{4}, b_{5}, b_{6}, b_{7}\right\} \quad$ is $\quad a(7, b)-$ span.

The line $b_{8}=\{21,262,437,612,774,949,1111,1286,1448$, $1623,1785,1960,2122,2297\}$, this line can not intersect with any line of $K_{6}$, then
$K_{7}=K_{6} \cup b_{8}=\left\{b_{1}, b_{2}, b_{3}, b_{4}, b_{5}, b_{6}, b_{7}, b_{8}\right\} \quad$ is $\quad$ a $(8, b)-$ span.
The line $b_{9}=\{22,275,451,614,790,953,1129,1292,1468$, 1631, 1807, 1970, 2146, 2309\}, this line can not intersect with any line of $K_{7}$, then
$K_{8}=K_{7} \cup b_{9}=\left\{b_{1}, b_{2}, b_{3}, b_{4}, b_{5}, b_{6}, b_{7}, b_{8}, b_{9}\right\}$ is a $(9, b)$ - span.
The line $b_{10}=\{23,288,465,629,806,970,1134,1311$, $1475,1652,1816,1980,2157,2321\}$, this line can not intersect with any line of $K_{8}$, then
$K_{9}=K_{8} \cup b_{10}=$
$\left\{b_{1}, b_{2}, b_{3}, b_{4}, b_{5}, b_{6}, b_{7}, b_{8}, b_{9}, b_{10}\right\}$ is a $(10, b)-$ span.
The line $b_{11}=\{24,301,479,644,809,987,1152,1317$, $1495,1660,1825,2003,2168,2333\}$, this line can not intersect with any line of $K_{9}$, then
$K_{10}=K_{9} \cup b_{11}=$
$\left\{b_{1}, b_{2}, b_{3}, b_{4}, b_{5}, b_{6}, b_{7}, b_{8}, b_{9}, b_{10}, b_{11}\right\} \quad$ is a $(11, b)$ - span.
The line $b_{12}=\{25,314,493,659,825,991,1170,1336$, $1502,1668,1847,2013,2179,2345\}$, this line can not intersect with any line of $K_{10}$, then $K_{11}=K_{10} \cup b_{12}=$ $\left\{b_{1}, b_{2}, b_{3}, b_{4}, b_{5}, b_{6}, b_{7}, b_{8}, b_{9}, b_{10}, b_{11}, b_{12}\right\}$ is a $(12, b)$ - span.
The line $b_{13}=\{26,327,507,674,841,1008,1175,1342$, $1522,1689,1856,2023,2190,2357\}$, this line can not intersect with any line of $K_{11}$, then $K_{12}=K_{11} \cup b_{13}=$ $\left\{b_{1}, b_{2}, b_{3}, b_{4}, b_{5}, b_{6}, b_{7}, b_{8}, b_{9}, b_{10}, b_{11}, b_{12}, b_{13}\right\}$ is a $(13, b)-$ span.
The line $b_{14}=\{27,340,521,689,857,1025,1193,1361$, 1529, 1697, 1865, 2033, 2201, 2369\}, this line can not intersect with any line of $K_{12}$, then $K_{13}=K_{12} \cup b_{14}=$ $\left\{b_{1}, b_{2}, b_{3}, b_{4}, b_{5}, b_{6}, b_{7}, b_{8}, b_{9}, b_{10}, b_{11}, b_{12}, b_{13}, b_{14}\right\}$ is a $(14, b)$ - span.
The line $b_{15}=\{28,191,373,555,737,919,1101,1283$, $1465,1647,1829,2011,2193,2375\}$, this line can not intersect with any line of $K_{13}$, then $K_{14}=K_{13} \cup b_{15}=$ $\left\{b_{1}, b_{2}, b_{3}, b_{4}, b_{5}, b_{6}, b_{7}, b_{8}, b_{9}, b_{10}, b_{11}, b_{12}, b_{13}, b_{14}, b_{15}\right\}$ is a $(15, b)-$ span.
The line $b_{16}=\{29,204,387,570,753,936,1119,1289$, $1472,1655,1838,2021,2204,2218\}$, this line can not intersect with any line of $K_{14}$, then
$K_{15}=K_{14} \cup b_{16}=\left\{b_{1}, b_{2}, b_{3}, \ldots, b_{16}\right\} \quad$ is $\quad$ a $(16, b)-$ span.

The line $b_{17}=\{30,217,401,585,756,940,1124,1308$, 1492, 1676, 1860, 2031, 2046, 2230\}, this line can not intersect with any line of $K_{15}$, then $K_{16}=K_{15} \cup b_{17}=$ $\left\{b_{1}, b_{2}, b_{3}, \ldots, b_{17}\right\}$ is a $(17, b)$ - span.
The line $b_{18}=\{31,230,415,587,772,957,1142,1327$, 1499, 1684, 1869, 1885, 2057, 2242\}, this line can not intersect with any line of $\mathrm{K}_{16}$, then
$K_{17}=K_{16} \cup b_{18}=\left\{b_{1}, b_{2}, b_{3}, \ldots, b_{18}\right\} \quad$ is $a(18, b)-$ span.
The line $b_{19}=\{32,243,429,602,788,974,1147,1333$, 1519, 1692, 1709, 1895, 2081, 2254\}, this line can not intersect with any line of $K_{17}$, then
$K_{18}=K_{17} \cup b_{19}=\left\{b_{1}, b_{2}, b_{3}, \ldots, b_{19}\right\}$ is a $(19, b)-$ span.
The line $b_{20}=\{33,256,443,617,804,978,1165,1352$, $1526,1544,1718,1905,2092,2266\}$, this line can not intersect with any line of $\mathrm{K}_{18}$, then
$K_{19}=K_{18} \cup b_{20}=\left\{b_{1}, b_{2}, b_{3}, \ldots, b_{20}\right\}$ is a $(20, b)-$ span.
The line $b_{21}=\{34,269,444,632,820,995,1183,1358$, 1377, 1552, 1740, 1915, 2103, 2278\}, this line can not intersect with any line of $K_{19}$, then
$K_{20}=K_{19} \cup b_{21}=\left\{b_{1}, b_{2}, b_{3}, \ldots, b_{21}\right\}$ is a $(21, b)-$ span.
The line $f_{22}=\{35,282,458,647,823,1012,1188,1208$, $1384,1573,1749,1938,2114,2290\}$, this line can not intersect with any line of $K_{20}$, then
$K_{21}=K_{20} \cup b_{22}=\left\{b_{1}, b_{2}, b_{3}, \ldots, b_{22}\right\}$ is a $(22, b)-$ span.
The line $b_{23}=\{36,295,472,662,839,1016,1037,1214$, $1404,1581,1758,1948,2125,2315\}$, this line can not intersect with any line of $K_{21}$, then
$K_{22}=K_{21} \cup b_{23}=\left\{b_{1}, b_{2}, b_{3}, \ldots, b_{23}\right\}$ is a $(23, b)-$ span.
The line $b_{24}=\{37,308,486,677,855,864,1042,1233$, 1411, 1589, 1780, 1958, 2136, 2327\}, this line can not intersect with any line of $K_{22}$, then
$K_{23}=K_{22} \cup b_{24}=\left\{b_{1}, b_{2}, b_{3}, \ldots, b_{24}\right\}$ is a $(24, b)-$ span.
The line $b_{25}=\{38,321,500,679,702,881,1060,1239$, 1431, 1610, 1789, 1968, 2147, 2339\}, this line can not intersect with any line of $K_{23}$, then
$K_{24}=K_{23} \cup b_{25}=\left\{b_{1}, b_{2}, b_{3}, \ldots, b_{25}\right\}$ is a $(25, b)-$ span.
The line $b_{26}=\{39,334,514,525,705,898,1078,1258$, $1438,1618,1798,1978,2171,2351\}$, this line can not intersect with any line of $\mathrm{K}_{24}$, then
$K_{25}=K_{24} \cup b_{26}=\left\{b_{1}, b_{2}, b_{3}, \ldots, b_{26}\right\} \quad$ is $\quad$ a $(26, b)-$ span.
The line $b_{27}=\{40,347,359,540,721,902,1083,1264$, $1445,1639,1820,2001,2182,2363\}$, this line can not intersect with any line of $K_{25}$, then
$K_{26}=K_{25} \cup b_{27}=\left\{b_{1}, b_{2}, b_{3}, \ldots, b_{27}\right\} \quad$ is $\quad$ a $(27, b)-$ span.
The line $b_{28}=\{41,185,380,575,770,965,1160,1355$, 1381, 1576, 1771, 1966, 2161, 2356\}, this line can not intersect with any line of $K_{26}$, then
$K_{27}=K_{26} \cup b_{28}=\left\{b_{1}, b_{2}, b_{3}, \ldots, b_{28}\right\} \quad$ is $\quad$ a $(28, b)-$ span.
The line $b_{29}=\{42,198,394,590,786,982,1178,1205$, 1401, 1597, 1793, 1989, 2185, 2368\}, this line can not intersect with any line of $K_{27}$, then
$K_{28}=K_{27} \cup b_{29}=\left\{b_{1}, b_{2}, b_{3}, \ldots, b_{29}\right\} \quad$ is $\quad$ a $(29, b)-$ span.
The line $b_{30}=\{43,211,408,605,802,999,1196,1211$, $1408,1605,1802,1999,2196,2224\}$, this line can not intersect with any line of $K_{28}$, then
$K_{29}=K_{28} \cup b_{30}=\left\{b_{1}, b_{2}, b_{3}, \ldots, b_{30}\right\} \quad$ is a $(30, b)-$ span.
The line $b_{31}=\{44,224,422,620,818,1003,1032,1230$, $1428,1626,1811,2009,2207,2236\}$, this line can not intersect with any line of $K_{29}$, then
$K_{30}=K_{29} \cup b_{31}=\left\{b_{1}, b_{2}, \ldots, b_{31}\right\}$ is a $(31, b)$ - span.
The line $b_{32}=\{45,237,436,635,821,1020,1050,1249$, 1435, 1634, 1833, 2019, 2049, 2248\}, this line can not intersect with any line of $K_{30}$, then
$K_{31}=K_{30} \cup b_{32}=\left\{b_{1}, b_{2}, \ldots, b_{32}\right\}$ is a $(32, b)$ - span.
The line $b_{33}=\{46,250,450,650,837,868,1055,1255$, $1455,1642,1842,2042,2060,2260\}$, this line can not intersect with any line of $K_{31}$, then
$K_{32}=K_{31} \cup b_{33}=\left\{b_{1}, b_{2}, \ldots, b_{33}\right\}$ is a $(33, b)$ - span.
The line $b_{34}=\{47,263,464,652,853,885,1073,1274$, 1462, 1663, 1851, 1883, 2071, 2272\}, this line can not intersect with any line of $K_{32}$, then
$K_{33}=K_{32} \cup b_{34}=\left\{b_{1}, b_{2}, \ldots, b_{34}\right\}$ is a $(34, b)$ - span.
The line $b_{35}=\{48,276,478,667,700,889,1091,1280$, $1482,1671,1873,1893,2082,2284\}$, this line can not intersect with any line of $K_{33}$, then
$K_{34}=K_{33} \cup b_{35}=\left\{b_{1}, b_{2}, \ldots, b_{35}\right\}$ is a $(35, b)$ - span.
The line $b_{36}=\{49,289,492,682,716,906,1096,1299$, $1489,1679,1713,1903,2106,2296\}$, this line can not intersect with any line of $K_{34}$, then
$K_{35}=K_{34} \cup b_{36}=\left\{b_{1}, b_{2}, \ldots, b_{36}\right\}$ is a $(36, b)$ - span.

The line $b_{37}=\{50,302,506,528,719,923,1114,1305$, 1509, 1700, 1722, 1913, 2117, 2308\}, this line can not intersect with any line of $K_{35}$, then
$K_{36}=K_{35} \cup b_{37}=\left\{b_{1}, b_{2}, \ldots, b_{37}\right\}$ is a $(37, b)$ - span.
The line $b_{38}=\{51,315,520,543,735,927,1132,1324$, $1516,1539,1731,1936,2128,2320\}$, this line can not intersect with any line of $\mathrm{K}_{36}$, then
$K_{37}=K_{36} \cup b_{38}=\left\{b_{1}, b_{2}, \ldots, b_{38}\right\}$ is a $(38, b)-$ span. The line $b_{39}=\{52,328,365,558,751,944,1137,1330$, $1523,1560,1753,1946,2139,2332\}$, this line can not intersect with any line of $K_{37}$, then
$K_{38}=K_{37} \cup b_{39}=\left\{b_{1}, b_{2}, \ldots, b_{39}\right\}$ is a $(39, b)$ - span.
The line $b_{40}=\{53,341,366,573,767,961,1155,1349$, $1374,1568,1762,1956,2150,2344\}$, this line can not intersect with any line of $K_{38}$, then
$K_{39}=K_{38} \cup b_{40}=\left\{b_{1}, b_{2}, \ldots, b_{40}\right\}$ is a $(40, b)$ - span.
The line $b_{41}=\{54,192,400,608,816,1024,1063,1271$, $1479,1687,1726,1934,2142,2350\}$, this line can not intersect with any line of $K_{39}$, then
$K_{40}=K_{39} \cup b_{41}=\left\{b_{1}, b_{2}, \ldots, b_{41}\right\}$ is a $(41, b)$ - span. The line $b_{42}=\{55,205,414,623,832,872,1068,1277$, $1486,1695,1735,1944,2153,2362\}$, this line can not intersect with any line of $K_{40}$, then
$K_{41}=K_{40} \cup b_{42}=\left\{b_{1}, b_{2}, \ldots, b_{42}\right\}$ is a $(42, b)-$ span. The line $b_{43}=\{56,218,428,638,835,876,1086,1296$, $1506,1547,1744,1954,2164,2374\}$, this line can not intersect with any line of $K_{41}$, then
$K_{42}=K_{41} \cup b_{43}=\left\{b_{1}, b_{2}, \ldots, b_{43}\right\}$ is a $(43, b)$ - span.
The line $b_{44}=\{57,231,442,640,851,893,1104,1302$, 1513, 1555, 1766, 1977, 2175, 2217\}, this line can not intersect with any line of $\mathrm{K}_{42}$, then
$K_{43}=K_{42} \cup b_{44}=\left\{b_{1}, b_{2}, \ldots, b_{44}\right\}$ is a $(44, b)-$ span.
The line $b_{45}=\{58,244,456,655,698,910,1109,1321$, 1533, 1563, 1775, 1987, 2186, 2229\}, this line can not intersect with any line of $K_{43}$, then
$K_{44}=K_{43} \cup b_{45}=\left\{b_{1}, b_{2}, \ldots, b_{45}\right\}$ is a $(45, b)$ - span. The line $b_{46}=\{59,257,457,670,714,914,1127,1340$, 1371, 1584, 1784, 1997, 2210, 2241\}, this line can not intersect with any line of $K_{44}$, then
$K_{45}=K_{44} \cup b_{46}=\left\{b_{1}, b_{2}, \ldots, b_{46}\right\}$ is a $(46, b)$ - span.
The line $b_{47}=\{60,270,471,685,717,931,1145,1346$, 1391, 1592, 1806, 2007, 2052, 2253\}, this line can not intersect with any line of $K_{45}$, then
$K_{46}=K_{45} \cup b_{47}=\left\{b_{1}, b_{2}, \ldots, b_{47}\right\}$ is a $(47, b)-$ span.
The line $b_{48}=\{61,283,485,531,733,948,1150,1365$, 1398, 1613, 1815, 2017, 2063, 2265\}, this line can not intersect with any line of $K_{46}$, then
$K_{47}=K_{46} \cup b_{48}=\left\{b_{1}, b_{2}, \ldots, b_{48}\right\}$ is a $(48, b)-$ span.

The line $b_{49}=\{62,296,499,546,749,952,1168,1202$, 1418, 1621, 1824, 2040, 2074, 2277\}, this line can not intersect with any line of $K_{47}$, then
$K_{48}=K_{47} \cup b_{49}=\left\{b_{1}, b_{2}, \ldots, b_{49}\right\}$ is a $(49, b)$ - span.
The line $b_{50}=\{63,309,513,548,765,969,1173,1221$, $1425,1629,1846,1881,2085,2302\}$, this line can not intersect with any line of $\mathrm{K}_{48}$, then
$K_{49}=K_{48} \cup b_{50}=\left\{b_{1}, b_{2}, \ldots, b_{50}\right\}$ is a $(50, b)-$ span. The line $b_{51}=\{64,322,358,563,781,986,1191,1227$, 1432, 1650, 1855, 1891, 2096, 2314\}, this line can not intersect with any line of $K_{49}$, then
$K_{50}=K_{49} \cup b_{51}=\left\{b_{1}, b_{2}, \ldots, b_{51}\right\}$ is a $(51, b)$ - span.
The line $b_{52}=\{65,335,372,578,784,990,1040,1246$, $1452,1658,1864,1901,2120,2326\}$, this line can not intersect with any line of $K_{50}$, then
$K_{51}=K_{50} \cup b_{52}=\left\{b_{1}, b_{2}, \ldots, b_{52}\right\}$ is a $(52, b)$ - span.
The line $b_{53}=\{66,348,386,593,800,1007,1045,1252$, 1459, 1666, 1717, 1924, 2131, 2338\}, this line can not intersect with any line of $K_{51}$, then
$K_{52}=K_{51} \cup b_{53}=\left\{b_{1}, b_{2}, \ldots, b_{53}\right\}$ is a $(53, b)$ - span.
The line $b_{54}=\{67,186,407,628,849,901,1122,1343$, $1395,1616,1837,1889,2110,2331\}$, this line can not intersect with any line of $K_{52}$, then
$K_{53}=K_{52} \cup b_{54}=\left\{b_{1}, b_{2}, \ldots, b_{54}\right\}$ is a $(54, b)$ - span.
The line $b_{55}=\{68,199,421,643,696,918,1140,1362$, $1415,1637,1859,1912,2121,2343\}$, this line can not intersect with any line of $K_{53}$, then
$K_{54}=K_{53} \cup b_{55}=\left\{b_{1}, b_{2}, \ldots, b_{55}\right\}$ is a $(55, b)$ - span.
The line $b_{56}=\{69,212,435,658,712,935,1158,1199$, $1422,1645,1868,1922,2145,2355\}$, this line can not intersect with any line of $K_{54}$, then
$K_{55}=K_{54} \cup b_{56}=\left\{b_{1}, b_{2}, \ldots, b_{56}\right\}$ is a $(56, b)$ - span.
The line $b_{57}=\{70,225,449,673,728,939,1163,1218$, $1442,1653,1708,1932,2156,2380\}$, this line can not intersect with any line of $K_{55}$, then
$K_{56}=K_{55} \cup b_{57}=\left\{b_{1}, b_{2}, \ldots, b_{57}\right\}$ is a $(57, b)$ - span.
The line $b_{58}=\{71,238,463,688,731,956,1181,1224$, $1449,1674,1730,1942,2167,2223\}$, this line can not intersect with any line of $K_{56}$, then
$K_{57}=K_{56} \cup b_{58}=\left\{b_{1}, b_{2}, \ldots, b_{58}\right\}$ is a $(58, b)$ - span.
The line $b_{59}=\{72,251,477,534,747,973,1186,1243$, $1469,1682,1739,1952,2178,2235\}$, this line can not intersect with any line of $K_{57}$, then
$K_{58}=K_{57} \cup b_{59}=\left\{b_{1}, b_{2}, \ldots, b_{59}\right\}$ is a $(59, b)$ - span.
The line $b_{60}=\{73,264,491,536,763,977,1035,1262$, 1476, 1703, 1748, 1975, 2189, 2247\}, this line can not intersect with any line of $K_{58}$, then
$K_{59}=K_{58} \cup b_{60}=\left\{b_{1}, b_{2}, \ldots, b_{60}\right\}$ is a $(60, b)$ - span.

The line $b_{61}=\{74,277,505,551,779,994,1053,1268$, 1496, 1542, 1757, 1985, 2200, 2259\}, this line can not intersect with any line of $K_{59}$, then
$K_{60}=K_{59} \cup b_{61}=\left\{b_{1}, b_{2}, \ldots, b_{61}\right\}$ is a $(61, b)$ - span.
The line $b_{62}=\{75,290,519,566,782,1011,1058,1287$, 1503, 1550, 1779, 1995, 2055, 2271\}, this line can not intersect with any line of $\mathrm{K}_{60}$, then
$K_{61}=K_{60} \cup b_{62}=\left\{b_{1}, b_{2}, \ldots, b_{62}\right\}$ is a $(62, b)$ - span. The line $b_{63}=\{76,303,364,581,798,1028,1076,1293$, $1510,1571,1788,2005,2066,2283\}$, this line can not intersect with any line of $K_{61}$, then
$K_{62}=K_{61} \cup b_{63}=\left\{b_{1}, b_{2}, \ldots, b_{63}\right\}$ is a $(63, b)$ - span.
The line $b_{64}=\{77,316,378,596,814,863,1081,1312$, 1530, 1579, 1797, 2028, 2077, 2295\}, this line can not intersect with any line of $K_{62}$, then
$K_{63}=K_{62} \cup b_{64}=\left\{b_{1}, b_{2}, \ldots, b_{64}\right\}$ is a $(64, b)$ - span.
The line $b_{65}=\{78,329,379,611,830,880,1099,1318$, 1368, 1600, 1819, 2038, 2088, 2307\}, this line can not intersect with any line of $K_{63}$, then
$K_{64}=K_{63} \cup b_{65}=\left\{b_{1}, b_{2}, \ldots, b_{65}\right\}$ is a $(65, b)$ - span.
The line $b_{66}=\{79,342,393,613,846,897,1117,1337$, $1388,1608,1828,1879,2099,2319\}$, this line can not intersect with any line of $K_{64}$, then
$K_{65}=K_{64} \cup b_{66}=\left\{b_{1}, b_{2}, \ldots, b_{66}\right\}$ is a $(66, b)$ - span. The line $b_{67}=\{80,193,427,661,726,960,1194,1259$, $1493,1558,1792,2026,2091,2325\}$, this line can not intersect with any line of $K_{65}$, then
$K_{66}=K_{65} \cup b_{67}=\left\{b_{1}, b_{2}, \ldots, b_{67}\right\}$ is a $(67, b)$ - span.
The line $b_{68}=\{81,206,441,676,742,964,1030,1265$, $1500,1566,1801,2036,2102,2337\}$, this line can not intersect with any line of $K_{66}$, then
$K_{67}=K_{66} \cup b_{68}=\left\{b_{1}, b_{2}, \ldots, b_{68}\right\}$ is a $(68, b)$ - span.
The line $b_{69}=\{82,219,455,678,745,981,1048,1284$, 1520, 1587, 1810, 1877, 2113, 2349\}, this line can not intersect with any line of $K_{67}$, then
$K_{68}=K_{67} \cup b_{69}=\left\{b_{1}, b_{2}, \ldots, b_{69}\right\}$ is a $(69, b)$ - span.
The line $b_{70}=\{83,232,469,524,761,998,1066,1290$, 1527, 1595, 1832, 1887, 2124, 2361\}, this line can not intersect with any line of $K_{68}$, then
$K_{69}=K_{68} \cup b_{70}=\left\{b_{1}, b_{2}, \ldots, b_{70}\right\}$ is a $(70, b)$ - span. The line $b_{71}=\{84,245,470,539,777,1015,1071,1309$, $1378,1603,1841,1910,2135,2373\}$, this line can not intersect with any line of $K_{69}$, then
$K_{70}=K_{69} \cup b_{71}=\left\{b_{1}, b_{2}, \ldots, b_{71}\right\}$ is a $(71, b)$ - span.
The line $b_{72}=\{85,258,484,554,793,1019,1089,1315$, $1385,1624,1850,1920,2159,2216\}$, this line can not intersect with any line of $K_{70}$, then
$K_{71}=K_{70} \cup b_{72}=\left\{b_{1}, b_{2}, \ldots, b_{72}\right\}$ is a $(72, b)$ - span.

The line $b_{73}=\{86,271,498,569,796,867,1094,1334$, $1405,1632,1872,1930,2170,2228\}$, this line can not intersect with any line of $K_{71}$, then
$K_{72}=K_{71} \cup b_{73}=\left\{b_{1}, b_{2}, \ldots, b_{73}\right\}$ is a $(73, b)$ - span.
The line $b_{74}=\{87,284,512,584,812,884,1112,1353$, 1412, 1640, 1712, 1940, 2181, 2240\}, this line can not intersect with any line of $K_{72}$, then
$K_{73}=K_{72} \cup b_{74}=\left\{b_{1}, b_{2}, \ldots, b_{74}\right\}$ is a $(74, b)$ - span.
The line $b_{75}=\{88,297,357,599,828,888,1130,1359$, $1419,1661,1721,1963,2192,2252\}$, this line can not intersect with any line of $K_{73}$, then
$K_{74}=K_{73} \cup b_{75}=\left\{b_{1}, b_{2}, \ldots, b_{75}\right\}$ is a $(75, b)$ - span.
The line $b_{76}=\{89,310,371,601,844,905,1135,1209$, $1439,1669,1743,1973,2203,2264\}$, this line can not intersect with any line of $K_{74}$, then
$K_{75}=K_{74} \cup b_{76}=\left\{b_{1}, b_{2}, \ldots, b_{76}\right\}$ is a $(76, b)$ - span.
The line $b_{77}=\{90,323,385,616,847,922,1153,1215$, $1446,1690,1752,1983,2045,2289\}$, this line can not intersect with any line of $K_{75}$, then
$K_{76}=K_{75} \cup b_{77}=\left\{b_{1}, b_{2}, \ldots, b_{77}\right\}$ is a $(77, b)$ - span.
The line $b_{78}=\{91,336,399,631,694,926,1171,1234$, 1466, 1698, 1761, 1993, 2056, 2301\}, this line can not intersect with any line of $K_{76}$, then
$K_{77}=K_{76} \cup b_{78}=\left\{b_{1}, b_{2}, \ldots, b_{78}\right\}$ is a $(78, b)$ - span. The line $b_{79}=\{92,349,413,646,710,943,1176,1240$, 1473, 1537, 1770, 2016, 2080, 2313\}, this line can not intersect with any line of $K_{77}$, then
$K_{78}=K_{77} \cup b_{79}=\left\{b_{1}, b_{2}, \ldots, b_{79}\right\}$ is a $(79, b)$ - span.
The line $b_{80}=\{93,187,434,681,759,1006,1084,1331$, 1409, 1656, 1734, 1981, 2059, 2306\}, this line can not intersect with any line of $K_{78}$, then
$K_{79}=K_{78} \cup b_{80}=\left\{b_{1}, b_{2}, \ldots, b_{80}\right\}$ is a $(80, b)$ - span.
The line $b_{81}=\{94,200,448,527,775,1023,1102,1350$, 1429, 1677, 1756, 1991, 2070, 2318\}, this line can not intersect with any line of $K_{79}$, then
$K_{80}=K_{79} \cup b_{81}=\left\{b_{1}, b_{2}, \ldots, b_{81}\right\}$ is a $(81, b)$ - span.
The line $b_{82}=\{95,213,462,542,791,871,1107,1356$, 1436, 1685, 1765, 2014, 2094, 2330\}, this line can not intersect with any line of $K_{80}$, then
$K_{81}=K_{80} \cup b_{82}=\left\{b_{1}, b_{2}, \ldots, b_{82}\right\}$ is a $(82, b)$ - span.
The line $b_{83}=\{96,226,476,557,807,875,1125,1206$, $1456,1693,1774,2024,2105,2342\}$, this line can not intersect with any line of $K_{81}$, then
$K_{82}=K_{81} \cup b_{83}=\left\{b_{1}, b_{2}, \ldots, b_{83}\right\}$ is a $(83, b)$ - span.
The line $b_{84}=\{97,239,490,572,810,892,1143,1212$, $1463,1545,1783,2034,2116,2367\}$, this line can not intersect with any line of $K_{82}$, then
$K_{83}=K_{82} \cup b_{84}=\left\{b_{1}, b_{2}, \ldots, b_{84}\right\}$ is a $(84, b)$ - span.

The line $b_{85}=\{98,252,504,574,826,909,1148,1231$, 1483, 1553, 1805, 1875, 2127, 2379\}, this line can not intersect with any line of $K_{83}$, then
$K_{84}=K_{83} \cup b_{85}=\left\{b_{1}, b_{2}, \ldots, b_{85}\right\}$ is a $(85, b)$ - span.
The line $b_{86}=\{99,265,518,589,842,913,1166,1237$, $1490,1574,1814,1898,2138,2222\}$, this line can not intersect with any line of $\mathrm{K}_{84}$, then
$K_{85}=K_{84} \cup b_{86}=\left\{b_{1}, b_{2}, \ldots, b_{86}\right\}$ is a $(86, b)-$ span. The line $b_{87}=\{100,278,363,604,858,930,1184,1256$, 1497, 1582, 1823, 1908, 2149, 2234\}, this line can not intersect with any line of $K_{85}$, then
$K_{86}=K_{85} \cup b_{87}=\left\{b_{1}, b_{2}, \ldots, b_{87}\right\}$ is a $(87, b)$ - span.
The line $b_{88}=\{101,291,377,619,692,947,1189,1275$, 1517, 1590, 1845, 1918, 2160, 2246\}, this line can not intersect with any line of $K_{86}$, then
$K_{87}=K_{86} \cup b_{88}=\left\{b_{1}, b_{2}, \ldots, b_{88}\right\}$ is a $(88, b)$ - span.
The line $b_{89}=\{102,304,391,634,708,951,1038,1281$, $1524,1611,1854,1928,2184,2258\}$, this line can not intersect with any line of $K_{87}$, then
$K_{88}=K_{87} \cup b_{89}=\left\{b_{1}, b_{2}, \ldots, b_{89}\right\}$ is a $(89, b)$ - span.
The line $b_{90}=\{103,317,392,649,724,968,1043,1300$, $1375,1619,1863,1951,2195,2270\}$, this line can not intersect with any line of $K_{88}$, then
$K_{89}=K_{88} \cup b_{90}=\left\{b_{1}, b_{2}, \ldots, b_{90}\right\}$ is a $(90, b)$ - span. The line $b_{91}=\{104,330,406,664,740,985,1061,1306$, 1382, 1627, 1716, 1961, 2206, 2282\}, this line can not intersect with any line of $K_{89}$, then
$K_{90}=K_{89} \cup b_{91}=\left\{b_{1}, b_{2}, \ldots, b_{91}\right\}$ is a $(91, b)$ - span.
The line $f_{92}=\{105,343,420,666,743,1002,1079,1325$, $1402,1648,1725,1971,2048,2294\}$, this line can not intersect with any line of $K_{90}$, then
$K_{91}=K_{90} \cup b_{92}=\left\{b_{1}, b_{2}, \ldots, b_{92}\right\}$ is a $(92, b)$ - span.
The line $b_{93}=\{106,194,454,545,805,896,1156,1247$, 1507, 1598, 1858, 1949, 2209, 2300\}, this line can not intersect with any line of $K_{91}$, then
$K_{92}=K_{91} \cup b_{93}=\left\{b_{1}, b_{2}, \ldots, b_{93}\right\}$ is a $(93, b)$ - span.
The line $b_{94}=\{107,207,468,560,808,900,1161,1253$, 1514, 1606, 1867, 1959, 2051, 2312\}, this line can not intersect with any line of $K_{92}$, then
$K_{93}=K_{92} \cup b_{94}=\left\{b_{1}, b_{2}, \ldots, b_{94}\right\}$ is a $(94, b)$ - span.
The line $b_{95}=\{108,220,482,562,824,917,1179,1272$, 1534, 1614, 1707, 1969, 2062, 2324\}, this line can not intersect with any line of $K_{93}$, then
$K_{94}=K_{93} \cup b_{95}=\left\{b_{1}, b_{2}, \ldots, b_{95}\right\}$ is a $(95, b)$ - span.
The line $b_{96}=\{109,233,483,577,840,934,1197,1278$, 1372, 1635, 1729, 1979, 2073, 2336\}, this line can not intersect with any line of $K_{94}$, then
$K_{95}=K_{94} \cup b_{96}=\left\{b_{1}, b_{2}, \ldots, b_{96}\right\}$ is a $(96, b)-$ span.

The line $b_{97}=\{110,246,497,592,856,938,1033,1297$, 1392, 1643, 1738, 2002, 2084, 2348\}, this line can not intersect with any line of $K_{95}$, then
$K_{96}=K_{95} \cup b_{97}=\left\{b_{1}, b_{2}, \ldots, b_{97}\right\}$ is a $(97, b)-$ span.
The line $b_{98}=\{111,259,511,607,703,955,1051,1303$, 1399, 1664, 1747, 2012, 2095, 2360\}, this line can not intersect with any line of $K_{96}$, then
$K_{97}=K_{96} \cup b_{98}=\left\{b_{1}, b_{2}, \ldots, b_{98}\right\}$ is a $(98, b)-$ span.
The line $b_{99}=\{112,272,356,622,706,972,1056,1322$, $1406,1672,1769,2022,2119,2372\}$, this line can not intersect with any line of $K_{97}$, then
$K_{98}=K_{97} \cup b_{99}=\left\{b_{1}, b_{2}, \ldots, b_{99}\right\}$ is a $(99, b)$ - span.
The line $b_{100}=\{113,285,370,637,722,989,1074,1328$, $1426,1680,1778,2032,2130,2215\}$, this line can not intersect with any line of $K_{98}$, then
$K_{99}=K_{98} \cup b_{100}=\left\{b_{1}, b_{2}, \ldots, b_{100}\right\}$ is a $(100, b)-$ span. The line $b_{101}=\{114,298,384,639,738,993,1092,1347$, 1433, 1701, 1787, 1886, 2141, 2227\}, this line can not intersect with any line of $K_{99}$, then
$K_{100}=K_{99} \cup b_{101}=\left\{b_{1}, b_{2}, \ldots, b_{101}\right\}$ is a $(101, b)$ - span. The line $b_{102}=\{115,311,398,654,754,1010,1097,1366$, 1453, 1540, 1796, 1896, 2152, 2239\}, this line can not intersect with any line of $K_{100}$, then $K_{101}=K_{100} \cup b_{102}=$ $\left\{b_{1}, b_{2}, \ldots, b_{102}\right\}$ is a $(102, b)$ - span.
The line $b_{103}=\{116,324,412,669,757,1027,1115,1203$, $1460,1561,1818,1906,2163,2251\}$, this line can not intersect with any line of $K_{101}$, then $K_{102}=K_{101} \cup b_{103}=$ $\left\{b_{1}, b_{2}, \ldots, b_{103}\right\}$ is a $(103, b)-$ span.
The line $b_{104}=\{117,337,426,684,773,862,1120,1222$, 1480, 1569, 1827, 1916, 2174, 2276\}, this line can not intersect with any line of $K_{102}$, then $K_{103}=K_{102} \cup b_{104}=$ $\left\{b_{1}, b_{2}, \ldots, b_{104}\right\}$ is a $(104, b)$ - span.
The line $b_{105}=\{118,350,440,530,789,879,1138,1228$, 1487, 1577, 1836, 1926, 2198, 2288\}, this line can not intersect with any line of $K_{103}$, then $K_{104}=K_{103} \cup b_{105}=$ $\left\{b_{1}, b_{2}, \ldots, b_{105}\right\}$ is a $(105, b)$ - span.
The line $b_{106}=\{119,188,461,565,838,942,1046,1319$, 1423, 1696, 1800, 1904, 2177, 2281\}, this line can not intersect with any line of $K_{104}$, then $K_{105}=K_{104} \cup b_{106}=$ $\left\{b_{1}, b_{2}, \ldots, b_{106}\right\}$ is a $(106, b)$ - span.
The line $b_{107}=\{120,201,475,580,854,959,1064,1338$, 1443, 1548, 1809, 1914, 2188, 2293\}, this line can not intersect with any line of $K_{105}$, then $K_{106}=K_{105} \cup b_{107}=$ $\left\{b_{1}, b_{2}, \ldots, b_{107}\right\}$ is a $(107, b)$ - span.
The line $b_{108}=\{121,214,489,595,701,976,1069,1344$, 1450, 1556, 1831, 1937, 2199, 2305\}, this line can not intersect with any line of $K_{106}$, then $K_{107}=K_{106} \cup b_{108}=$ $\left\{b_{1}, b_{2}, \ldots, b_{108}\right\}$ is a $(108, b)$ - span.

The line $b_{109}=\{122,227,503,610,704,980,1087,1363$, 1470, 1564, 1840, 1947, 2054, 2317\}, this line can not intersect with any line of $K_{107}$, then $K_{108}=K_{107} \cup b_{109}=$ $\left\{b_{1}, b_{2}, \ldots, b_{109}\right\}$ is a $(109, b)$ - span.
The line $b_{110}=\{123,240,517,625,720,997,1105,1200$, 1477, 1585, 1849, 1957, 2065, 2329\}, this line can not intersect with any line of $K_{108}$, then $K_{109}=K_{108} \cup b_{110}=$ $\left\{b_{1}, b_{2}, \ldots, b_{110}\right\}$ is a $(110, b)$ - span.
The line $b_{111}=\{124,253,362,627,736,1014,1110,1219$, 1484, 1593, 1871, 1967, 2076, 2354\}, this line can not intersect with any line of $K_{109}$, then $K_{110}=K_{109} \cup b_{111}=$ $\left\{b_{1}, b_{2}, \ldots, b_{111}\right\}$ is a $(111, b)-$ span.
The line $b_{112}=\{125,266,376,642,752,1018,1128,1225$, 1504, 1601, 1711, 1990, 2087, 2366\}, this line can not intersect with any line of $K_{110}$, then $K_{111}=K_{110} \cup b_{112}=$ $\left\{b_{1}, b_{2}, \ldots, b_{112}\right\}$ is a $(112, b)$ - span.
The line $b_{113}=\{126,279,390,657,768,866,1133,1244$, $1511,1622,1720,2000,2098,2378\}$, this line can not intersect with any line of $K_{111}$, then $K_{112}=K_{111} \cup b_{113}=$ $\left\{b_{1}, b_{2}, \ldots, b_{113}\right\}$ is a $(113, b)$ - span.
The line $b_{114}=\{127,292,404,672,771,883,1151,1250$, 1531, 1630, 1742, 2010, 2109, 2221\}, this line can not intersect with any line of $K_{112}$, then $K_{113}=K_{112} \cup b_{114}=$ $\left\{b_{1}, b_{2}, \ldots, b_{114}\right\}$ is a $(114, b)$ - span.
The line $b_{115}=\{128,305,405,687,787,887,1169,1269$, $1369,1651,1751,2020,2133,2233\}$, this line can not intersect with any line of $K_{113}$, then $K_{114}=K_{113} \cup b_{115}=$ $\left\{b_{1}, b_{2}, \ldots, b_{115}\right\}$ is a $(115, b)$ - span.
The line $b_{116}=\{129,318,419,533,803,904,1174,1288$, 1389, 1659, 1760, 2030, 2144, 2245\}, this line can not intersect with any line of $K_{114}$, then $K_{115}=K_{114} \cup b_{116}=$ $\left\{b_{1}, b_{2}, \ldots, b_{116}\right\}$ is a $(116, b)$ - span.
The line $b_{117}=\{130,331,433,535,819,921,1192,1294$, 1396, 1667, 1782, 1884, 2155, 2257\}, this line can not intersect with any line of $K_{115}$, then $K_{116}=K_{115} \cup b_{117}=$ $\left\{b_{1}, b_{2}, \ldots, b_{117}\right\}$ is a $(117, b)$ - span.
The line $b_{118}=\{131,344,447,550,822,925,1041,1313$, 1416, 1688, 1791, 1894, 2166, 2269\}, this line can not intersect with any line of $K_{116}$, then $K_{117}=K_{116} \cup b_{118}=$ $\left\{b_{1}, b_{2}, \ldots, b_{118}\right\}$ is a $(118, b)$ - span.
The line $b_{119}=\{132,195,481,598,715,1001,1118,1235$, 1521, 1638, 1755, 2041, 2158, 2275\}, this line can not intersect with any line of $K_{117}$, then $K_{118}=K_{117} \cup b_{119}=$ $\left\{b_{1}, b_{2}, \ldots, b_{119}\right\}$ is a $(119, b)$ - span.
The line $b_{120}=\{133,208,495,600,718,1005,1123,1241$, 1528, 1646, 1764, 1882, 2169, 2287\}, this line can not intersect with any line of $K_{118}$, then $K_{119}=K_{118} \cup b_{120}=$ $\left\{b_{1}, b_{2}, \ldots, b_{120}\right\}$ is a $(120, b)-$ span.

The line $b_{121}=\{134,221,496,615,734,1022,1141,1260$, $1379,1654,1773,1892,2180,2299$, this line can not intersect with any line of $K_{119}$, then $K_{120}=K_{119} \cup b_{121}=$ $\left\{b_{1}, b_{2}, \ldots, b_{121}\right\}$ is a $(121, b)$ - span.
The line $b_{122}=\{135,234,510,630,750,870,1146,1266$, $1386,1675,1795,1902,2191,2311\}$, this line can not intersect with any line of $K_{120}$, then $K_{121}=K_{120} \cup b_{122}=$ $\left\{b_{1}, b_{2}, \ldots, b_{122}\right\}$ is a $(122, b)$ - span.
The line $b_{123}=\{136,247,355,645,766,874,1164,1285$, 1393, 1683, 1804, 1925, 2202, 2323\}, this line can not intersect with any line of $\mathrm{K}_{121}$, then $\mathrm{K}_{122}=\mathrm{K}_{121} \cup b_{123}=$ $\left\{b_{1}, b_{2}, \ldots, b_{123}\right\}$ is a $(123, b)$ - span.
The line $b_{124}=\{137,260,369,660,769,891,1182,1291$, 1413, 1704, 1813, 1935, 2044, 2335\}, this line can not intersect with any line of $K_{122}$, then $K_{123}=K_{122} \cup b_{124}=$ $\left\{b_{1}, b_{2}, \ldots, b_{124}\right\}$ is a $(124, b)$ - span.
The line $b_{125}=\{138,273,383,675,785,908,1187,1310$, $1420,1543,1822,1945,2068,2347\}$, this line can not intersect with any line of $K_{123}$, then $K_{124}=K_{123} \cup b_{125}=$ $\left\{b_{1}, b_{2}, \ldots, b_{125}\right\}$ is a $(125, b)$ - span.
The line $b_{126}=\{139,286,397,690,801,912,1036,1316$, 1440, 1551, 1844, 1955, 2079, 2359\}, this line can not intersect with any line of $\mathrm{K}_{124}$, then $\mathrm{K}_{125}=\mathrm{K}_{124} \cup b_{126}=$ $\left\{b_{1}, b_{2}, \ldots, b_{126}\right\}$ is a $(126, b)$ - span.
The line $b_{127}=\{140,299,411,523,817,929,1054,1335$, 1447, 1572, 1853, 1965, 2090, 2371\}, this line can not intersect with any line of $K_{125}$, then $K_{126}=K_{125} \cup b_{127}=$ $\left\{b_{1}, b_{2}, \ldots, b_{127}\right\}$ is a $(127, b)$ - span.
The line $b_{128}=\{141,312,425,538,833,946,1059,1341$, 1467, 1580, 1862, 1988, 2101, 2214\}, this line can not intersect with any line of $K_{126}$, then $K_{127}=K_{126} \cup b_{128}=$ $\left\{b_{1}, b_{2}, \ldots, b_{128}\right\}$ is a $(128, b)$ - span.
The line $b_{129}=\{142,325,439,553,836,963,1077,1360$, $1474,1588,1715,1998,2112,2226\}$, this line can not intersect with any line of $\mathrm{K}_{127}$, then $\mathrm{K}_{128}=\mathrm{K}_{127} \cup b_{129}=$ $\left\{b_{1}, b_{2}, \ldots, b_{129}\right\}$ is a $(129, b)$ - span.
The line $b_{130}=\{143,338,453,568,852,967,1082,1210$, $1494,1609,1724,2008,2123,2238\}$, this line can not intersect with any line of $K_{128}$, then $K_{129}=K_{128} \cup b_{130}=$ $\left\{b_{1}, b_{2}, \ldots, b_{130}\right\}$ is a $(130, b)$ - span.
The line $b_{131}=\{144,351,467,583,699,984,1100,1216$, $1501,1617,1733,2018,2134,2263\}$, this line can not intersect with any line of $K_{129}$, then $K_{130}=K_{129} \cup b_{131}=$ $\left\{b_{1}, b_{2}, \ldots, b_{131}\right\}$ is a $(131, b)$ - span.
The line $b_{132}=\{145,189,488,618,748,878,1177,1307$, 1437, 1567, 1866, 1996, 2126, 2256\}, this line can not intersect with any line of $K_{130}$, then $K_{131}=K_{130} \cup b_{132}=$ $\left\{b_{1}, b_{2}, \ldots, b_{132}\right\}$ is a $(132, b)$ - span.

The line $b_{133}=\{146,202,502,633,764,895,1195,1326$, 1457, 1575, 1706, 2006, 2137, 2268\}, this line can not intersect with any line of $K_{131}$, then $K_{132}=K_{131} \cup b_{133}=$ $\left\{b_{1}, b_{2}, \ldots, b_{133}\right\}$ is a $(133, b)$ - span.
The line $b_{134}=\{147,215,516,648,780,899,1031,1332$, $1464,1596,1728,2029,2148,2280\}$, this line can not intersect with any line of $K_{132}$, then $K_{133}=K_{132} \cup b_{134}=$ $\left\{b_{1}, b_{2}, \ldots, b_{134}\right\}$ is a $(134, b)$ - span.
The line $b_{135}=\{148,228,361,663,783,916,1049,1351$, $1471,1604,1737,2039,2172,2292\}$, this line can not intersect with any line of $K_{133}$, then $K_{134}=K_{133} \cup b_{135}=$ $\left\{b_{1}, b_{2}, \ldots, b_{135}\right\}$ is a $(135, b)$ - span.
The line $b_{136}=\{149,241,375,665,799,933,1067,1357$, 1491, 1625, 1746, 1880, 2183, 2304\}, this line can not intersect with any line of $K_{134}$, then $K_{135}=K_{134} \cup b_{136}=$ $\left\{b_{1}, b_{2}, \ldots, b_{136}\right\}$ is a $(136, b)$ - span.
The line $b_{137}=\{150,254,389,680,815,950,1072,1207$, $1498,1633,1768,1890,2194,2316\}$, this line can not intersect with any line of $K_{135}$, then $K_{136}=K_{135} \cup b_{137}=$ $\left\{b_{1}, b_{2}, \ldots, b_{137}\right\}$ is a $(137, b)$ - span.
The line $b_{138}=\{151,267,403,526,831,954,1090,1213$, $1518,1641,1777,1900,2205,2341\}$, this line can not intersect with any line of $K_{136}$, then $K_{137}=K_{136} \cup b_{138}=$ $\left\{b_{1}, b_{2}, \ldots, b_{138}\right\}$ is a $(138, b)$ - span.
The line $b_{139}=\{152,280,417,541,834,971,1095,1232$, 1525, 1662, 1786, 1923, 2047, 2353\}, this line can not intersect with any line of $K_{137}$, then $\mathrm{K}_{138}=\mathrm{K}_{137} \cup b_{139}=$ $\left\{b_{1}, b_{2}, \ldots, b_{139}\right\}$ is a $(139, b)$ - span.
The line $b_{140}=\{153,293,418,556,850,988,1113,1238$, 1376, 1670, 1808, 1933, 2058, 2365\}, this line can not intersect with any line of $K_{138}$, then $K_{139}=K_{138} \cup b_{140}=$ $\left\{b_{1}, b_{2}, \ldots, b_{140}\right\}$ is a $(140, b)-$ span.
The line $b_{141}=\{154,306,432,571,697,992,1131,1257$, 1383, 1691, 1817, 1943, 2069, 2377\}, this line can not intersect with any line of $K_{139}$, then $K_{140}=K_{139} \cup b_{141}=$ $\left\{b_{1}, b_{2}, \ldots, b_{141}\right\}$ is a $(141, b)$ - span.
The line $b_{142}=\{155,319,446,586,713,1009,1136,1263$, 1403, 1699, 1826, 1953, 2093, 2220\}, this line can not intersect with any line of $K_{140}$, then $K_{141}=K_{140} \cup b_{142}=$ $\left\{b_{1}, b_{2}, \ldots, b_{142}\right\}$ is a $(142, b)$ - span.
The line $b_{143}=\{156,332,460,588,729,1026,1154,1282$, $1410,1538,1835,1976,2104,2232\}$, this line can not intersect with any line of $K_{141}$, then $K_{142}=K_{141} \cup b_{143}=$ $\left\{b_{1}, b_{2}, \ldots, b_{143}\right\}$ is a $(143, b)-$ span.
The line $b_{144}=\{157,345,474,603,732,861,1159,1301$, $1430,1559,1857,1986,2115,2244\}$, this line can not intersect with any line of $K_{142}$, then $K_{143}=K_{142} \cup b_{144}=$ $\left\{b_{1}, b_{2}, \ldots, b_{144}\right\}$ is a $(144, b)$ - span.

The line $b_{145}=\{158,196,508,651,794,937,1080,1223$, 1535, 1678, 1821, 1964, 2107, 2250\}, this line can not intersect with any line of $K_{143}$, then $K_{144}=K_{143} \cup b_{145}=$ $\left\{b_{1}, b_{2}, \ldots, b_{145}\right\}$ is a $(145, b)$ - span.
The line $b_{146}=\{159,209,509,653,797,941,1085,1229$, $1373,1686,1830,1974,2118,2262\}$, this line can not intersect with any line of $K_{144}$, then $K_{145}=K_{144} \cup b_{146}=$ $\left\{b_{1}, b_{2}, \ldots, b_{146}\right\}$ is a $(146, b)$ - span.
The line $b_{147}=\{160,222,354,668,813,958,1103,1248$, 1380, 1694, 1839, 1984, 2129, 2274\}, this line can not intersect with any line of $K_{145}$, then $K_{146}=K_{145} \cup b_{147}=$ $\left\{b_{1}, b_{2}, \ldots, b_{147}\right\}$ is a $(147, b)$ - span.
The line $b_{148}=\{161,235,368,683,829,975,1108,1254$, $1400,1546,1848,1994,2140,2286\}$, this line can not intersect with any line of $K_{146}$, then $K_{147}=K_{146} \cup b_{148}=$ $\left\{b_{1}, b_{2}, \ldots, b_{148}\right\}$ is a $(148, b)$ - span.
The line $b_{149}=\{162,248,382,529,845,979,1126,1273$, 1407, 1554, 1870, 2004, 2151, 2298\}, this line can not intersect with any line of $K_{147}$, then $K_{148}=K_{147} \cup b_{149}=$ $\left\{b_{1}, b_{2}, \ldots, b_{149}\right\}$ is a $(149, b)$ - span.
The line $b_{150}=\{163,261,396,544,848,996,1144,1279$, 1427, 1562, 1710, 2027, 2162, 2310\}, this line can not intersect with any line of $K_{148}$, then $K_{149}=K_{148} \cup b_{150}=$ $\left\{b_{1}, b_{2}, \ldots, b_{150}\right\}$ is a $(150, b)$ - span.
The line $b_{151}=\{164,274,410,559,695,1013,1149,1298$, 1434, 1583, 1719, 2037, 2173, 2322\}, this line can not intersect with any line of $K_{149}$, then $K_{150}=K_{149} \cup b_{151}=$ $\left\{b_{1}, b_{2}, \ldots, b_{151}\right\}$ is a $(151, b)$ - span.
The line $b_{152}=\{165,287,424,561,711,1017,1167,1304$, 1454, 1591, 1741, 1878, 2197, 2334\}, this line can not intersect with any line of $K_{150}$, then $K_{151}=K_{150} \cup b_{152}=$ $\left\{b_{1}, b_{2}, \ldots, b_{152}\right\}$ is a $(152, b)$ - span.
The line $b_{153}=\{166,300,438,576,727,865,1172,1323$, $1461,1612,1750,1888,2208,2346\}$, this line can not intersect with any line of $K_{151}$, then $K_{152}=K_{151} \cup b_{153}=$ $\left\{b_{1}, b_{2}, \ldots, b_{153}\right\}$ is a $(153, b)$ - span.
The line $b_{154}=\{167,313,452,591,730,882,1190,1329$, $1481,1620,1759,1911,2050,2358\}$, this line can not intersect with any line of $K_{152}$, then $K_{153}=K_{152} \cup b_{154}=$ $\left\{b_{1}, b_{2}, \ldots, b_{154}\right\}$ is a $(154, b)$ - span.
The line $b_{155}=\{168,326,466,606,746,886,1039,1348$, 1488, 1628, 1781, 1921, 2061, 2370\}, this line can not intersect with any line of $K_{153}$, then $K_{154}=K_{153} \cup b_{155}=$ $\left\{b_{1}, b_{2}, \ldots, b_{155}\right\}$ is a $(155, b)$ - span.
The line $b_{156}=\{169,339,480,621,762,903,1044,1354$, $1508,1649,1790,1931,2072,2213\}$, this line can not intersect with any line of $K_{154}$, then $K_{155}=K_{154} \cup b_{156}=$ $\left\{b_{1}, b_{2}, \ldots, b_{156}\right\}$ is a $(156, b)$ - span.

The line $b_{157}=\{170,352,494,636,778,920,1062,1204$, 1515, 1657, 1799, 1941, 2083, 2225\}, this line can not intersect with any line of $K_{155}$, then $K_{156}=K_{155} \cup b_{157}=$ $\left\{b_{1}, b_{2}, \ldots, b_{157}\right\}$ is a $(157, b)$ - span.
The line $b_{158}=\{171,190,515,671,827,983,1139,1295$, $1451,1607,1763,1919,2075,2231\}$, this line can not intersect with any line of $K_{156}$, then $K_{157}=K_{156} \cup b_{158}=$ $\left\{b_{1}, b_{2}, \ldots, b_{158}\right\}$ is a $(158, b)-$ span.
The line $b_{159}=\{172,203,360,686,843,1000,1157,1314$, $1458,1615,1772,1929,2086,2243\}$, this line can not intersect with any line of $K_{157}$, then $K_{158}=K_{157} \cup b_{159}=$ $\left\{b_{1}, b_{2}, \ldots, b_{159}\right\}$ is a $(159, b)$ - span.
The line $b_{160}=\{173,216,374,532,859,1004,1162,1320$, 1478, 1636, 1794, 1939, 2097, 2255\}, this line can not intersect with any line of $K_{158}$, then $K_{159}=K_{158} \cup b_{160}=$ $\left\{b_{1}, b_{2}, \ldots, b_{160}\right\}$ is a $(160, b)$ - span.
The line $b_{161}=\{174,229,388,547,693,1021,1180,1339$, $1485,1644,1803,1962,2108,2267\}$, this line can not intersect with any line of $K_{159}$, then $K_{160}=K_{159} \cup b_{161}=$ $\left\{b_{1}, b_{2}, \ldots, b_{161}\right\}$ is a $(161, b)$ - span.
The line $b_{162}=\{175,242,402,549,709,869,1185,1345$, $1505,1665,1812,1972,2132,2279\}$, this line can not intersect with any line of $K_{160}$, then $K_{161}=K_{160} \cup b_{162}=$ $\left\{b_{1}, b_{2}, \ldots, b_{162}\right\}$ is a $(162, b)$ - span.
The line $b_{163}=\{176,255,416,564,725,873,1034,1364$, 1512, 1673, 1834, 1982, 2143, 2291\}, this line can not intersect with any line of $K_{161}$, then $K_{162}=K_{161} \cup b_{163}=$ $\left\{b_{1}, b_{2}, \ldots, b_{163}\right\}$ is a $(163, b)-$ span.
The line $b_{164}=\{177,268,430,579,741,890,1052,1201$, 1532, 1681, 1843, 1992, 2154, 2303\}, this line can not intersect with any line of $K_{162}$, then $K_{163}=K_{162} \cup b_{164}=$ $\left\{b_{1}, b_{2}, \ldots, b_{164}\right\}$ is a $(164, b)-$ span.
The line $b_{165}=\{178,281,431,594,744,907,1057,1220$, $1370,1702,1852,2015,2165,2328\}$, this line can not intersect with any line of $K_{163}$, then $K_{164}=K_{163} \cup b_{165}=$ $\left\{b_{1}, b_{2}, \ldots, b_{165}\right\}$ is a $(165, b)$ - span.
The line $b_{166}=\{179,294,445,609,760,924,1075,1226$, 1390, 1541, 1861, 2025, 2176, 2340\}, this line can not intersect with any line of $K_{164}$, then $K_{165}=K_{164} \cup b_{166}=$ $\left\{b_{1}, b_{2}, \ldots, b_{166}\right\}$ is a $(166, b)-$ span.
The line $b_{167}=\{180,307,459,624,776,928,1093,1245$, 1397, 1549, 1714, 2035, 2187, 2352\}, this line can not intersect with any line of $K_{165}$, then $K_{166}=K_{165} \cup b_{167}=$ $\left\{b_{1}, b_{2}, \ldots, b_{167}\right\}$ is a $(167, b)-$ span.
The line $b_{168}=\{181,320,473,626,792,945,1098,1251$, 1417, 1570, 1723, 1876, 2211, 2364\}, this line can not intersect with any line of $K_{166}$, then $K_{167}=K_{166} \cup b_{168}=$ $\left\{b_{1}, b_{2}, \ldots, b_{168}\right\}$ is a $(168, b)$ - span.

The line $b_{169}=\{182,333,487,641,795,962,1116,1270$, 1424, 1578, 1732, 1899, 2053, 2376\}, this line can not intersect with any line of $K_{167}$, then $K_{168}=K_{167} \cup b_{169}=$ $\left\{b_{1}, b_{2}, \ldots, b_{169}\right\}$ is a $(169, b)$ - span.
Finally, add the line $b_{170}=\{183,346,501,656,811,966$, $1121,1276,1444,1599,1754,1909,2064,2219\}$, to $\mathrm{K}_{168}$, this line can not intersect with any line of $\mathrm{K}_{168}$, then $\mathrm{K}_{169}=$ $K_{168} \cup b_{170}=\left\{b_{1}, b_{2}, \ldots, b_{170}\right\}$ is a $(170, b)$ - span, which is the maximum ( $K, b$ ) - span of $\operatorname{PG}(3,13)$ can be obtained. Thus, $K_{169}$ is called a spread of one hundred and seventy lines of $P G(3,13)$ which partitions $P G(3,13)$; that is every point of $P G(3,13)$ lies in exactly one line of $K_{169}$ and every two lines of $\mathrm{K}_{169}$ are disjoint.
4.2 Theorem

In general, the total number of $(K, b)$ - span in $P G(3, q)$, $\mathrm{q} \geq 2$ is $\mathrm{q}^{2}+1$ [13].
4.3 New Examples of $(K, b)$ - span in $P G(3,13)$

A new example of $(1, b)$ - span in $P G(3,13)$ which are:
$\{(1,0,0,0),(0,1,0,0),(1,1,0,0),(2,1,0,0),(3,1,0,0),(4,1,0,0)$,
$(5,1,0,0),(6,1,0,0), \quad(7,1,0,0),(8,1,0,0),(9,1,0,0),(10,1,0,0)$, $(11,1,0,0),(12,1,0,0)\}$.
A new example of $(2, b)$ - span in $P G(3,13)$ which are:
$\{(0,0,1,0),(0,0,0,1),(0,0,1,1),(0,0,2,1),(0,0,3,1),(0,0,4,1)$, $(0,0,5,1),(0,0,6,1),(0,0,7,1),(0,0,8,1),(0,0,9,1),(0,0,10,1)$, $(0,0,11,1),(0,0,12,1)\}$.
A new example of $(3, b)-$ span in $P G(3,13)$ which are:
$\{(1,0,1,0),(0,1,0,1),(1,1,1,1),(2,1,2,1),(3,1,3,1),(4,1,4,1)$, $(5,1,5,1),(6,1,6,1),(7,1,7,1),(8,1,8,1),(9,1,9,1),(10,1,10,1)$, $(11,1,11,1),(12,1,12,1)\}$.
So, there are a new examples of
$\{(4, b),(5, b),(6, b), \ldots,(170, b)\}$ - span in $P G(3,13)$.

## 5. Computer program to find points and planes for $\operatorname{PG}(3,13)$, by using MATLAB 2019

### 4.1 Program (A) to find a complete (K,b)-span

clc;
clear;
$\mathrm{q}=13$;
\%profile on
tic
[Point,Plane]=PointPlane(q);
$\mathrm{I}=\mathrm{q}+1 ; \quad$ \% length of line
$\mathrm{K}=\mathrm{q}^{\wedge} 2+\mathrm{I} ; \quad$ \% length of plane
$\mathrm{N}=\mathrm{q}^{\wedge} 3+\mathrm{K}$; $\quad$ \% length of projective space
$\mathrm{M}=\mathrm{N}^{*} \mathrm{I}$;
$\mathrm{O}=\mathrm{q}^{\wedge} 2+1$;
$\mathrm{P}=$ Plane;
$[\mathrm{m}]=\operatorname{size}(\mathrm{P}, 1)$;
\% pre-allocate memory to the cell output matrix (which is symmetric)

```
cellMtx = cell(m,m);
```

for $u=1: m$
for $v=u+1: m$
\% determine the intersection between the
two rows

$$
\begin{aligned}
& \text { cellMtx }\{\mathrm{u}, \mathrm{v}\}=\operatorname{intersect}(\mathrm{P}(\mathrm{u}, 1: \text { end }), \mathrm{P}(\mathrm{v}, 1: \text { end })) \\
& \text { cellMtx }\{\mathrm{v}, \mathrm{u}\}=\operatorname{cellMtx}\{\mathrm{u}, \mathrm{v}\}
\end{aligned}
$$

end
end
$\mathrm{S}=[1: \mathrm{I}]$;
$\mathrm{q} 1=\mathrm{q}+2$;
$\mathrm{k}=0$;
for $\mathrm{j} 1=2: \mathrm{O}$
index $=\mathrm{q}+\mathrm{j} 1$;
for $\mathrm{i}=1: \mathrm{m}-1$
for $\mathrm{j}=\mathrm{i}: \mathrm{m}$
$\mathrm{G}=\mathrm{ismember}(\mathrm{cellMtx}\{\mathrm{i}, \mathrm{j}\}$,index);
sum(G);
if sum(G)>0
if $\sim$ ismember $(S$, cellMtx $\{i, j\})$
$S=[S$; cellMtx $\{i, j\}]$;
end
\%return
end
end
end
end
writematrix(S,'span.txt','Delimiter','tab');
toc

## 6. Conclusions

From the above results, we found that a $(170, b)$ - span is a maximum complete $(K, f)$ - span in $P G(3,13)$.

## Acknowledgement

The research is supported by the College of Computer Sciences and Mathematics, University of Mosul, and College of Basic Education, University of Telafer, Mosul, Republic of Iraq. The authors declare that there are no conflicts of interest regarding this work.

## References

[1] Abdulla, Ali Ahmed A., and Nada Yassen Kasm Yahya. "A Geometric Construction of Surface Complete (k, r)-cap in PG (3, 7)." Journal of Physics: Conference Series. Vol. 1879. No. 2. IOP Publishing, 2021.
[2] Al-Zangana, Emad Bakr, and Nada Yassen Kasm Yahya. "Subgroups and Orbits by Companion Matrix in Three Dimensional Projective Space." Baghdad Science Journal (2022): 0805-0805.
[3] Hirschfeld, J. W. P. Projective geometries over finite fields. Oxford Mathematical Monographs. New York: Oxford University Press, 1998.
[4] Al-Mukhtar, A. Sh. Complete Arcs and Surfaces in three Dimensional Projective Space Over Galois Field. Diss. Ph. D. Thesis, University of Technology, Iraq, 2008.
[5] Yahya, Nada Yassen Kasm. "Applications geometry of space in PG (3, P)." Journal of Interdisciplinary Mathematics 25.2 (2022): 285-297.
[6] Kareem, Fatema F., and Sawsan J. Kadhum. "A (k, $\ell$ ) Span in Three Dimensional Projective Space PG (3, p) Over Galois field where p= 4." Journal of the college of basic education 19.80/( ( $\left.{ }^{( } \cdot\right)^{\top}$ ) .
[7] Hirschfeld, J. W. P. Finite projective spaces of three dimensions. Oxford University Press, 1985.
[8] Salih, R. A. Complete Arcs in Projective Plane Over Galois Field. Diss. M. Sc. Thesis, University of Baghdad, Iraq, 1999.
[9] Hirschfeld J. W. P." Projective geometries over finite fields". Oxford University Press, 1979.
[10] Ballico, Edoardo, and Antonio Cossidente. "Curves of the projective 3-space, tangent developables and partial spreads." Bulletin of the Belgian Mathematical Society-Simon Stevin 7.3 (2000): 387-394.
[11] Blokhuis, Aart, et al. "Covers of PG (3, q) and of finite generalized quadrangles." Bulletin of the Belgian Mathematical Society Simon Stevin 5.2 (1998): 141-158.
[12] Gács, András, and Tamás Szőnyi. "On maximal partial spreads in PG (n, q)." Designs, Codes and Cryptography 29.1 (2003): 123-129.
[13] Abdulla, Ali Ahmed A., and Nada Yassen Kasm Yahya. "Application of algebraic geometry in three dimensional projective space PG (3, 7)." Journal of Physics: Conference Series. Vol. 1591. No. 1. IOP Publishing, 2020.
البنـاء للامتّداد - (K, bG(3, 13) التام في)

drnadaqasim3@uomosul.edu.iq hamid math 85@yahoo.com
كلية التربية الأساسية


"
الـهذف الرئيسـي من البحث هو ابجاد الناشر للفضـاء الاسقاطي $P G(3,13)$ بو اسطة البناء للدمنداد
التام - (K, b) و الذي بمثنل تطبيقات اللهندسة الجبربة بـالفضـاء الاسقاطي ثلالثي الابعاد PG(3, q) بر هنا اكبر حجم للامتداد (K, b) النانثر. الكلمات المفتاحية :الهندسة الجبرية، الفضاء الاسقاطي، البناء للامتداد التام.

