

Generalized *h*-Closed Sets in Topological Space Beyda S. Abdullah

Department of Mathematics, College of Education for pure Sciences, University of Mosul, Iraq *Baedaa419@unmosul.edu.iq

Article information

Article history: Received : 12/12/2021 Accepted : 13/2/2022 Available online :

This study introduce a new type of closed sets in topology called Generalized *h*-closed sets (briefly, *gh*-closed) define as follow: $E \subseteq \chi$ be *gh*-closed set if $CL_h(E) \subseteq U$ whenever $E \subseteq U$ and U is open set in (χ, τ) . The relation between *gh*-closed set and other classes of closed sets (*h*-closed, *g*-closed, *g* δ -closed, *dg*-closed and *ag*-closed) are studied. Also, the notion of *gh*-continuous mapping on topological space is introduce and some properties are proved. Finally, the separation axioms have been studied.

Keywords:

h-closed set, gh-closed set, gh-continuous mapping, separation axioms.

Abstract

Correspondence: Author: Beyda S. Abdullah Email:Baedaa419@unmosul.edu.iq

I. INTRODUCTION AND PRELIMINARIES

In 1970 Levine [4] first defined and investigated the idea of a generalized closed sets (briefly, g-closed) sets. Dontchev and Maki, in 1999 [2,3], presented the idea of "generalized $-\delta$ ($g\delta$), θ - generalized (θg) respectively" closed sets. Abbas [1] in 2020 introduced the concept of h-(*h-os*). A subset E of (χ, τ) is called (*h-os*) if open set for every non empty set U in χ , $U \neq \chi$ and $U \in \tau$, such that $E \subseteq Int(E \cup U)$. The complement of (*h*-os) is called h-closed set (h-cs). Our work is divided in to three sections. In the first, gh-closed sets (gh-cs) are defined and provided numerous instances, as well as analyze the link between *gh*-closed sets and various types of closed sets. The second section is devoted to introduce new class of mappings called *gh*-continuous mapping. The relationship gh- continuous and some form of between continuous mapping are investigated. In section three we study some classes of separating axioms spaces by explain relation between them namely the $T_o, T_1, T_2, T_{ogh}, T_{1gh}, T_{2gh}$. We denoted the topological spaces (χ, τ) and (γ, σ) simbly by χ and γ respectively, open sets(resp. closed sets) by(os),(cs) topological spaces by TS we recall the following definitions and notations. The closure (resp. interior) of a subset E of a topological space χ is denoted by CL(E)(resp.Int(E)).

Definition 1.1 A subset *E* of a TS χ is said to be

- 1. δ closed set (δcs) [2], if " $E = CL_{\delta}(E)$ " where $CL_{\delta}(E) = \{x \in \chi: Int (CL(U)) \cap E \neq \emptyset, x \in U \in \tau\}$. The complement of δ closed set is called δ open set (δos) .
- 2. θ closed set (θcs) [3], if " $E = CL_{\theta}(E)$ " where $CL_{\theta}(E) = \{x \in \chi: CL(U) \cap E \neq \emptyset, x \in U \in \tau\}$. The complement of θ - closed set is called θ - open set $(\theta - os)$.
- 3. *h*-open set(*h*-os) [1], if for every non empty set U in χ , $U \neq \chi$ and $U \in \tau$, such that $E \subseteq Int(E \cup U)$. "The family of all *h*-closed (resp. δ -closed, θ closed) sets of a TS is denoted by $hc(\chi)$ (resp. $\delta c(\chi), \theta c(\chi)$)".

Definition 1.2 A subset *E* of a TS χ is said to be

- 1. "Generalized δ -closed (briefly, $g\delta$ -closed)($g\delta cm$) [2], if CL_{δ} (E) $\subseteq U$ whenever $E \subseteq U$ and U is (*os*) in χ
- 2. θ -Generalized closed (briefly, θg -closed)($\theta g cm$) [3], if $CL_{\theta}(E) \subseteq U$ whenever $E \subseteq U$ and U is (*os*) in χ
- 3. α -Generalized closed (briefly, αg -closed) ($\alpha g cm$) [6], if CL_{α} (E) $\subseteq U$ whenever $E \subseteq U$ and U is (os) in χ ".

- 4. "Generalized semi-closed (briefly, gs-closed) (gs - cm) [7], if CL_s (E) $\subseteq U$ whenever $E \subseteq U$ and U is (os) in χ .
- 5. Generalized closed (briefly, g-closed) (g cm) [4], if "*CL*(*E*) \subseteq *U*" whenever $E \subseteq U$ and *U* is (*os*) in χ ".

Theorem 1.3

- 1. Each (δcs) in a TS is $(g\delta cs)$ [2].
- 2. Each (θcs) in a TS is $(\theta g cs)$ [3].
- 3. Each (cs) in a TS is (h-cs) [1].
- 4. Each (cs) in a TS is (g-cs) [4].

Definition 1.4 " Let χ and γ be a TS, a mapping $f: \chi \rightarrow \gamma$ is said to be

- 1. Generalized δ -continuous $(g\delta contm)$ [2] suppose that the inverse image of each closed subset of γ is $(g\delta cs)$ in χ .
- 2. θ -Generalized continuous (θg -contm) [3] suppose that the inverse image of each closed subset of γ is (θg -cs) in χ .
- 3. α -Generalized continuous $(\alpha g contm)$ [6] suppose that the inverse image of each closed subset of γ is $(\alpha g cs)$ in χ .
- 4. Generalized semi-continuous (gs-contm) [7] suppose that the inverse image of each closed subset of γ is (gs-cs) in χ .
- 5. *h*-continuous (h contm) [1] suppose that the inverse image of each open subset of γ is (h-os) in χ .
- 6. Generalized-continuous (g-contm) [4] suppose that the inverse image of each closed subset of γ is (g-cs) in χ ".

Definition.1.5. A TS (χ, τ) is called

- 1. T_{0h} space[1] if a, b are to distinct points in χ there exists (*h*-os) U such that either $a \in U$ and $b \notin U$, or $b \in U$ and $a \notin U$.
- 2. T_{1h} -space [1] if $a, b \in \chi$ and $a \neq b$, there exists (*h*-os) U, V containing a, b respectively, such that either $b \notin U$ and $a \notin V$.
- 3. T_{2h} -space[1] if $a, b \in \chi$ and $a \neq b$, there exists disjoint (*h*-os) U, V containing a, b respectively.

II. Generalized (h-cs) in TS

This section introduces a new closed set class called generalized (*h*-*cs*) and we investigate the relationship with closed set, (*h*-*cs*), (*g*-*cs*), (*a*- *cs*), (θg -*cs*), (αg -*cs*), (

Definition 2.1."A subset *E* of the TS χ is said to be generalized *h*-closed (briefly, *gh*-closed) set, if CL_h (*E*) $\subseteq U$ whenever $E \subseteq U$ and *U* is (*os*) in χ . The complement of *gh*-closed set is called *gh*-open (*gh*-*os*). The set of all family *gh*-closed denoted by $ghc(\chi)$ ".

Example 2.2 *. If* $\chi = \{2,4,6\}$ and $\tau = \{\emptyset, \chi, \{4\}, \{4,6\}\}$. Then $hc(\chi) = ghc(\chi) = \{\emptyset, \chi, \{4\}, \{2\}, \{2,4\}, \{2,6\}\}$. **Theorem 2.3**. Each (h-cs) in any TS is (gh - cs).

Proof. Suppose that *E* be (*h*-*cs*) in χ such that $E \subseteq U$, where *U* is (*os*). Since *E* is (*h*-*cs*) by proposition (2.2) [1], $CL_h(E) = E$, and $E \subseteq U$, therefore $CL_h(E) \subseteq U$. Hence *E* is (*gh*-*cs*) in χ .

As shown in the following example, the converse of the preceding theorem is not true in general.

Example 2.4. If $\chi = \{3, 6, 9\}$ and $\tau = \{\emptyset, \chi, \{9\}\}$ then $hc(\chi) = \{\emptyset, \chi, \{9\}, \{3, 6\}\}$

 $ghc(\chi) = \{\emptyset, \chi, \{3\}, \{6\}, \{9\}, \{3,6\}, \{3,9\}, \{6,9\}\}$

Let $A = \{6\}$. A is (gh - cs) but not (h - c) in .

Proposition 2.5. Let *E* be subset of a space χ , then $CL_h(E) \subseteq CL_{\theta}(E)$

Proof. Assume that *E* is a subset of the space χ and let $x \in CL_h(E)$. By Theorem(2.3) [1], $(\forall U \in ho(\chi))(x \in U \implies E \cap U \neq \emptyset)$. Since (all (*os*) is (*h*-*os*)) [1], then $(\forall U \in \tau)(x \in U \implies E \cap U \neq \emptyset)$ Since $U \subseteq CL(U)$, then $U \cap E \subseteq CL(U) \cap E$ for all (*os*) *U* contain *x*, so $CL(U) \cap E \neq \emptyset$ for all (*os*) *U* contain *x*. Therefore $x \in CL_{\theta}(E)$. Hence $CL_h(E) \subseteq CL_{\theta}(E)$.

Proposition 2.6. Let *E* be subset of a space χ , then $CL_h(E) \subseteq CL_{\delta}(E)$

Proof. Assume that *E* is a subset of the space χ and let $x \in CL_h(E)$. By Theorem(2.3) [1], $(\forall U \in ho(\chi))(x \in U \implies E \cap U \neq \emptyset)$. Since (all (*os*) is (*h*-*os*)) [1], for all (*os*) *U* contain *x*, then $E \cap U \neq \emptyset$. Since $U = int(U) \subseteq int(cl(U))$, then $E \cap U \subseteq int(cl(U)) \cap E$ for all (*os*) *U* contain *x*. Therefore $int(Cl(U)) \cap E \neq \emptyset$, for all (*os*) *U* contain *x*, so $x \in CL_{\delta}(E)$. Hence $CL_h(E) \subseteq CL_{\delta}(E)$.

Theorem 2.7. Each $(\theta g$ -cs) in χ is (gh - cs).

Proof. Suppose that E be $(\theta g \text{-} cs)$ in χ such that $E \subseteq U$, where U is (os). Since E is $(\theta g \text{-} cs)$ by proposition (2.5), then $CL_h(E) \subseteq CL_{\theta}(E) \subseteq U$, so we get $CL_h(E) \subseteq U$. Hence E is (gh- cs) in .

"The converse of the above the over is not true in general as shown in the following example".

Example 2.8. *If* $\chi = \{5,4,7\}$ and

 $\tau = \{\emptyset, \chi, \{4\}, \{5,4\}, \{4,7\}\}$ then

 $hc(\chi) = ghc(\chi) = \{ \emptyset, \chi, \{7\}, \{5,4\}, \{5\}, \{4\}, \{5,7\}, \{4,7\} \}, \\ \theta_0(\chi) = \{ \emptyset, \chi \} = \theta_c(\chi)$

Let $A = \{4\}$. Here A is (gh - cs) in χ but not $(\theta g - cs)$ because CL_{θ} ($\{4\}$) = $\chi \notin \{4\}$.

Corollary 2.9. Each $(\theta$ -cs) in χ is (gh-cs).

Proof. By Theorem (1.3) (2) and Theorem (2.7).

Theorem 2.10. All $(g\delta - cs)$ in χ is (gh - cs).

Proof. Suppose that E be $(g\delta \text{-}cs)$ in χ such that $E \subseteq U$, where U is (os). Since E is $(g\delta \text{-}cs)$, by proposition (2.6), then $CL_h(E) \subseteq CL_\delta(E) \subseteq U$, so we get $CL_h(E) \subseteq U$. Hence E is (gh-cs) in χ .

The converse is not true in general as shown in the following example.

Example 2.11. If $\chi = \{5, 2, 3\}$ and $\tau = \{\emptyset, \chi, \{3\}\}$ then

 $hc(\chi) = \{\emptyset, \chi, \{3\}, \{5,2\}\}$

 $ghc(\chi) = \{ \emptyset, \chi, \{5\}, \{3\}, \{2\}, \{5,2\}, \{2,3\}, \{5,3\} \}$

Let $A = \{3\}$, A is (gh - cs) in χ but not $(g\delta - cs)$.

Corollary 2.12. Each $(\delta$ -cs) in χ is (gh-cs).

Proof. By Theorem (1.3) (1) and Theorem (2.10).

Theorem 2.13. Each (g-cs) in χ is (gh - cs).

Proof. Suppose that E be (g-cs) in χ such that $E \subseteq U$, where U is (os). Since E is (g-cs) by Theorem (2.4) [1], then

 $CL_h(E) \subseteq CL(E) \subseteq U$, so we get $CL_h(E) \subseteq U$. Hence *E* is (*gh-cs*) in χ .

"The converse is not true in general as shown in the following example".

Example 2.14. From Example (2.8)

 CL_h ({4})={4}, $CL({4})=\chi$. Hence {4} is (gh-cs) in χ but not (g-cs).

Corollary 2.15. *Each* (*cs*) *in* χ *is* (*gh-cs*).

Proof. By Theorem (1.3) (4) and Theorem (2.13).

Remark 2.16. There is no relationship between (a- cs), (ag- cs) and (gs -cs) with (gh-cs) as shown in the following examples.

Example 2.17. If $\chi = \{2, 4, 6\}$. Now,

- 1. If $\tau = \{\emptyset, \chi, \{4\}, \{4, 6\}\}$. Then *{6is* (*a cs*) and (*ag cs*) but not (*gh cs*). Also *{6is* semi- closed and (*sg cs*) but not (*gh cs*).
- 2. If $\tau = \{\emptyset, \chi, \{2,4\}\}$. Then $\{2\}$ is not (αcs) and not $(\alpha g cs)$ but (gh cs). Also $\{4\}$ is not semi- closed and not (sg cs) but (gh cs).

Remark 2.18. As a result of the above, we have Fig.1 below.

Fig. 1

Theorem 2.19. If E is (gh-cs) and $E \subseteq B \subseteq CL_h$ (E), then B is (gh-cs).

Proof. Assume that U be (os) in χ such that $B \subseteq U$, then $E \subseteq U$. Since E is (gh-cs). Then CL_h $(E) \subseteq U$, now $CL_h(B) \subseteq CL_h(CL_h(E)) = CL_h(E) \subseteq U$. Therefore B is (gh-cs).

Theorem 2.20 Let $E \subseteq \gamma \subseteq \chi$ and suppose that E is(gh-cs) in χ , then E is(gh-cs)relative to γ .

Proof. Because of this $E \subseteq \gamma \subseteq \chi$ and E is (gh-cs) in χ , to show that E is (gh-c) relative to γ . Let $E \subseteq U \cap \gamma$, where U is (os) in χ . Since E is $(gh\text{-}c) E \subseteq U$, implies $CL_h(E) \subseteq U$. As a consequence, $CL_h(E) \cap \gamma \subseteq U \cap \gamma$.

Thus *E* is (*gh*-*cs*) relative to γ .

Theorem 2.21. A (gh-cs) E is (h-cs) only if and only if $CL_h(E) \setminus E$ is (h-cs).

Proof. If *E* is (h-cs), then $CL_h(E) \setminus E = \emptyset$. Conversely, suppose $CL_h(E) \setminus E$ is (h-cs) in χ . Since E(gh-cs). Then $CL_h(E) \setminus E$ there are no non empty closed sets in this collection in . Then $CL_h(E) \setminus E = \emptyset$. Hence *E* is (h-cs). \blacksquare **Definition 2.22**. "A subset *E* of a space χ is called *gh*-open set (gh-cs)" if $\chi \setminus E$ is (gh-cs). The family of all (gh-os) subset of a TS (χ, τ) is denoted by $gho(\chi)$.

All of the following results are true by using complement. **proposition 2.23**. *The following statements are true:*

- 1. Each (h-os) is (gh-os).
- Each (n=0s) is (gn=0s)
 Each (os) is (gh=os).
- 2. Each (03) is (gh 03).
- 3. Each (δ -os) is (gh-os).

Proof. By using the complement of the definition of (*gh*-*cs*).

III. *gh*- Continuous Mapping

The gh-continuous map on TS is introduced and studied in this section.

Definition 3.1."A mapping $f: \chi \to \gamma$ is said to be *gh*-continuous (*gh*-contm), if $f^{-1}(F)$ is (*gh*-*cs*) in χ for each (*cs*) F in γ ".

Theorem 3.2. If $f: \chi \to \gamma$ is (contm) then it is (gh- contm) Proof. Assume that $f: \chi \to \gamma$ be (contm) and "let F be (cs) in γ . since f is (contm) then $f^{-1}(F)$ is (cs) in χ . By Corollary (2.15), then $f^{-1}(F)$ is (gh-cs) in χ .

The converse of the above the over is not true in general as shown in the following example".

Example 3.3. *If* $\chi = \gamma = \{2, 4, 6\}$ and

 $\tau = \{\emptyset, \chi, \{4\}, \{4,6\}\},\$

 $\sigma = \{\emptyset, \gamma, \{6\}, \{2, 6\}\}$ then

 $hc(\chi) = ghc(\chi) = \{\emptyset, \chi, \{2\}, \{4\}, \{2,4\}, \{2,6\}\}$

Assume that $f: \chi \to \gamma$ be an identity map. Then f is (gh-contm), but f is not (contm), since for the (cs) [4] in γ , $f^{-1}(\{4\}) = \{4\}$ is not (cs) in χ .

Theorem 3.4. Each (g- contm) is (gh-contm).

Proof. Assume that $f: \chi \to \gamma$ be "(*g*-contm) and let F be (cs) in . since f is (*g*-contm) and by Theorem (2.13), then $f^{-1}(F)$ is (*gh*-cs) in χ .

As shown in the following example, the converse of the preceding theorem is not true in general".

Example 3.5. *If* $\chi = \gamma = \{7, 8, 9\}$ and

 $\tau = \{ \emptyset, \chi, \{8\}, \{8,9\}, \{7,8\} \},$

 $\sigma = \{\emptyset, \gamma, \{7\}, \{7, 8\}\}$

 $gc(\chi) = \{\emptyset, \chi, \{7\}, \{9\}, \{7,9\}\},\$

 $hc(\chi) = ghc(\chi) = \{\emptyset, \chi, \{7\}, \{8\}, \{9\}, \{7,8\}, \{7,9\}, \{8,9\}\}$

Assume that $f: \chi \to \gamma$ be an identity map. Then f is (gh-contm), but f is not (g-contm), because $\{8, 9\}$ is (cs) in γ but $f^{-1}(\{8,9\}) = \{8,9\}$ is not (g-cs) in γ .

Theorem 3.6. All ($g \delta$ - contm) is (gh-contm).

Proof. Suppose that $f: \chi \to \gamma$ be $(g \ \delta \ -contm)$ and F be (cs) in γ . since f is $(g \ \delta \ -contm)$ then $f^{-1}(F)$ is $(g \ \delta \ -cs)$

in χ and by Theorem (2.10), then $f^{-1}(F)$ is (gh-cs) in χ .

The converse of the above the over is not true in general as shown in the following example.

Example 3.7. If $\gamma = \gamma = \{2, 4, 6\}$ and $\sigma = \{\emptyset, \gamma, \{2, 4\}\}$

 $\tau = \{\emptyset, \chi, \{6\}\},\$

 $hc(\chi) = \{\emptyset, \chi, \{6\}, \{2, 4\}\}$

 $ahc(\chi) = \{\emptyset, \chi, \{2\}, \{4\}, \{6\}, \{2,4\}, \{2,6\}, \{4,6\}\}$

Suppose that $f: \chi \to \gamma$ be an identity map. Then f is (gh- contm), but f is not (g δ - contm), because {6}is (cs) in γ but $f^{-1}(\{6\}) = \{6\}$ is not $(g \delta - cs)$ in γ .

Theorem 3.8. Each (θ g- contm) is (gh-contm).

Proof. Suppose that $f: \chi \to \gamma$ be $(\theta \text{ g-contm})$ and F be (cs) in γ . "since f is (θ g-contm) then $f^{-1}(F)$ is (θ gcs) in χ and by Theorem (2.7), then $f^{-1}(F)$ is (gh-cs) in χ. 🔳

As shown in the following example, the converse of the preceding theorem is not true in general".

Example 3.9. If $\chi = \gamma = \{3, 4, 5\}$ and

 $\tau = \{\emptyset, \chi, \{3\}, \{4\}, \{3,4\}\},\$

 $\sigma = \{\emptyset, \gamma, \{4\}, \{3, 4\}\}$

 $hc(\chi) = \{\emptyset, \chi, \{5\}, \{3,5\}, \{4,5\}\}$

- $ghc(\chi) = \{\emptyset, \chi, \{5\}, \{3,5\}, \{4,5\}, \{3\}\},\$
- $\theta gc(\chi) = \{ \emptyset, \chi, \{3,5\} \}$

Suppose that $f: \chi \to \gamma$ be an identity map. Then f is (gh-contm), but f is not $(\theta g-contm)$, because {5} is (cs)in γ but $f^{-1}(\{5\}) = \{5\}$ is not (θ g-cs) in γ .

Remark 3.10. As a result of the above, we have Fig. 2 below.

Remark 3.11. There is no relationship between (agcontm) and (gs -contm) with (gh-contm) as shown in the following examples.

Example 3.12. If $\chi = \gamma = \{2, 4, 6\}$ and let $f: \chi \rightarrow \gamma$ be an identity map. Now,

1. If $\tau = \{\emptyset, \chi, \{2, 4\}\}, \sigma = \{\emptyset, \gamma, \{4, 6\}\}.$

Then f is (gh-contm), but f is not $(\alpha g-contm)$ and not (gs-cnntm), because {2} is (cs) in γ but $f^{-1}(\{2\}) = \{2\}$ is not $(\alpha g - cs)$ and not (gs - cs) in χ .

2. If $\tau = \{\emptyset, \chi, \{4\}, \{4, 6\}\}, \sigma = \{\emptyset, \gamma, \{2, 4\}\}.$

Then f is $(\alpha g \cdot contm)$ and (gs - contm), but f is not (gh - contm). *contm*) because {6} is (cs) in γ but $f^{-1}({6}) = {6}$ is not (gh-cs) in χ .

Definition 3.13. A mapping $f: \chi \to \gamma$ is said to be ghirresolute(gh-irrm), if $f^{-1}(F)$ is (gh- cs) in χ for each $(gh-cs) F \text{ of } \gamma$.

Theorem 3.14. Each (gh- irrm) is (gh-contm).

Proof. It's obvious.

The converse of the above the over is not true in general as shown in the following example.

Example 3.15. *If* $\chi = \gamma = \{2, 3, 4\}$ and

 $\tau = \{\emptyset, \chi, \{4\}, \{3\}, \{3,4\}\}, \sigma = \{\emptyset, \gamma, \{3\}, \{3,4\}\}$

 $hc(\gamma) = ghc(\gamma) = \{\emptyset, \gamma, \{2\}, \{3\}, \{2,4\}, \{2,3\}\},\$

 $hc(\chi) = ghc(\chi) = \{\emptyset, \chi, \{2\}, \{2, 4\}, \{2, 3\}\}$

Suppose that $f: \chi \to \gamma$ be an identity map. Then f is (gh-contm), but f is not (gh-irrm) because {3} is (gh-cs)in γ but $f^{-1}(\{3\}) = \{3\}$ is not (gh-cs) in γ .

Theorem 3.16. A combination of two (gh- irrm) is also (gh- irrm).

Proof. Suppose that $f: \chi \to \gamma$ and $H: \gamma \to Z$ be any two (gh- irrm). let F be any (gh-cs) in Z. Since H is (gh- irrm), then $H^{-1}(F)$ is (gh-cs) in γ . Since, f is (gh-irrm) then $f^{-1}(H^{-1}(F)) = (H \circ f)^{-1}(F)$ is (gh-cs) in γ . Therefore *HoF*: $\chi \rightarrow Z$ is (*gh*-*irrm*).

Definition 3.17. "A mapping $f: \chi \to \gamma$ is said to be strongly gh- continuous, suppose that the inverse image of each (gh-cs) in γ is closed in γ'' .

Theorem 3.18. All strongly (gh- contm) it is (contm).

Proof. Assume the following scenario: f is strongly (gh- contm). Let F be (cs) in γ . Since (each (cs) is (gh-cs)), then F is (gh-cs) in γ . Since f is strongly (gh-contm), $f^{-1}(F)$ is (cs) in . Therefore f is (contm).

As shown in the example (3.15), the converse of the preceding theorem is not true in general.

Suppose that $f: \chi \to \gamma$ be an identity map. Then f is continuous, but f is not strongly gh- continuous because {3} is (gh-cs) in γ but $f^{-1}(\{3\}) = \{3\}$ is not (cs) in γ .

Theorem 3.19. Each strongly gh- continuous map it is ghcontinuous.

Proof. Assume the following scenario: f is strongly (gh- contm). Let F be (cs) in γ . Since (all (cs) is (gh-cs)), then F is (gh-cs) in γ . Since f is strongly (gh-contm), $f^{-1}(F)$ is (cs) in . Since (all (cs) is (gh-cs)), then $f^{-1}(F)$ is (gh-cs) in χ .

As shown in the example (3.15), the converse of the preceding theorem is not true in general.

Suppose that $f: \chi \to \gamma$ be an identity map. Then f is (gh-contm), but f is not strongly gh- continuous, since for the (gh-cs) {3} in γ , $f^{-1}({3}) = {3}$ is not closed in γ .

IV. gh- Closed Sets and Separating Axioms

In this section, we introduce and study a new type of separating axioms spaces for (gh-os) in TS. **Definition.4.1**. A TS (χ, τ) is called

1. $T_{0,gh}$ - space if a, b are to distinct points in χ there exists (gh-os) U such that either $a \in U$ and $b \notin U$, or $b \in U$ and $a \notin U$.

- 2. T_{1gh} space if $a, b \in \chi$ and $a \neq b$, there exists (*ghos*) *U*, *V* containing *a*, *b* respectively, such that either $b \notin U$ and $a \notin V$.
- 3. T_{2gh} -space if $a, b \in \chi$ and $a \neq b$, there exists disjoint (*gh-os*) *U*, *V* containing *a*, *b* respectively.

Theorem.4.2. Each T_0 - space is T_{0gh} - space.

Proof: Assume that χ be T_0 - space and a, b be two distinct points in χ . Since χ is T_0 - space. Then there is one an (os) U in χ such that $a \in U$ and $b \notin U$ or $b \in U$ and $a \notin U$. Since (each (os) is (gh-os)) proposition 2.23(2). Then U is (gh-os) in χ such that $a \in U$ and $b \notin U$ or $b \in U$ and $a \notin U$. Hence χ is T_{0ah} - space.

The converse is not true in general as shown in the following example.

Example.4.3. If $\chi = \{1, 2, 3\}, \tau = \{\emptyset, \chi, \{1, 2\}\}$. Then (χ, τ) is not T_0 -space, but $(\chi, \text{gho}(\chi))$ is T_{0ah} - space.

Theorem.4.4. Each T_{0h} - space is T_{0gh} - space.

Proof: Assume that χ be T_{0h} - space and a, b be two distinct points in χ . Since χ is T_{0h} - space. Then there is one an (*h*-os) U in χ such that $a \in U$ and $b \notin U$ or $b \in U$ and $a \notin U$. Since (each (*h*-os) is (*gh*-os)) proposition 2.23(1). Then U is (*gh*-os) in χ such that $a \in U$ and $b \notin U$ or $b \notin U$ and $a \notin U$. Hence χ is T_{0gh} - space. ■

"The converse of the above the over is not true in general as shown in the following example".

Example.4.5. Let $\chi = \{3, 6, 9\}, \tau = \{\emptyset, \chi, \{9\}\}$. Then $(\chi, ho(\chi))$ is not T_{0h} -space, but $(\chi, gho(\chi))$ is T_{0gh} -space.

Theorem.4.6 "Each T_1 - space is T_{1gh} -space

Proof: Suppose that χ be T_1 - space and a, b be two distinct points in χ . Since χ is T_1 - space. Then there exist two (*os*) U, V in χ such that $a \in U$, $b \notin U$ and $b \in V$ and $a \notin V$. Since (each (*os*) is (*gh*-*os*)) proposition 2.23(2). Then U, V are two (*gh*-*os*) in χ such that $a \in U$ and $b \notin U$ and $b \notin U$ and $b \notin V$ and $a \notin V$. Hence χ is T_{1gh} -space.

As shown in the following example, the converse of the preceding theorem is not true in general".

Example 4.7. If $\chi = \{2, 3, 5\}, \tau = \{\emptyset, , \{2\}, \{2, 3\}, \{2, 5\}\}$. Then (χ, τ) is not T_1 - space, but $(\chi, gh o(\chi))$ is T_{1gh} - space.

Theorem.4.8. Each T_{1h} - space is T_{1gh} -space

Proof: Suppose that χ be T_{1h} - space and a, b be two distinct points in χ . Since χ is T_{1h} - space. Then there exist two (*h*-os) U, V in χ such that $a \in U, b \notin U$ and $b \in V$ and $a \notin V$. Since (each (*h*-os) is (*gh*-os)) proposition 2.23(1). Then U, V are two (*gh*-os) in χ such that $a \in U$ and $b \notin U$ and $b \notin V$ and $a \notin V$.Hence χ is T_{1ah} - space.

As shown in the example (4.5), the converse of the preceding theorem is not true in general. $(\chi, ho(\chi))$ is not T_{1h} -space, but $(\chi, gho(\chi))$ is T_{1gh} - space.

Theorem.4.9. Each T_1 - space is T_{0ah} - space.

Proof: Since each T_1 - space is T_0 - space and each T_0 -space is T_{0gh} - space. Hence T_1 - space is T_{0gh} - space. \blacksquare As shown in the example (4.5), the converse of the preceding theorem is not true in general. (χ, τ) is not T_1 -space, but $(\chi, gh o(\chi))$ is T_{0gh} - space.

Theorem.4.10. Each T_{1gh} - space is T_{0gh} - space.

Proof: It's obvious. ■

Theorem.4.11. Each T_2 - space is T_{2gh} -space.

Proof: Suppose that χ be T_2 - space and a, b be two distinct points in χ . Since χ is T_2 - space. Then there exists disjoint (*os*) U, V containing a, b respectively. From proposition 2.23(2) each (*os*) is(*gh-os*). Then U, V are disjoint (*gh-os*) containing a, b respectively. Hence χ is $T_{2,ab}$ - space.

$$2g_n$$
 space.

As shown in the example (4.5), the converse of the preceding theorem is not true in general. (χ, τ) is not T_2 -space, but $(\chi, gh o(\chi))$ is T_{2ah} - space.

Theorem.4.12. "Each T_{2h} - space is T_{2gh} - space.

Proof: Suppose that χ be T_{2h} - space and a, b be two distinct points in χ . Since χ is T_{2h} - space. Then there exists disjoint (h- os) U, V containing a, b respectively. From proposition 2.23(1) each (h- os) is(gh-os). Then U, V are disjoint (gh-os) containing a, b respectively. Hence χ is T_{2gh} - space.

As shown in the example (4.5), the converse of the preceding theorem is not true in general. $(\chi, ho(x))$ is not T_{2h} -space, but $(\chi, gh o(\chi))$ is T_{2gh} -space".

Theorem.4.13. Each T_{2gh} - space is T_{1gh} - space. Proof: It's obvious.

Conclusion

The generalized h-closed set is not topological space and every closed, h-closed and g-closed sets is generalized hclosed.

Acknowledgement

The authors would express they're thanks to college of Education for pure Sciences, University of Mosul to support this paper.

References

- [1] Fadhil. Abbas,(2020),"On h-Open Sets and h-Continuous Function", J. Appl. Comput. Math, Vol. 9, pp. 1-5.
- [2] J. Dontchev and M. Ganster, (1996), "On δ-Generalized Closed Sets and T_{3/4}-Spaces ". Mem. Fac. Sci. Kochi. Unvi. Ser. A, Math., Vol.17, pp.15-31.
- [3] J. Dontchev and H. Maki, (1999), "On θ-Generalized Closed Sets ". Int. Math. Math. Sci, Vol.22, (2), pp.239-249.
- [4] N. Levine,(1970) "Generalized Closed Sets in Topological", Rend. Circ. Math. Palermo, Vol.19, pp. 89-96.
- [5] N. Levine, (1960)," Strongly Continuity in Topological Spaces", Amer. Math. Monthly, Vol. 67, pp. 269.
- [6] R. Devi, K. Balachandran and H. Maki, (1998), "Generalized α-Closed Maps and α- Generalized Closed Maps", Indian J. Pure. Appl. Math., Vol.29(1), pp. 37-49.
- [7] R. Devi, H. Maki and K. Balachandran, (1995), "Semi-Generalized Homeorphisms and Generalized Semi- Homeorphisms", Indian J. Pure. Appl. Math., Vol.26(3), pp. 271-284.

مجاميع مغلقة من النمط - h معممة في فضاء تبولوجي

بيداء سهيل عبد الله

Baedaa419@unmosul.edu.iq

قسم الرياضيات، كلية التربية للعلوم الصرفة جامعة الموصل، موصل، العراق

تاريخ استلام البحث: 2021/12/21 تاريخ قبول البحث: 2021/12/29

الخلاصة:

هذه الدراسة تقدم نوعا جديدا من مجموعات مغلقة في تبولوجيا تدعى مجموعات مغلقة من النمط - h معممة وباختصار (ph-closed) تعرف على النحو التالي: $\chi \supseteq E$ تكون مجموعة مغلقة من النمط – h معممة اذا كان $U \supseteq (h)$ تكون مجموعة مغلقة من النمط – h معممة اذا كان (χ, τ) . العلاقة بين مجموعة مغلقة من النمط – h معممة ومجاميع مغلقة اخرى (مغلقة من النمط – h ، مغلقة من النمط – h معممة رومجاميع مغلقة اخرى (مغلقة من النمط – h ، مغلقة من النمط – π معممة رومجاميع مغلقة اخرى (مغلقة من النمط – h ، مغلقة من النمط – π معممة معمة على فضاء تبولوجي تم تقديمه وبعض خواص تم بر هانها. اخيرا، بديهيات الفصل تم در استها. ايضا، النمط – h معممة معمقة من النمط – h معممة معلى فضاء تبولوجي تم تقديمه وبعض معممة ، تطبق من النمط – h معمم على فضاء تلولوجي تم تقديمه وبعض معممة ، تطبيق مستمر من النمط – h معمم وبديهيات الفصل.