Al-Rafidain Journal of Computer Sciences and Mathematics (RJCM)
www.csmj.mosuljournals.com

Generalized \boldsymbol{h}-Closed Sets in Topological Space
Beyda S. Abdullah
Department of Mathematics, College of Education for pure Sciences, University of Mosul, Iraq
*Baedaa419@unmosul.edu.iq

Article information

Article history:

Received : 12/12/2021
Accepted : 13/2/2022
Available online :

Abstract

This study introduce a new type of closed sets in topology called Generalized h-closed sets (briefly, $g h$-closed) define as follow: $E \subseteq \chi$ be $g h$-closed set if $C L_{h}(E) \subseteq U$ whenever $E \subseteq U$ and U is open set in (χ, τ). The relation between $g h$-closed set and other classes of closed sets (h-closed, g-closed, $g \delta$-closed, θg-closed and αg-closed) are studied. Also, the notion of $g h$-continuous mapping on topological space is introduce and some properties are proved. Finally, the separation axioms have been studied.

Keywords:
h-closed set, $g h$-closed set, $g h$-continuous mapping, separation axioms.

Correspondence:

Author: Beyda S. Abdullah
Email:Baedaa419@unmosul.edu.iq

I. INTRODUCTION AND PRELIMINARIES

In 1970 Levine [4] first defined and investigated the idea of a generalized closed sets (briefly, g-closed) sets. Dontchev and Maki, in 1999 [2,3], presented the idea of "generalized $-\delta(g \delta)$, θ - generalized (θg) respectively" closed sets. Abbas [1] in 2020 introduced the concept of h open set $\quad(h-o s)$. A subset E of (χ, τ) is called (h-os) if for every non empty set U in $\chi, U \neq \chi$ and $U \in \tau$, such that $E \subseteq \operatorname{Int}(E \cup U)$. The complement of $(h-o s)$ is called h-closed set ($h-c s$). Our work is divided in to three sections. In the first, $g h$-closed sets ($g h-c s$) are defined and provided numerous instances, as well as analyze the link between $g h$-closed sets and various types of closed sets. The second section is devoted to introduce new class of mappings called $g h$-continuous mapping. The relationship between $g h$ - continuous and some form of continuous mapping are investigated. In section three we study some classes of separating axioms spaces by explain the relation between them namely $T_{o}, T_{1}, T_{2}, T_{o g h}, T_{1 g h}, T_{2 g h}$.We denoted the topological spaces (χ, τ) and (γ, σ) simbly by χ and γ respectively, open sets(resp. closed sets) by (os),(cs) topological spaces by TS we recall the following definitions and notations. The closure (resp. interior) of a subset E of a topological space χ is denoted by $C L(E)(\operatorname{resp}$.Int $(E))$.

Definition 1.1 A subset E of a TS χ is said to be

1. δ - closed set $(\delta-c s)$ [2], if " $E=C L_{\delta}(E)$ " where $C L_{\delta}(E)=\{x \in \chi: \operatorname{Int}(C L(U)) \cap E \neq \emptyset, x \in$ $U \in \tau\}$.The complement of δ - closed set is called δ - open set $(\delta-o s)$.
2. θ - closed set $(\theta-c s)$ [3], if " $E=C L_{\theta}(E)$ " where $C L_{\theta}(E)=\{x \in \chi: C L(U) \cap E \neq \varnothing, x \in U \in \tau\}$.
The complement of θ-closed set is called θ - open set $(\theta-o s)$.
3. h-open $\operatorname{set}(h$-os) [1], if for every non empty set U in $\chi, U \neq \chi$ and $U \in \tau$, such that $E \subseteq \operatorname{Int}(E \cup U)$. "The family of all h-closed (resp. δ-closed, θ closed) sets of a TS is denoted by $h c(\chi)$ (resp. $\delta \mathrm{c}(\chi), \theta \mathrm{c}(\chi))^{\prime \prime}$.
Definition 1.2 A subset E of a TS χ is said to be
4. "Generalized δ-closed (briefly, $g \delta$-closed) $(g \delta-$ cm) [2], if $C L_{\delta}(E) \subseteq U$ whenever $E \subseteq U$ and U is (os) in χ
5. θ-Generalized closed (briefly, θg-closed) $(\theta g-c m)$ [3], if $C L_{\theta}(E) \subseteq U$ whenever $E \subseteq U$ and U is (os) in χ
6. α-Generalized closed (briefly, αg-closed) $(\alpha g-c m)$ [6], if $C L_{\alpha}(E) \subseteq U$ whenever $E \subseteq U$ and U is (os) in $\chi^{\prime \prime}$.
7. "Generalized semi-closed (briefly, gs-closed) $(\mathrm{gs}-\mathrm{cm})$ [7], if $C L_{s}(E) \subseteq U$ whenever $E \subseteq U$ and U is (os) in χ.
8. Generalized closed (briefly, g-closed) ($\mathrm{g}-\mathrm{cm}$) [4], if " $C L(E) \subseteq U$ " whenever $E \subseteq U$ and U is $(o s)$ in $\chi^{\prime \prime}$.

Theorem 1.3

1. Each $(\delta-c s)$ in a TS is $(g \delta-c s)$ [2].
2. Each $(\theta-c s)$ in a TS is ($\theta g-c s$) [3].
3. Each (cs) in a TS is (h-cs) [1].
4. Each (cs) in a TS is ($\mathrm{g}-\mathrm{cs}$) [4].

Definition 1.4 " Let χ and γ be a TS, a mapping $f: \chi \rightarrow$ γ is said to be

1. Generalized δ-continuous $(g \delta-$ contm $) \quad$ [2] suppose that the inverse image of each closed subset of γ is $(g \delta-c s)$ in χ.
2. θ-Generalized continuous (θg-contm) [3] suppose that the inverse image of each closed subset of γ is $(\theta g-c s)$ in χ.
3. α-Generalized continuous ($\alpha g-$ contm) [6] suppose that the inverse image of each closed subset of γ is $(\alpha g-c s)$ in χ.
4. Generalized semi-continuous (gs -contm) [7] suppose that the inverse image of each closed subset of γ is $(g s-c s)$ in χ.
5. h-continuous (h - contm) [1] suppose that the inverse image of each open subset of γ is (h-os) in χ.
6. Generalized-continuous (g-contm) [4] suppose that the inverse image of each closed subset of γ is $(g-c s)$ in $\chi^{\prime \prime}$.
Definition.1.5. A TS (χ, τ) is called
7. $T_{0 h^{-}}$space[1] if a, b are to distinct points in χ there exists (h-os) U such that either $a \in U$ and $b \notin U$, or $b \in U$ and $a \notin U$.
8. $\quad T_{1 h^{-}}$space [1] if $a, b \in \chi$ and $a \neq b$, there exists (h-os) U, V containing a, b respectively, such that either $b \notin U$ and $a \notin V$.
9. $T_{2 h}$ - space[1] if $a, b \in \chi$ and $a \neq b$, there exists disjoint (h-os) U, V containing a, b respectively.

II. Generalized (h-cs) in TS

This section introduces a new closed set class called generalized ($h-c s$) and we investigate the relationship with closed set, $(h-c s),(g-c s),(\alpha-c s),(\theta g-c s),(g \delta-c s),(\alpha g-c s)$ and ($g s-c s$).
Definition 2.1."A subset E of the TS χ is said to be generalized h-closed (briefly, gh-closed) set, if $C L_{h}(E$ $) \subseteq U$ whenever $E \subseteq U$ and U is (os) in χ. The complement of $g h$-closed set is called $g h$-open ($g h$-os). The set of all family $g h$-closed denoted by $g h c(\chi)$ ".
Example 2.2 If $\chi=\{2,4,6\}$ and $\tau=\{\varnothing, \chi,\{4\},\{4,6\}\}$. Then $h c(\chi)=\operatorname{ghc}(\chi)=\{\emptyset, \chi,\{4\},\{2\},\{2,4\},\{2,6\}\}$.

Theorem 2.3. Each (h-cs) in any TS is ($g h-c s$).
Proof. Suppose that E be $(h-c s)$ in χ such that $E \subseteq U$, where U is (os). Since E is ($h-c s$) by proposition (2.2) [1], $C L_{h}(E)=E$, and $E \subseteq U$, therefore $C L_{h}(E) \subseteq U$. Hence E is ($g h-c s$) in χ.■
As shown in the following example, the converse of the preceding theorem is not true in general.
Example 2.4. If $\chi=\{3,6,9\}$ and $\tau=\{\varnothing, \chi,\{9\}\}$ then
$h c(\chi)=\{\varnothing, \chi,\{9\},\{3,6\}\}$
$\operatorname{ghc}(\chi)=\{\varnothing, \chi,\{3\},\{6\},\{9\},\{3,6\},\{3,9\},\{6,9\}\}$
Let $A=\{6\}$. A is ($g h-c s$) but not ($h-c$) in .
Proposition 2.5. Let E be subset of a space χ, then $C L_{h}(E) \subseteq C L_{\theta}(E)$
Proof. Assume that E is a subset of the space χ and let $x \in C L_{h}(E)$. By Theorem(2.3) [1], $(\forall U \in h o(\chi))(x \in$ $U \Rightarrow E \cap U \neq \emptyset)$. Since (all (os) is (h-os)) [1], then $(\forall U \in \tau)(x \in U \Longrightarrow E \cap U \neq \emptyset)$ Since $U \subseteq C L(U)$, then $U \cap E \subseteq C L(U) \cap E$ for all (os) U contain x, so $C L(U) \cap$ $E \neq \emptyset$ for all (os) U contain x. Therefore $x \in C L_{\theta}(E)$. Hence $C L_{h}(E) \subseteq C L_{\theta}(E)$.
Proposition 2.6. Let E be subset of a space χ, then $C L_{h}(E) \subseteq C L_{\delta}(E)$
Proof. Assume that E is a subset of the space χ and let $x \in C L_{h}(E)$. By Theorem(2.3) [1], $(\forall U \in h o(\chi))(x \in$ $U \Rightarrow E \cap U \neq \emptyset$). Since (all (os) is (h-os)) [1], for all (os) U contain x, then $E \cap U \neq \emptyset$. Since $U=\operatorname{int}(U) \subseteq$ $\operatorname{int}(c l(U))$, then $E \cap U \subseteq \operatorname{int}(c l(U)) \cap E$ for all (os) U contain x. Therefore $\operatorname{int}(C l(U)) \cap E \neq \emptyset$, for all (os) U contain x, so $x \in C L_{\delta}(E)$. Hence $C L_{h}(E) \subseteq C L_{\delta}(E)$.
Theorem 2.7. Each $(\theta g-c s)$ in χ is $(g h-c s)$.
Proof. Suppose that E be $(\theta g-c s)$ in χ such that $E \subseteq U$, where U is (os). Since E is $(\theta g-c s)$ by proposition (2.5), then $C L_{h}(E) \subseteq C L_{\theta}(E) \subseteq U$, so we get $C L_{h}(E) \subseteq U$. Hence E is ($g h-c s$) in .■
"The converse of the above the over is not true in general as shown in the following example".
Example 2.8. If $\chi=\{5,4,7\}$ and
$\tau=\{\varnothing, \chi,\{4\},\{5,4\},\{4,7\}\}$ then
$h c(\chi)=\operatorname{ghc}(\chi)=\{\varnothing, \chi,\{7\},\{5,4\},\{5\},\{4\},\{5,7\},\{4,7\}\}$,
$\theta \mathrm{o}(\chi)=\{\varnothing, \chi\}=\theta c(\chi)$
Let $A=\{4\}$. Here A is $(g h-c s)$ in χ but not $(\theta g-c s)$ because $C L_{\theta}(\{4\})=\chi \nsubseteq\{4\}$.
Corollary 2.9. Each ($\theta-c s$) in χ is ($g h-c s$).
Proof. By Theorem (1.3) (2) and Theorem (2.7).
Theorem 2.10. All $(g \delta-c s)$ in χ is ($g h-c s$).
Proof. Suppose that E be $(g \delta-c s)$ in χ such that $E \subseteq U$, where U is (os). Since E is ($g \delta-c s$), by proposition (2.6), then $C L_{h}(E) \subseteq C L_{\delta}(E) \subseteq U$, so we get $C L_{h}(E) \subseteq U$. Hence E is $(g h-c s)$ in χ.■
The converse is not true in general as shown in the following example.
Example 2.11. If $\chi=\{5,2,3\}$ and $\tau=\{\emptyset, \chi,\{3\}\}$ then
$h c(\chi)=\{\emptyset, \chi,\{3\},\{5,2\}\}$
$\operatorname{ghc}(\chi)=\{\varnothing, \chi,\{5\},\{3\},\{2\},\{5,2\},\{2,3\},\{5,3\}\}$
Let $A=\{3\}, A$ is $(g h-c s)$ in χ but not $(g \delta-c s)$.
Corollary 2.12. Each $(\delta-c s)$ in χ is ($g h-c s$).
Proof. By Theorem (1.3) (1) and Theorem (2.10).
Theorem 2.13. Each ($g-c s$) in χ is $(g h-c s)$.
Proof. Suppose that E be ($g-c s$) in χ such that $E \subseteq U$, where U is (os). Since E is ($g-c s$) by Theorem (2.4) [1], then
$C L_{h}(E) \subseteq C L(E) \subseteq U$, so we get $C L_{h}(E) \subseteq U$. Hence E is ($g h-c s$) in χ.■
"The converse is not true in general as shown in the following example".
Example 2.14. From Example (2.8)
$C L_{h}(\{4\})=\{4\}, C L(\{4\})=\chi$. Hence $\{4\}$ is $(g h-c s)$ in χ but not $(g-c s)$.
Corollary 2.15. Each (cs) in χ is ($g h-c s$).
Proof. By Theorem (1.3) (4) and Theorem (2.13). ■
Remark 2.16. There is no relationship between ($\alpha-c s$), ($\alpha g-c s$) and ($g s-c s$) with ($g h-c s$) as shown in the following examples.
Example 2.17. If $\chi=\{2,4,6\}$. Now,

1. If $\tau=\{\varnothing, \chi,\{4\},\{4,6\}\}$. Then $\{6\}$ is $(\alpha-c s)$ and ($\alpha g-c s$) but not ($g h-c s$). Also \{6\}is semi- closed and ($s g-c s$) but not ($g h-c s$).
2. If $\tau=\{\varnothing, \chi,\{2,4\}\}$. Then $\{2\}$ is not $(\alpha-c s)$ and not ($\alpha g-c s$) but ($g h-c s$). Also $\{4\}$ is not semi- closed and not ($s g-c s$) but ($g h-c s$).
Remark 2.18. As a result of the above, we have Fig. 1 below.

Fig. 1
Theorem 2.19. If E is (gh-cs) and $E \subseteq B \subseteq C L_{h}(E)$, then B is ($g h-c s$).
Proof. Assume that U be (os) in χ such that $B \subseteq U$, then $E \subseteq U$. Since E is $(g h-c s)$. Then $C L_{h}(\mathrm{E}) \subseteq U$, now $C L_{h}(B) \subseteq C L_{h}\left(C L_{h}(E)\right)=C L_{h}(E) \subseteq U$.Therefore B is (gh-cs).■
Theorem 2.20 Let $E \subseteq \gamma \subseteq \chi$ and suppose that E is(gh-cs) in χ, then E is(gh-cs)relative to γ.
Proof. Because of this $E \subseteq \gamma \subseteq \chi$ and E is $(g h-c s)$ in χ, to show that E is (gh-c) relative to γ. Let $E \subseteq U \cap \gamma$, where U is $(o s)$ in χ. Since E is $(g h-c) E \subseteq U$, implies $C L_{h}(E) \subseteq U$. As a consequence, $C L_{h}(\mathrm{E}) \cap \gamma \subseteq U \cap \gamma$.

Thus E is ($g h-c s$) relative to γ.
Theorem 2.21. A (gh-cs) E is (h-cs) only if and only if $C L_{h}(E) \ E$ is (h-cs).
Proof. If E is $(h-c s)$, then $C L_{h}(E) \backslash E=\emptyset$. Conversely, suppose $C L_{h}(E), E$ is $(h-c s)$ in χ. Since $E(g h-c s)$. Then $C L_{h}(E) \backslash E$ there are no non empty closed sets in this collection in . Then $C L_{h}(E) \backslash E=\phi$. Hence E is ($h-c s$).
Definition 2.22. "A subset E of a space χ is called gh-open set (gh-os)" if $\chi \backslash \mathrm{E}$ is (gh-cs). The family of all (gh-os) subset of a TS (χ, τ) is denoted by $g h o(\chi)$.
All of the following results are true by using complement.
proposition 2.23. The following statements are true:

1. Each (h-os) is (gh-os).
2. Each (os) is (gh-os).
3. Each $\left(\delta_{-o s}\right)$ is (gh-os) .

Proof. By using the complement of the definition of (gh$c s)$.

III. gh-Continuous Mapping

The $g h$-continuous map on $T S$ is introduced and studied in this section.
Definition 3.1."A mapping $f: \chi \rightarrow \gamma$ is said to be gh-continuous ($g h$-contm), if $f^{-1}(F)$ is ($g h-c s$) in χ for each (cs) F in $\gamma^{\prime \prime}$.
Theorem 3.2. If $f: \chi \rightarrow \gamma$ is (contm) then it is (gh-contm)
Proof. Assume that $f: \chi \rightarrow \gamma$ be (contm) and "let F be (cs) in γ. since f is (contm) then $f^{-1}(F)$ is (cs) in χ. By Corollary (2.15), then $f^{-1}(F)$ is ($g h-c s$) in χ. \square
The converse of the above the over is not true in general as shown in the following example".
Example 3.3. If $\chi=\gamma=\{2,4,6\}$ and
$\tau=\{\varnothing, \chi,\{4\},\{4,6\}\}$,
$\sigma=\{\emptyset, \gamma,\{6\},\{2,6\}\}$ then
$h c(\chi)=\operatorname{ghc}(\chi)=\{\varnothing, \chi,\{2\},\{4\},\{2,4\},\{2,6\}\}$
Assume that $f: \chi \rightarrow \gamma$ be an identity map. Then f is (gh-contm), but f is not (contm), since for the (cs) $\{4\}$ in $\gamma, f^{-1}(\{4\})=\{4\}$ is not $(c s)$ in χ.
Theorem 3.4. Each (g - contm) is (gh-contm).
Proof. Assume that $f: \chi \rightarrow \gamma$ be " $(g$-contm) and let F be (cs) in . since f is (g-contm) and by Theorem (2.13), then $f^{-1}(F)$ is ($g h-c s$) in χ.
As shown in the following example, the converse of the preceding theorem is not true in general".
Example 3.5. If $\chi=\gamma=\{7,8,9\}$ and
$\tau=\{\emptyset, \chi,\{8\},\{8,9\},\{7,8\}\}$,
$\sigma=\{\varnothing, \gamma,\{7\},\{7,8\}\}$
$g c(\chi)=\{\varnothing, \chi,\{7\},\{9\},\{7,9\}\}$,
$h c(\chi)=\operatorname{ghc}(\chi)=\{\varnothing, \chi,\{7\},\{8\},\{9\},\{7,8\},\{7,9\},\{8,9\}\}$
Assume that $f: \chi \rightarrow \gamma$ be an identity map. Then f is (gh- contm), but f is not (g-contm), because $\{8,9\}$ is (cs) in γ but $f^{-1}(\{8,9\})=\{8,9\}$ is not $(g-c s)$ in χ.
Theorem 3.6. All ($g \delta$ - contm) is (gh-contm).
Proof. Suppose that $f: \chi \rightarrow \gamma$ be ($g \delta$-contm) and F be (cs) in γ. since f is ($g \delta$-contm) then $f^{-1}(F)$ is $(g \delta-c s)$
in χ and by Theorem (2.10), then $f^{-1}(F)$ is $(g h-c s)$ in χ.
The converse of the above the over is not true in general as shown in the following example.
Example 3.7. If $\chi=\gamma=\{2,4,6\}$ and
$\tau=\{\varnothing, \chi,\{6\}\}, \quad \sigma=\{\varnothing, \gamma,\{2,4\}\}$
$h c(\chi)=\{\varnothing, \chi,\{6\},\{2,4\}\}$
$\operatorname{ghc}(\chi)=\{\varnothing, \chi,\{2\},\{4\},\{6\},\{2,4\},\{2,6\},\{4,6\}\}$
Suppose that $f: \chi \rightarrow \gamma$ be an identity map.Then f is (gh - contm), but f is not ($g \delta$-contm), because $\{6\}$ is ($c s$) in γ but $f^{-1}(\{6\})=\{6\}$ is not $(g \delta-c s)$ in χ.
Theorem 3.8. Each ($\theta \mathrm{g}$ - contm) is (gh-contm).
Proof. Suppose that $f: \chi \rightarrow \gamma$ be (θ g-contm) and F be (cs) in γ. "since f is $\left(\theta g\right.$-contm) then $f^{-1}(F)$ is $(\theta g$ $c s$) in χ and by Theorem (2.7), then $f^{-1}(F)$ is ($g h-c s$) in χ.
As shown in the following example, the converse of the preceding theorem is not true in general".
Example 3.9. If $\chi=\gamma=\{3,4,5\}$ and
$\tau=\{\varnothing, \chi,\{3\},\{4\},\{3,4\}\}$,
$\sigma=\{\emptyset, \gamma,\{4\},\{3,4\}\}$
$h c(\chi)=\{\varnothing, \chi,\{5\},\{3,5\},\{4,5\}\}$
$\operatorname{ghc}(\chi)=\{\varnothing, \chi,\{5\},\{3,5\},\{4,5\},\{3\}\}$,
$\theta g c(\chi)=\{\emptyset, \chi,\{3,5\}\}$
Suppose that $f: \chi \rightarrow \gamma$ be an identity map. Then f is (gh - contm), but f is not ($\theta \mathrm{g}$ - contm), because $\{5\}$ is ($c s$) in γ but $f^{-1}(\{5\})=\{5\}$ is not $(\theta g-c s)$ in χ.
Remark 3.10. As a result of the above, we have Fig. 2 below.

Fig. 2
Remark 3.11. There is no relationship between (αg contm) and (gs -contm) with (gh-contm) as shown in the following examples.
Example 3.12. If $\chi=\gamma=\{2,4,6\}$ and let $f: \chi \rightarrow \gamma$ be an identity map. Now,

1. If $\tau=\{\varnothing, \chi,\{2,4\}\}, \sigma=\{\varnothing, \gamma,\{4,6\}\}$.

Then f is (gh-contm), but f is not (αg-contm) and not ($g s$-cnntm), because $\{2\}$ is (cs) in γ but $f^{-1}(\{2\})=\{2\}$ is not ($\alpha g-c s$) and not ($g s-c s$) in χ.
2. If $\tau=\{\varnothing, \chi,\{4\},\{4,6\}\}, \sigma=\{\varnothing, \gamma,\{2,4\}\}$.

Then f is (αg - contm) and (gs-cnntm), but f is not (ghcontm) because $\{6\}$ is (cs) in γ but $f^{-1}(\{6\})=\{6\}$ is not ($g h-c s$) in χ.

Fig. 3
Definition 3.13. A mapping $f: \chi \rightarrow \gamma$ is said to be gh irresolute $\left(g h\right.$-irrm), if $f^{-1}(F)$ is $(g h-c s)$ in χ for each (gh-cs) F of γ.
Theorem 3.14. Each (gh-irrm) is (gh-contm).
Proof. It's obvious.
The converse of the above the over is not true in general as shown in the following example.
Example 3.15. If $\chi=\gamma=\{2,3,4\}$ and
$\tau=\{\varnothing, \chi,\{4\},\{3\},\{3,4\}\}, \quad \sigma=\{\varnothing, \gamma,\{3\},\{3,4\}\}$
$h c(\gamma)=\operatorname{ghc}(\gamma)=\{\varnothing, \gamma,\{2\},\{3\},\{2,4\},\{2,3\}\}$,
$h c(\chi)=\operatorname{ghc}(\chi)=\{\varnothing, \chi,\{2\},\{2,4\},\{2,3\}\}$
Suppose that $f: \chi \rightarrow \gamma$ be an identity map. Then f is (gh-contm), but f is not (gh-irrm) because $\{3\}$ is (gh-cs) in γ but $f^{-1}(\{3\})=\{3\}$ is not $(g h-c s)$ in χ.
Theorem 3.16. A combination of two (gh-irrm) is also (gh-irrm).
Proof. Suppose that $f: \chi \rightarrow \gamma$ and $H: \gamma \rightarrow Z$ be any two ($g h$-irrm) . let F be any ($g h-c s$) in Z. Since H is ($g h$-irrm), then $H^{-1}(F)$ is ($g h-c s$) in γ. Since, f is ($g h$ - irrm) then $f^{-1}\left(H^{-1}(F)\right)=(H \circ f)^{-1}(F)$ is $(g h-c s)$ in χ. Therefore HoF: $\chi \rightarrow Z$ is (gh-irrm).
Definition 3.17. "A mapping $f: \chi \rightarrow \gamma$ is said to be strongly $\mathrm{g} h$ - continuous, suppose that the inverse image of each $\quad(g h-c s)$ in γ is closed in $\chi^{\prime \prime}$.
Theorem 3.18. All strongly (gh-contm) it is (contm).
Proof. Assume the following scenario: f is strongly ($g h$ - contm). Let F be (cs) in γ. Since (each ($c s$) is ($g h-c s)$), then F is ($g h-c s$) in γ. Since f is strongly ($g h$ - contm), $f^{-1}(F)$ is ($c s$) in . Therefore f is (contm). ■
As shown in the example (3.15), the converse of the preceding theorem is not true in general.
Suppose that $f: \chi \rightarrow \gamma$ be an identity map. Then f is continuous, but f is not strongly $g h$ - continuous because $\{3\}$ is $(g h-c s)$ in γ but $f^{-1}(\{3\})=\{3\}$ is not $(c s)$ in χ.
Theorem 3.19. Each strongly gh- continuous map it is ghcontinuous.
Proof. Assume the following scenario: f is strongly ($g h$ - contm). Let F be ($c s$) in γ. Since (all ($c s$) is ($g h-c s$)), then F is ($g h-c s$) in γ. Since f is strongly (gh-contm), $f^{-1}(F)$ is $(c s)$ in . Since (all $(c s)$ is $\left.(g h-c s)\right)$, then $f^{-1}(F)$ is $(g h-c s)$ in χ. .
As shown in the example (3.15), the converse of the preceding theorem is not true in general.
Suppose that $f: \chi \rightarrow \gamma$ be an identity map. Then f is (gh-contm), but f is not strongly $g h$-continuous, since for the $(g h-c s)\{3\}$ in $\gamma, f^{-1}(\{3\})=\{3\}$ is not closed in χ.

IV. gh- Closed Sets and Separating Axioms

In this section, we introduce and study a new type of separating axioms spaces for ($g h-o s$) in TS.
Definition.4.1. A TS (χ, τ) is called

1. $T_{0 g h}$ - space if a, b are to distinct points in χ there
exists (gh-os) U such that either $a \in U$ and $b \notin U$, or b $\in U$ and $a \notin U$.
2. $T_{1 g h}$ - space if $a, b \in \chi$ and $a \neq b$, there exists ($g h$ os) U, V containing a, b respectively, such that either $b \notin U$ and $a \notin V$.
3. $T_{2 g h}$-space if $a, b \in \chi$ and $a \neq b$, there exists disjoint ($g h-o s$) U, V containing a, b respectively.
Theorem.4.2. Each T_{0}-space is $T_{0 g h}$-space.
Proof: Assume that χ be T_{0} - space and a, b be two distinct points in χ. Since χ is T_{0} - space. Then there is one an (os) U in χ such that $a \in U$ and $b \notin U$ or $b \in U$ and $a \notin U$. Since (each (os) is (gh-os)) proposition 2.23(2). Then U is (gh-os) in χ such that $a \in U$ and $b \notin U$ or $b \in U$ and $a \notin U$. Hence χ is $T_{0 g h}$ - space.
The converse is not true in general as shown in the following example.
Example.4.3. If $\chi=\{1,2,3\}, \tau=\{\varnothing, \chi,\{1,2\}$. Then (χ, τ) is not T_{0}-space, but $(\chi, \operatorname{gho}(\chi))$ is $T_{0 g h}$ - space.
Theorem.4.4. Each $T_{0 h}$-space is $T_{0 g h}$-space.
Proof: Assume that χ be $T_{0 h}$ - space and a, b be two distinct points in χ. Since χ is $T_{0 h}$-space. Then there is one an $\quad(h-o s) U$ in χ such that $a \in U$ and $b \notin U$ or $b \in U$ and $a \notin U$. Since (each (h-os) is (gh-os)) proposition 2.23(1). Then U is ($g h$-os) in χ such that $a \in U$ and $b \notin U$ or $b \in U$ and $a \notin U$. Hence χ is $T_{0 g h}$ - space.
"The converse of the above the over is not true in general as shown in the following example".
Example.4.5. Let $\chi=\{3,6,9\}, \tau=\{\varnothing, \chi,\{9\}\}$. Then $(\chi, h o(\chi))$ is not $T_{0 h}$-space, but $(\chi, \operatorname{gho}(\chi))$ is $T_{0 g h}$-space.

Theorem.4.6"Each $T_{1-\text { space }}$ is $T_{1 g h-s p a c e ~}$

Proof: Suppose that χ be T_{1} - space and a, b be two distinct points in χ. Since χ is T_{1} - space. Then there exist two (os) U, V in χ such that $a \in U, b \notin U$ and $b \in V$ and $a \notin$
V. Since (each (os) is (gh-os)) proposition 2.23(2).Then U, V are two (gh-os) in χ such that $a \in U$ and $b \notin U$ and b $\in V$ and $a \notin V$. Hence χ is $T_{1 g h}$-space.
As shown in the following example, the converse of the preceding theorem is not true in general".
Example 4.7. If $\chi=\{2,3,5\}, \tau=\{\varnothing,,\{2\},\{2,3\},\{2$, $5\}\}$. Then (χ, τ) is not T_{1-} space, but $(\chi, g h o(\chi))$ is $T_{1 g h}$ - space.
Theorem.4.8. Each $T_{1 h^{-}}$space is $T_{1 g h}$-space
Proof: Suppose that χ be $T_{1 h}$ - space and a, b be two distinct points in χ. Since χ is $T_{1 h}$ - space. Then there exist two (h-os) U, V in χ such that $a \in U, b \notin U$ and $b \in V$ and $\quad a \notin V$. Since (each (h-os) is $(g h-o s)$) proposition 2.23(1). Then U, V are two (gh-os) in χ such that $a \in U$ and $b \notin U$ and $\quad b \in V$ and $a \notin V$.Hence χ is $T_{1 g h}$ - space.

As shown in the example (4.5), the converse of the preceding theorem is not true in general. $(\chi, h o(\chi))$ is not $T_{1 h}$-space, but $(\chi, g h o(\chi))$ is $T_{1 g h}$ - space.
Theorem.4.9. Each $T_{1-\text { space }}$ is $T_{0 g h}$ - space.
Proof: Since each $T_{1^{-}}$space is $T_{0^{-}}$space and each $T_{0^{-}}$ space is $T_{0 g h}$ - space. Hence T_{1} - space is $T_{0 g h}$ - space. As shown in the example (4.5), the converse of the preceding theorem is not true in general. (χ, τ) is not T_{1-} space, but $(\chi, g h o(\chi))$ is $T_{0 g h}$ - space.
Theorem.4.10. Each $T_{1 g h}$-space is $T_{0 g h}$-space.
Proof: It's obvious.
Theorem.4.11. Each T_{2}-space is $T_{2 g h}-$ space.
Proof: Suppose that χ be T_{2} - space and a, b be two distinct points in χ. Since χ is T_{2} - space. Then there exists disjoint (os) U, V containing a, b respectively. From proposition $2.23(2)$ each ($o s$) is ($g h-o s$). Then U, V are disjoint ($g h$-os) containing a, b respectively. Hence χ is $T_{2 g h}$ - space.
As shown in the example (4.5), the converse of the preceding theorem is not true in general. (χ, τ) is not $T_{2^{-}}$ space, but $(\chi, g h o(\chi))$ is $T_{2 g h}$ - space.
Theorem.4.12. "Each $T_{2 h}$-space is $T_{2 g h}-$ space.
Proof: Suppose that χ be $T_{2 h^{-}}$space and a, b be two distinct points in χ. Since χ is $T_{2 h}$ - space. Then there exists disjoint ($h-o s$) U, V containing a, b respectively. From proposition 2.23(1) each (h - os) is (gh-os). Then U, V are disjoint (gh-os) containing a, b respectively. Hence χ is $T_{2 g h}$ - space.
As shown in the example (4.5), the converse of the preceding theorem is not true in general. ($\chi, h o(x))$ is not $T_{2 h^{-}}$space, but $(\chi, g h o(\chi))$ is $T_{2 g h^{-}}$space".
Theorem.4.13. Each $T_{2 g h}$-space is $T_{1 g h}-$ space.
Proof: It's obvious.

Conclusion

The generalized h -closed set is not topological space and every closed, h-closed and g-closed sets is generalized hclosed.

Acknowledgement

The authors would express they're thanks to college of Education for pure Sciences, University of Mosul to support this paper.

References

[1] Fadhil. Abbas,(2020),"On h-Open Sets and h-Continuous Function", J. Appl. Comput. Math, Vol. 9, pp. 1-5.
[2] J. Dontchev and M. Ganster, (1996), "On δ-Generalized Closed Sets and $T_{3 / 4}$-Spaces ". Mem. Fac. Sci. Kochi. Unvi. Ser. A, Math., Vol.17, pp.15-31.
[3] J. Dontchev and H. Maki, (1999),"On θ-Generalized Closed Sets ". Int. Math. Math. Sci, Vol.22, (2), pp.239-249.
[4] N. Levine,(1970) "Generalized Closed Sets in Topological", Rend. Circ. Math. Palermo, Vol.19, pp. 89-96.
[5] N. Levine, (1960)," Strongly Continuity in Topological Spaces", Amer. Math. Monthly, Vol. 67, pp. 269.
[6] R. Devi, K. Balachandran and H. Maki, (1998), "Generalized α-Closed Maps and α - Generalized Closed Maps", Indian J. Pure. Appl. Math., Vol.29(1), pp. 37-49.
[7] R. Devi, H. Maki and K. Balachandran, (1995), " Semi-Generalized Homeorphisms and Generalized Semi- Homeorphisms ", Indian J. Pure. Appl. Math., Vol.26(3), pp. 271-284.

مجاميع مظلقة من النمط - h معممة في فضاء تبولوجي
بيداء سهيل عبد الهّ

Baedaa419@unmosul.edu.iq

قسم الرياضيات، كلية التربية للعلوم الصرفة جامعة الموصل، موصل،العراق

```
تاريخ استلام البحث: 2021/12/21 2021/12/29 
```

```
هذه الدراسة تقام نو عا جديدا من مجموعات مغلقة في 
تبولوجيا تدعى مجمو عات مغلقة من النمط - h معمدة وباختصـار
تعرف على النحو النتال\: (gh-closed)
    N م
```



```
مغلقة من النمط - h معدمة ومجاميع مغلقة اخرى ( مغلقة م
```



```
0
```



```
    خو اص تم بر هانها. اخبرا، بديهيات الفصل تم در استها. 
h - الكلمات المفّتاحيّة)
    معدعة، تطبيق مستمر من النمط - / معمم وبديهيات الفصل. 
```

