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1. Introduction

In some cases, the study variable cannot be easily measured or is too expensive, yet it can be easily
ranked for no cost or at a bit of cost. The writings on ranked set sampling RSS discuss a wide range of
strategies for obtaining more efficient estimators for the study variable by including auxiliary
information. RSS, is a logical approach to data collection that improves estimation. The method of
ranking units is based on the values of one of the auxiliary variable(s) correlated to the variable of the
study. The rank of units inside groups, from smallest to largest, for the variable we wish to study with
our naked eye is frequently challenging to accomplish when the group size is quite large. And, if it is
mostly completed, the ranking process will encounter faults, reducing the effectiveness of RSS. As a
result, exploring alternate methods for ranking the units inside the group has become vital to avoid
arrangement problems. Therefore, alternate ways for ordering units inside the group have been
proposed, including the median ranked set sampling MRSS. Mclntyre[6] was the first to introduce the
concept of ranked set sampling RSS in his exceptional attempts to develop an estimator that would be
more effective for estimating the yield of Australia's vast grazing regions. After Halls and Dell[4]
utilized RSS to estimate the output of animal fodder in pine woodlands, the concept appeared to gain
traction, and they were the first to use the term ranked set sampling to refer to their method of
estimation. Takahase and Wakimo to[11], the two scientists who provided the first mathematical proofs
for this type of sampling, proved that the arithmetic mean of this type of sampling is an unbiased
estimator of the population's arithmetic mean and that the variance is less than the variance of the
arithmetic mean of a simple random sample SRS, assuming perfect ranking of the elements.

Dell and Clutter[3] came at the same result as the previous authors, but without the necessity that the
elements be in perfect order, implying that there may or may not be ranking flaws in the elements.
Stokes[9] proposed utilizing the auxiliary variable to estimate the ranks of the variable we want to

54


http://www.stats.mosuljournals.com/
mailto:Rikan.AL_Rahman1101@coadec.uobaghdad.edu.iq
mailto:Rikan.AL_Rahman1101@coadec.uobaghdad.edu.iq
https://doi.org/10.33899/iqjoss.2022.174332
http://creativecommons.org/licenses/by/4.0/
https://orcid.org/0009-0009-3743-7234
https://orcid.org/0009-0009-3743-7234
https://orcid.org/0009-0009-3743-7234
https://orcid.org/0009-0009-3743-7234

Iraqi Journal of Statistical Sciences, Vol. 19, No. 1, Pp. (54-66)

examine (the main variable), because it is difficult to rank units with the naked eye when dealing with
large numbers of units. AL-Saleh and Samawi[2] the proposed estimators are compared to other
existing estimators using a bivariate simple random sample and application to the bivariate normal
distribution. They are estimated using a bivariate ranked set sampling technique. Zamanzade and Al-
Omari[12] compared empirical mean and variance estimators based on new ranked set sampling to
their counterparts in ranked set sampling and simple random sampling using Monte Carlo simulation.
Muttlak[7] suggested studying median ranked sets samplingMRSS as a strategy to minimize errors in
the process of ranking units within groups. Syam et al.[10] investigated the average population using
double median ranked set sampling method, demonstrating that DMSRSS estimators were more
efficient than their simple random sampling, stratified random sampling, ranked sampling, and
stratified ranked set sampling counterparts. This method produces reliable estimations of a population's
mean regardless of the symmetry or asymmetry of the distribution. To estimate the ratio of a finite
population, the Al-Omari with Al-Nasir[1] multistage median, ranked sampling MMRSS approach was
used. The results demonstrate that the proposed estimators are unbiased and have the lowest variance
when compared to simple, stratified, ranked, and median ranked sampling procedures, and that the
efficiency of the MMRSS estimators grows as the number of sample size determination cycles
increases. Using auxiliary variables, we present a highly generalized approach for estimating the
population mean using the MRSS schemes, which is discussed in detail in this study. Based on this
demonstration, it is established that a large number of prior estimators belong to the proposed class of
estimator, and this proposed estimator is more efficient in estimating the mean population than the
corresponding previous estimators in MRSS and SRS.

2+ Methodology for MRSS:

Muttlak suggested studying median ranked sets sampling MRSS as a strategy to minimize errors in the
process of ranking units within groups. And the following summarizes the MRSS procedure for
drawing a sample of size n. We randomly select m? sample size from the population, and divide this

sample into m groups each group having a size of m units, and then arrange units within each group. If
the size of group m is odd, we measure the median of each group, i.e. the rank unit(mT“) , however, if
the group size is an even number, we withdraw the units of rank (%) for measurements from half of

the groups and measure the units of rank(mT”) , from the remaining half. In both cases, the first cycle

will produce a sample size of m units. To obtain the needed sample size n = mr, we can repeat the
cycle r times. The MRSS process is summarized as follows:

1- Choose m?sample items at random from the targeted population.
2- Divide the m? items into m groups of size m each, and then rank the items inside each group.

3- If the sample size m is odd, choose the (m7“)thsmallest rank item, this corresponds to the

median of each group from step 2. While if the sample size is even from step 2, choose the
(%)”’ and (mT”)”‘ smallest rank from the initial % and subsequent % samples for
measurement respectively.
4- Stages 1-3 should be reiterated r times till you have a sample of size n = mr.
Now assuming the sample size m is odd, then MRSS,, represent median ranked set sampling, where the
items of MRSS, for main variable Y and the two auxiliary variables X; and X,, and suppose that the

ranking depends on the auxiliary variable X,, described are follows.
Oy sy g Oy ey ey ) -

st sty Zanpezsy)

where y;;; and x,,,;; denotes the i" judgment ordering in the i*" set in the j** cycle for the study

ili]
variable Y and auxiliary variable X, respectively. Also X140,
the jt* cycle for the auxiliary variable X, where (i = 1,2,---,mand j = 1,2,---,7). Finally, if the
sample size m is even, then MRSS, represent median ranked set sampling, let &k = % , Where items

of MRSS, as follows.
(e mamyrmengzy) - (apmpmsagmy mapmy) o (g 2y gy

(y e[ e (72)) x2k+1[m7“]f> ’<y S e xzm[mT”]f>

denotes the i ranking in the it" set in
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Let y,%,%,,S;,S% and S, denotes the natural, unbiased estimates of the finite population mean,
Y, X;,X, and variance gy ,0%,07,, of the main variable and two auxiliary variables in SRS,
respectively. [7], has estimated the mean of a finite population using median ranked sets sampling and
has demonstrated that it is impartial to the population mean and has a lower variance than the simple
random sample, as shown below. The estimator of the mean population is known according to the

following relationship in median ranked sets sampling and the odd case.
_ 1 _ 1
YMRsso = Yj=12i=1 yi[mT’fl]j » X1MRsSo = 7, Yj=12i1 xu’(mT“)j and
_ _1 r m
X2MRsso = =1 Zi:1x2i[mT+1]j
These estimators are unbiased for the average population, which means that.
E(Jumrsso) =Y ,E( Ximrsso) = X1 and E( Xpmgsso) = X,
o2 Zﬁﬂ}_’i[m_ﬂl—?)z
IR 2 B

_ 1
V(Ymrsso) = poowy U;[m_ﬂ] = %_ Ty + Tyo) = mn
2

TR & me1—X1)?
2 i=1 m+1
V(X1mrsso) = L0'2 mi1 = 2L T T = #
mn x1(——) n x1(0) » “x1(0) mn
= 1 2 o2, . Zzr:l1(322i[mT+1]_X2)2
V(xZMRSSO) = Eaxz[m—ﬂ] = n sz(o) ' sz(o) = -
2

Now the estimators are defined as follows for the even case.
— _ l r k m
YuMRsse = Y=l Ziss yi[%]j + Xkt yl.[mTsz]j]
— _ l r k m
X1MRSSe = Yi=1l Xi=1 x]_[(%)j + Xkt x1i(mT+2)j]
_ _ l r k m
X2MRsse = 3, Y=l Xisa xzi[%]j + XiZk+1 xZi[mT“]j]
And also, these estimators are unbiased for the average population
E(Ymrsse) = Y LE( X1mRsse) = Xy and E( XamRsse) = X,
As for the variance estimated of the arithmetic mean by median ranked sets sampling and in the even

case, it is denoted by the following formula:

0.2

V(¥mrsse) = i [U;[%] + U;[mT’rZ]] = 7}’ — Ty

V(X1mrsse) = i [Ujl(%) + Ujl(mTﬂ)] = Jzi — T o)

V(Xamrsse) = i [sz[%] + sz[mTJrZ]] = UT)%Z = Ty
Where Ty = B, gy = P92 + S0y — 1)

Tere) = ﬁ{ﬂ‘:l(fu@) - X%+ Dl (Fy ey = X1)2}

Teye) = ﬁ{ﬂ‘:l(@i[%] —X3)? + Zi2k(Fyymez) = X;)? }

In terms of the covariance between the averages of the main and auxiliary variables obtained using
median ranked sets sampling, are defined as follows in both cases:

_ _ _ Oyxq = = _ 9yxp
Cov(Yurssor X1mrsso) = n Tyxl(o) » Cov(Vmrssor X2amrsso) = n Tyxz(o)

9x1%2

— . _ = =~ _ 9yx1
Cov(X1mrssor X2mRrsso) = — Ty 500 » Cov(Ympsser X1mrsse) = n Ty, o)

Oyxa 9x1%2

Cov(Yumrsser X2mrsse) = yxz(e)& Cov(X1mrsser X2mrsse) = Ty x500)
1 _ _ _
Where Tyxi(0) = v {Z?ll(yi[mTﬂ] =Y) (xli(mTH) - X1)}
1 — — — i
Tyxy(0) = 7 {Z?il(yi[mTﬂ] —-Y) (xzi[’"T“] - Xz)}

Tiixa(0) = %{Zﬁl(fu(%ﬂ) - X)) () = Xz)}

Tyxi(e) = m—n{Zﬁl()_'i[%] - 7)(9?11-(%) - X))+ Z?ik(ii[mTH] - 17)(3?11-(mT+2) - )?1)}
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Tyxy(e) = ﬁ{ﬂll(?i[%] -7) (Tyyfm) = X;) + Lk (ymez) = Y) (J?Zi[an] —~ )?2)}

T = g (o ) = )5y 2] = ) T CE ey = I = o)

And g;;; (i # j) = y,x1,x, it is used to express the co-variance between the main and auxiliary
variables in simple random sampling procedures, see for further information [7] and [8].

3. Proposed generalized estimator:

The mean of the population is one of the essential metrics that scholars are interested in investigating
because of its significance in identifying the features of the community. As a result, most samples are
utilized to find estimators for this unknown parameter in various methods. Samawi, Al-Omari, and
Khan were among a limited group of researchers who dealt with this parameter by estimate in
theMRSS. Using median ranked sets sampling, we will show suggested estimation for investigating the
mean population in this paper. Because the proposed estimation is generalized estimation, we may
obtain any required estimation by making a few simple modifications in the proposed estimation. The
following is a broad description of the proposed estimator.

Vv - b¢ z % P
Y:ta(gl)(l) = Pursst ()1 (=—2—)02[k (exp (Z—=21ES5L) )91 + (1 — k) (exp( Z—2MES5L))g2]

X1MRSSI X2MRSSI X1+ X1MRSSI X2+ XaMRSSI

Where, 6,, 6, are unknown constants selected to keep the mean squared error of the 17(9)(1) estimator to

gm

the smallest possible value, k is a well-known constant scalar that can take either one or zero
values, g, & g, ,are standards values that can take (—1,0,1), each of the values k, g, and g, is
utilized to determine the estimator form that can be generated from of the estimator defined above.

It is worth noting that in the definition of the estimator 79 above, the index (1) takes one of the

gm(l)
letters( o0 or e ), where if (I = o) indicates that the estimator 7;51)(0) are defined on the odd case
from theMRSS,, and if (I = e) indicates that the estimators Y;;‘,’l)(e) are defined on the even case from
the MRSS,.

By setting the following error bounds, it will be possible to study the qualities of the suggested
estimator to make the process of obtaining these properties easier. To reformulate this estimator, we

assume the following.

Furssi-¥ x X x —X
Let _ YMRSSi __ *1MRSSi 1 &Tz([) — 2MR§SL 2

oy =7y — T T7 %, %

= ;l=o0o0re

According to what has been demonstrated by [7], the mean estimated by MRSS is an unbiased estimate
concerning the population's mean. And upon it E( 7o) = E (t10y) = E( 7209) = 0

V(YMRsS0) _ v Cov(ImRssoX1MRSS0) _ Vo100)
2 _ 72 = Y09 _ 73X, 1(o0
E (TO(D) ") VmRrsse) _ ' E(To(l)"[l(l)) ") Cov(ImRsseX1MRSSe) _
vz = Vo X, = Vo1(e)
V(X1MRSS0) _ V1o Cov(YMRSS0X2MRSS0) __ Yo2(0)
2\ _ X? o _ 7%, = Voz2(0
E(Tl(l)) T ) V(x1mrsse) _ : E(To(l)’rz(”) ") Cov(ImrsseX2mRSSe) _
—xz Vi(e) X, = Voz(e)
V(X2mRSS0) _ Vatoy Cov(X1MRSS0X2MRSS0) __ v
2 ) _ X3 ? _ v, = Vi2(0)
E(Tz(l)) ") V(X2mRsse) _ : E(Tl(l)’rz(l)) ") Cov(Z1mRsSeFaMRSSE) _
—xz V2(e) .5, = V12(e)
To evaluate the properties of the estimator 79 in both its odd and even cases, it will be rewritten in a

gm(l)
way that makes the process of obtaining these qualities easier by relying on the error bounds ;) ; i =

0,1,2& [ = o, e so that the estimator?'?) . becomes as follows up to the first degree of approximation.

o gm()’

g —

me(l) -

= k+26 1-k)+26 k ((291+9%)+46, g1)+46,(6,1-1)|c>

% {1 + Tow (51 21)10(1) _ (ga( )2 2)To(D) + [ (( 1+93)+46; 81) 1(61 ] 10 n
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[(1—k)((292+92)+49292)+492(92 1)]T2(1) (g1k+26070pT1y  (92(1-K)+202) 79y 72(p) +
8 2 2
[92601(1-k)+02 g1k+20162]T1(nT2() }
2

It will be necessary to add and subtract the ¥ value from the equation (3-2) to obtain the following
form, which will serve as the basis for determining the properties of the estimator}i;i)(l)

@ Vo
Ymay =Y =
- (g1k+200)19)  (92(1-K)+262)70(p) [k ((2g1+g%)+491 g1)+491(91—1)]1§(l)
Y Tow — - + +
2 2 8
[1-K)((292+93)+46, 92)+402(6,- D]ty (g1k+20)T00yTay  (92(1-K)+20)70(0 7200 N
8 2 2
[9261(1-k)+6, g1k+2640,]t,(pT
291 2 12 1921T1(D) 2(1)} (3_3)

And by taking the mathematical expectation for both sides of the equation (3-3), we can calculate the
bias amount for the estimator?'%’. . which is defined for the odd and even cases.

gm(l)’
Bias (Y(g) )

gm(l)
7 [k ((291*‘9%)‘*491 91)"‘491(91 1)]’71(1) " [(1—k)((2g2 +93)+46, 92)"‘492(92—1)]”2(1)
8 8
(g1k+261)v91(y  (92(1-K)+263)v02(p) + [9201(1-k)+0; g1k+29192]U12(l)}
2 2 2

It is also possible to calculate the mean squared error for the estimator @ by squaring equation (3-

gm(D)
3) and then taking the mathematical expectation up to the terms of order n~of it, and as follows.
= (g1k+261)? (g2(1-k)+26,)?
Mse (Y;gl)(l)) =Y? {Uo(z) +glf1171(z) + gz%vz(l) —(g:1k + 201)vo1) —
k+2601)(g2(1-k)+265)
(g9.1—-k)+ 292)1702(1) + 9, o iz 2 1712(1)} (3-5)

It is worth noting that equation (3-4) represents the formula for the mean squared error of the estimator
Yg(fl)(l) in the odd and even cases, where either of the two cases can be obtained by making the index (1)
take the symbol (o) to denote the odd case or by making the index (1) take the symbol (e) to denote
the even case. We also note that there is a relationship between the form of the mean square error
formula of the estimatorl_’gm(l), computed by median ranked sets sampling and the same estimator, but
that the latter depends in its calculation on simple random sampleSRS, by rewriting equation (3-4) in

another way, as shown below.

@ -
Mse (ng(z)) =
Ty , (g1k+26,)? (g2(1-K)+265)*
Mse(Ty;) — 72 {2 4 Ln2P0 e ENORs T e T
(91k 264) _ (g2(1-k)+26>) + (g91k+261)(g2(1-k)+26>) }
X, yx1(D) 7%, yx2 (1) 2%, %, x1x2(D)
(3-6)
Where

(g1k+2601)? (g2(1-k)+26,)?
Mse( )_ _{ +-= *—Rioy X1 +%R% a?z (91k+291)R10yx1_

k+29 (g2(1-k)+263)
(92(1 = k) + 20,)R, 0y, + L2202 2 R\Ry 05y} (3°7)
Is the mean squarefj error of the Ygs estimator that corresponds to the 17gm(l) estimator usingSRS,
R, = z &R2= Land
X1

= 37( )91( )92 [k(exp(Z——
When we examine the second term of the equation (3-6), we can see that the mean square error of the
estlmatorY(fl)(l) under MRSS is less than the mean square error of the estimator ¥ under SRS in both

X1— %1

09 + (1 — k) (exp( Z=22))92] (3-8)

X1+ %4 Xo+ Xy

the odd-even cases, as shown in the following steps.
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In the odd case: Let

(g1k+261) R1(9?1.(m+1)—)?1) (92(1—")4’292)1?2(752<[m+1]—i2) 2
Zigy = —3Y7 | (7 pman — 7)) — 2 - 12
(©) = un 2121 | V]

2 2
Where it is noted that the term Z,, is a perfect square, which allows the formulation of the mean
squared error of the estimator ¥, in the form shown by equation (3-9), and it shows the result that
indicatesM se (17;;‘2(0)) < Mse(¥;).

Mse (Yg(rgl)(o)) = Mse(Yys) = Z) (3-9)
In the even case: Let
. 1 K il — Y_') B (g1k+261) R1(9?1i(%)—)?1) B (92(1—’()"'292)1?2(9?21-[%]—)?2) 2 N
© ™ 2mn i=1 yi[;] 2 2

i [(J_/i[an] -Y)- -

(91k+261) R1(fu.(m_+2) -X1)  (92(1-K)+262)R; (fzi[m_ﬁ]—iz)] 2}
2 2
2 2

In this case, also, we note that Z, is the sum of two perfect squares, and therefore also remains in the
even case the mean squared error of the estimator 17;;;’3(1) is equivalent to what was reached by equation
(3-10), but replacing the second term from the right side of the equation with the amount Z instead of

Z(,), and the result that we reached is thatMse (Y;,i)(e)) < Mse(Yy;).

Mse (Y;i)(e)) = Mse(Yy) — Z (3-10)

As for the bias formula defined by equation (3-4), we can write it as shown in the following figure,
which shows that the bias amount of the estimator 17;;;’3(1) represents the product of subtracting the bias
amount of the estimator Ygs calculated by simple random sampling from a positive quantity, which
indicates that the bias amount of the estimator ¥, ;) based on MRSS is less than the bias amount of
theSRS.

Bias (7(9) ) =

B gm(D)
Bias(Y,,) —
% [k ((291*‘9%)"'491 91)+491(91—1)]Tx1(l) + [(1—k)((2gz+g%)+492 .92)+492(92—1)]Tx2(l) _
8n 8n
(91k+200)Tyy, ) (92(1-K)+265)Tyy, (1) " [9201(1—k)+82 g1k+2601021Tx, x, (1) (3-11)
2n 2n 2n

WhereBias(YgS), is the bias amount of the?gsestimator calculated using a simple random sample, and
its formula is as follows:

Bias(V,) = 7 {[k ((291+g§)+491égnl)+461(61—1)]0,%1 N [(1—k)((2g2+g%)+42292)+4—92(92—1)]0’:%2 _

(3-12)

(g1k+261)0yx,  (g2(1-K)+263)0yy, n [9201(1—k)+02 g1k+260103]0x, x,
2n 2n 2n

It is necessary to know the optimal values for the unknown constants 8,and 6, to obtain the best

formula for the estimatorYg(fn)(l), and this is accomplished through the process of partial derivation of

equation (3-5) for those values and then extracting the optimal values for them, as will be

demonstrated below.

2[vo1(1) Y2y~ Yoz V12(0]—91k P10 V2()~Vi2)
2[v1 V2 ~Viz )

& _ 2[veaq V1)~ Vo1 (V12|92 (1K) P10y V) —Via (] 3-14

HZOpt - — 2 ( - )
2[vav2(~v12)]
For odd and even cases, we get the average squared error of the optimum Y, estimator by

(3-13)

91opt

substituting equations (3-13) and (3-14) into formula (3-5) and as follows:
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(3-15)

2 2
7(9) ) o2y V1) o1 (1) V2(D)~2V01(l) Yo2()V12(1))
Mseopt (ng(z)) =Y {vg(l) — —
STOLATOREZPION

Additionally, by substituting the optimal values for élopt and ém,t with equations (3-1) and (3-4), we
will obtain the optimal estimator for the finite population mean and the optimal bias amount for )7;,%)(1)
by theMRSS.

4. Some of the estimators derived fromY%(D:

We obtain several exponential and non-exponential types for ratio, product, and ratio-cum-product
estimators from 17;;‘33(1).By replacing the values (6,,0,,K, g, & g,) in Eq (3-1) with specific values.
And we will denote each estimator by the value of the case number corresponding to it and enter this
value in the letter i in¥? . The following table shows the forms of some of these estimators.

gm)’
Table (1) Some estimates generated from 7;53(,)
1] 0 0 0 0 o0 Vomy = Iursst
X
52)  _ - 1
2 10 0 0 O Yomay = Ymrssi (JElMRSSl
=@3 _ X1MRss1
3] o 1 0 0 © Vymay = Pmrsst ()
1
_ X X
40 1.1 0 0 o Y = Fursst ——) (=
gm(@) = YMRsst (xu\_mssz X2MRsS!
G _ - X1MRssl | X2MRssl
5 -1 -1 0 0 0 ng(l) = Yumprssi ( X, )( X, )
X X, — %
6 1 0 1 1 O Y(6) — 3_1 (_ 1 )exp( _1 _1MRSSl
gm() — FMRSS! X1MRsSL X1 + Xiypssi
x X, — %
7 _1 0 1 1 0 Y(7) — y SSl( 1A1RSSl)eX (_1 _1MRSSl
gm® — “MR X X1+ Ximpssi
X x X, — %
8 1 _1 1 1 0 Y(8) — y (_ 1 )( ZI\ILRSSI )(exp(_l _1MRSSl
gm® = TMESSE N sy X, X1 + Xiypsst
Here 7 is replaced by? "~ which represents the traditional unbiased estimator of the population
gm() 'S T€P Ygma P pop
mean ¥ under theMRSS, as suggested by [7], 17;,2,3(1) is called the ratio estimator under theMRSS, was
suggested by [1],1@}3,3(1) is called the product estimator under theMRSS, Y;:;l)(l) is called the multiple
ratio estimator under theMRSS, Y;f;l)(l) is called the multiple product estimator under theMRSS, Y;fn)(l)

is called the ratio type exponential estimator under the MRSS, Y;Zn)(l) is called the product type

exponential estimator under the MRSS, andY;ﬁBm is called the ratio-cum-product type exponential
estimator under theMRSS. It should be noted that the general estimator Yy, can be used to derive a

large number of additional estimators using the same methodology. Furthermore, the properties of the
estimators Y& i =1,2,-,8 represented by the bias amount Bias (Y(’) ) and the mean squared

gm(l) gm(l)
error Mse (l{’ffi(l)), may be determined using the equations (3-4) and (3-5). Noting that we can

calculate the exact estimators shown in table (1) using SRS and the estimator defined in equation (3-8)
meaning Yg(si);i = 1,2,---8 calculation, as well as using equations (3-7) and (3-12) to extract the
properties of those estimators to compare them to the properties of MRSS estimators and use the
relative efficiency.

5. Comparing estimators' efficacy:

To determine the accuracy of the estimatorYg(gl)(l), it will be compared to the rest of the other
estimators that were defined in the previous section by calculating the efficiency criterion between

those estimators according to the following relationship:
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The following table provides the conditions that make the suggested estimator
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_ : Mse(79)
ef f (Tomi Yomaw) = Upra) ; _

: 12,8 (3-16)
mse(Yg )
5(9)
Y

gm(@)

than the rest of the other estimators by MRSS and based on equation (3-16), as shown below.

Table (2) Accuracy of the proposed estimator

i7(9) : ®
ng(l) with ng

(i =12, 8in MRSS

more efficient

7(9)
Mse (Y:gm(l)) < 2vo1() Yo2(DV12(D) <1
© ) AR TR0
Mse (Vo
7@
Mse (ng(l)) < 2Vp1() Vo212 +2P01(0 P10 V2 ()~ Va2())
Mse (Y(Z) ) Wo2) P10 a1 Y20 P10 1 V2 )~ Vi )]
gm(l)
Mse (Y9 ) < _ 2
gm(l) 2V01(1) Yo2(DV12()~2V01()[V1(1)V2() ~V12(p)]
Mse (y(3) ) W2V Va1 () V20 P10 V1) V2 )~ Via )
gm(l)
Mse (79 2
gm(l) 2v01(1) Yo2(DV12() +2[Vo1()) o2 ()] [V1 ) V2() V12 (] 1
< Mse (Yg(:;?(l)) (V10 V61 ) Y20+ V1 )+ 2+ 2012 V1 V2 () Vi)
Mse (79 _ 2
gm(l) 2v01(1) Yo2(DV12() ~2[Vo1()) o2 ()] [V1 () V2() V12 (] 1
< Mse (Yg(rsn)(l)) (21D V51 ) V20 V1) H 2+ 2012 VA V2 () Vi)
aC))
Mse (ng(l)) 2V01(1) Yo2()P12(D+3V010 P10 V2 1) ~Vi2(1)] <1
< Mse (Y;fn)(l)) W32 V1D V510 V2 + 22501 () V1) V2 ) ~Via )]
aC))
Mse (Y:qm(l)) 2V01() Yoz V120 ~Y01(D P10 V2 () Va2 1)) <1
< Mse (Y;;f(l)) Vg2V V1 () V2()+025v1 () V1) V2 ) ~Vio(p)
Mse (79 2
gm(l) 2V01(1) Yoz()V12(0) +3[Vo1() V120 V1) V2 —V12(p)) <1
< Mse (y:;fn)(l)) (Vo2 V10 V61 () V20 +H[2:25V1 ) +02 ) + 2002 ] V1 V2 (1)~ Vi ()]

6. Working simulation:
An actual data set is utilized to demonstrate the comparability of the proposed estimators compared to
one another. The data set contains 252 men's body fat percentages determined by underwater weighing
and different body circumference measurements. For more information on these data, see
“http://lib.stat.cmu.edu/datasets/bodyfat/” for more details. We decide on the study variable .body fat
percentage is represented by the variableY, while the first auxiliary variable X; represents belly
circumference, and thigh circumference is represented by the second auxiliary variableX,. Where the
following features of the community are present:
Y =19.150,X, = 92.556 ,X, = 95.406 ,07

=.813 ,pyy, =056 and py ,, =

70.036,07 = 116.275, g% =275.562,p,,,
0.767

Using the median ranked sets sampling MRSS technique, as explained in part 2, a simulation study
compares the estimators. The ranking process will be carried out using the auxiliary variable X; .
According to specific empirical metrics' estimates such as the percentage relative bias (.), and the
percentage relative efficiencies PRE(.), where the values of PRB(.) help to assess the different
estimators' empirical bias, whereas the PRE (.) show which estimator is the most efficient from an
empirical standpoint, the results of 25,000 simulations are used. As shown in Table (3-6), and the
PRB(.) and PRE(.) are obtained by using the formulas given below.
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(i 1 ) . ~ .
PRE ();}’l’)‘(l)) -y [25000 e Yg(rlr)L(l)k - Y)] x100;i=g,1,2,-+8
PRE (?(i) ) Y (Tgma) 100 iea12 .8 and
= use(7® ) X ’ L= g’ yhy "t an
gm(®) Mse(Y;rzl(l)K)
(i 1 i ~ .
Mse (Yg(rlr)l(l)) = 25000 12<5:0100 Y:q(rlr)L(l)K -2 ;i=g412-8

From Tables (3 and 4), it appears that the estimator Y;ﬁl)(,) has the lowest mean squared error in both

the odd and even cases, which suggests that it was able to describe the population mean in the most
accurate manner possible using the MRSS technique, while the estimator Y@ has the second-lowest

gm(D
mean squared error. Regarding the proposedY;ﬁfa), estimator in tables (5 and 6); we see that it has the
highest relative efficiency compared to the mean of median ranked set sampling)?(l) And that

gm)*
efficiency increases with increasing sample size. It is worth noting that the estimators (7;1’,)1(1) ,i =6,8)

are second order in efficiency when compared to thel_’;;‘fl)(l), estimator because they rely in their

definition on the exponential form, and that efficiency increases with increasing sample sizen = mr.
Comparing the estimators (17;3(1) ,i=24)10 17;53(1) in terms of efficiency, they are ranked third and
fourth respectively. When it comes to the estimators (17;2(1) ,
estimation efficiency because there is a positive correlation between the data and those estimations are
based on a negative relationship, which demonstrates their poor estimation ability. When it comes to

the relative bias scale, it appears from the two tables (5and 6) that the generalized estimator 7;;‘,’1)(1), has

the lowest possible bias compared to other estimators, with the lowest bias being 2% in the odd and
even cases, and with the increase in sample size, that bias fades until it is close to zero.

7. Final remarks:

When comparing the results of the simulation study with the theoretical results obtained through table

(2), it becomes clear that the proposed estimator 17;;‘51)([), by MRSS exhibits a high relative efficiency

when estimating the mean of a population and is not affected by the type of relationship between the
auxiliary and main variables, in contrast to other estimators affected by this type of relationship. In

terms of relative bias, the estimator%(i)(l), has the lowest bias, and that bias decreases as the size of the

ordered sample increases. And the two equations (3-9) and (3-10) also demonstrate that
theMRSSoutperforms the SRS in terms of accuracy when it comes to estimating the mean population.

As a result, the estimator YJi)(l),outperforms all of the estimators described in table (1) and other types

of estimators that can be derived from it.

i =3,5,7), they have the lowest
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Table 3: Mse (Y(i)

m(l

y) of proposed estimators as determined during simulation when m is odd

3 0.97297 0.50588 0.66176 0.41071 0.53294 0.36517 0.3669 0.32758 0.18945

4 12 0.89514 0.4369 0.65431 0.35978 0.49631 0.35429 0.31495 0.27517 0.18954

3 5 15 0.83651 0.27651 0.63424 0.23512 0.46162 0.34531 0.23491 0.2343 0.19776
10 30 0.53691 0.19895 0.41255 0.15716 0.43945 0.1149 0.21285 0.13249 0.10898

15 45 0.47529 0.15651 0.45291 0.12091 0.35517 0.08049 0.1743 0.10254 0.11125

20 60 0.41451 0.0945 0.39516 0.078497 0.31957 0.03517 0.15957 0.10099 0.10012

3 15 0.48148 0.24794 0.32588 0.20035 0.26147 0.17758 0.17845 0.15879 0.08972

4 20 0.44257 0.21345 0.32215 0.17489 0.24315 0.17214 0.15247 0.13258 0.08214

5 5 25 0.41325 0.13325 0.31212 0.11256 0.22581 0.16765 0.11245 0.11215 0.05689
10 50 0.26345 0.09447 0.20127 0.07358 0.21472 0.05245 0.10142 0.06124 0.05248

15 75 0.23264 0.07325 0.22145 0.05545 0.17258 0.03524 0.08215 0.04879 0.05124

20 100 0.20225 0.06698 0.19258 0.03424 0.15478 0.047891 0.07478 0.04469 0.05012

3 21 0.25074 0.13397 0.17294 0.11017 0.14073 0.09879 0.09922 0.08939 0.08147

4 28 0.23128 0.11672 0.17107 0.09744 0.13157 0.09607 0.08623 0.07629 0.06698

7 5 35 0.21662 0.07662 0.16606 0.06628 0.1229 0.09382 0.06622 0.06607 0.05842
10 70 0.14172 0.05723 0.11063 0.04679 0.11736 0.03622 0.06071 0.04062 0.03652

15 105 0.12632 0.04662 0.12072 0.03772 0.09629 0.02762 0.05107 0.03439 0.02889

20 140 0.11112 0.03112 0.10629 0.02712 0.08739 0.01629 0.04739 0.02274 0.01985

Table 4: Mse ( 17;2(1) ) of proposed estimators as determined during simulation when m is even

3 12 1.38884 0.86174 1.18584 0.83491 1.00744 0.60168 0.92758 0.41028 0.38756

4 16 1.18948 0.68136 1.01974 0.64744 0.81032 0.47516 0.83451 0.40756 0.25472

4 5 20 0.80684 0.62178 0.98591 0.61028 0.70758 0.41028 0.71956 0.33956 0.21538
10 40 0.74362 0.60964 0.81042 0.26178 0.63292 0.36156 0.52974 0.25916 0.18741

15 60 0.6125 0.50028 0.80682 0.29651 0.41028 0.20748 0.43252 0.18941 0.13548

20 80 0.51294 0.41024 0.61024 0.21116 0.25252 0.10156 0.23251 0.10254 0.10098

3 18 0.68942 0.42587 0.58792 0.41245 0.49872 0.29584 0.45879 0.20014 0.18878

4 24 0.58974 0.33568 0.50487 0.31872 0.40015 0.23258 0.41225 0.19878 0.12236

6 5 30 0.39842 0.30589 0.48795 0.30014 0.34879 0.20014 0.35478 0.16478 0.10269
10 60 0.36681 0.29982 0.40021 0.12589 0.31145 0.17578 0.25987 0.12458 0.10098

15 90 0.30125 0.24514 0.39841 0.14325 0.20014 0.09874 0.21125 0.10089 0.06212

20 120 0.25147 0.20012 0.30012 0.10058 0.12125 0.04578 0.11125 0.05876 0.05123

3 24 0.35471 0.22293 0.30396 0.21622 0.25936 0.15792 0.23939 0.11007 0.10088

4 32 0.30487 0.17784 0.26243 0.16936 0.21007 0.12629 0.21612 0.10939 0.09941

8 5 40 0.20921 0.16294 0.25397 0.16007 0.18439 0.11007 0.18739 0.09239 0.04551
10 80 0.1934 0.15991 0.2101 0.07294 0.16572 0.09789 0.13993 0.07229 0.03981

15 120 0.16062 0.13257 0.2092 0.08162 0.11007 0.05937 0.11562 0.03129 0.03112

20 160 0.13573 0.11006 0.16006 0.06029 0.07062 0.03289 0.06562 0.02586 0.02278

Table 5: PRE & (PRB) of proposed estimators as determined during simulation when m is odd

100 192.3 147 123.2 182.6 266.4 265.2 297 513.6
(0.2689) (1.5583) (1.8869) (0.7458) (1.4789) (0.8974) (1.2589) (0.4578) (0.3982)
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100 204.9 136. . %A@ . . 18%43 22@;_ 284.2 325.3 472.3
4 (0.2359) (1.24587) (1.894554 Jouma'&% glistical Scienges, ¥l 19, No. 1, iy 566) (1.3258) (0.3525) (0.3125)
100 302.5 131.9 117.6 181.2 242.2 356.1 357 423
3 5 (0.1231) (0.8951) (1.4581) (0.3691) (1.2871) (0.3845) (1.0258) (0.2856) (0.1825)
100 269.9 130.1 126.6 122.2 467.3 252.2 405.2 492.7
10 (-0.0961) (0.5612) (1.2512) (0.1451) (1.1245) (0.1548) (0.9874) (-0.2215) (-0.0254)
100 303.7 104.9 129.4 133.8 590.5 272.7 463.5 427.2
15 (-0.0743) (0.3215) (1.2241) (0.0856) (1.0872) (0.0895) (0.6541) (-0.1548) (-0.0087)
100 438.6 104.9 120.4 129.7 1179 259.8 410.4 414
20 (-0.0421) (0.1457) (1.0878) (0.0634) (0.9875) (0.04581) (0.2358) (-0.0045) (-0.00025)
3 100 194.2 147.7 123.8 184.1 271.1 269.8 303.2 536.6
(0.02699) (0.15983) (0.96345) (0.07058) (0.19789) (0.018348) (0.26778) (0.2279) (0.0318496)
4 100 207.3 137.4 122 182 257.1 290.3 333.8 538.8
(0.02368) (0.128587) (0.96725) (0.05479) (0.19012) (0.012158) (0.28116) (0.17525) (0.0249936)
5 5 100 310.1 132.4 118.4 183 246.5 367.5 368.5 726.4
(0.01241) (0.09351) (0.74905) (0.03291) (0.17871) (0.00809) (0.22116) (0.1418) (0.0145936)
10 100 278.9 130.9 128.4 122.7 502.3 259.8 430.2 501.9
(-0.00951) (0.06012) (0.6456) (0.01051) (0.16245) (0.003496) (0.21348) (-0.11175) (-0.0020384)
15 100 317.6 105.1 132.1 134.8 660.2 283.2 476.8 454
(-0.00733) (0.03615) (0.63205) (0.00456) (0.15872) (0.00219) (0.14682) (-0.0784) (-0.0007024)
20 100 302 105 195.6 130.7 422.3 270.5 452.6 403.5
(-0.00411) (0.01857) (0.5639) (0.00234) (0.14875) (0.0013162) (0.06316) (-0.00325) (-0.000026)
100 187.2 145 121.6 178.2 253.8 252.7 280.5 307.8
3 (0.011076) (0.13583) (0.38538) (0.056464) (0.039578) (0.018028) (0.13189) (0.40842) (0.00358)
100 198.1 135.2 119.8 175.8 240.7 268.2 303.2 345.3
4 (0.009752) (0.104587) (0.3869) (0.043832) (0.038024) (0.006279) (0.13858) (0.31365) (0.00281)
100 282.7 130.4 115.6 176.3 230.9 327.1 327.9 370.8
7 5 (0.005244) (0.06951) (0.29962) (0.026328) (0.035742) (0.004245) (0.10858) (0.25344) (0.00164169)
100 247.6 128.1 122.3 120.8 391.3 233.4 348.9 388.1
10 (-0.003524) (0.03612) (0.25824) (0.008408) (0.03249) (0.001948) (0.10474) (-0.20295) (-0.00022)
100 271 104.6 123.6 131.2 457.3 247.3 367.3 437.2
15 (-0.002652) (0.01215) (0.25282) (0.003648) (0.031744) (0.001295) (0.07141) (-0.14292) (-0.000079)
100 357.1 104.5 114.7 127.2 682.1 2345 488.7 559.8
20 (-0.001364) (-0.00543) (0.22556) (0.001872) (0.02975) (0.0008581) (0.02958) (-0.00765) (-0.000003)
Table 6: PRE & iPRBi of proposed estimators as determined during simulation when m is even
100 161.2 117.1 103.2 137.9 230.8 149.7 338.5 358.4
3 (0.3725) (1.8457) (2.3641) (1.0845) (1.8781) (1.3564) (2.3564) (0.9878) (0.3884)
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100 174.6 158 G fical sciencet G} op2 1425 291.9 467
4 (0.3125) (1.6894) (2.142 )aq'Jouma'&%. %%B“C""' SciencgSggly 19 No- 1, p. g19,556) (2.1245) (0.7254) (0.3454)
100 129.8 81.84 101.9 114 196.7 112.1 2376 3746
5 (0.2897) (1.2879) (1.8975) (1.2231) (1.4452) (1.2254) (2.1012) (0.4215) (0.3542)
100 122 91.76 232.9 1175 205.7 140.4 286.9 396.8
10 (0.1124) (0.8647) (1.4562) (1.2561) (1.42014) (1.2045) (2.0124) (0.5881) (0.0147)
100 122.4 75.92 168.7 149.3 295.2 141.6 323.4 452.1
15 (0.10258) (0.7712) (1.2145) (0.9981) (1.1214) (1.1845) (1.9875) (0.7254) (0.098)
100 125 84.06 1943 203.1 505.1 220.6 500.2 508
20 (0.0124) (0.4562) (1.11258) (0.6612) (1.0124) (1.1012) (1.6891) (0.2221) (0.0047)
100 161.9 1173 1033 1382 233 1503 3445 365.2
3 (0.03735) (0.18857) (1.20205) (0.10445) (0.23781) (0.027528) (0.48728) (0.4929) (0.03106)
100 175.7 116.8 1053 147.4 253.6 1431 296.7 482
4 (0.03135) (0.17294) (1.09125) (0.09964) (0.21981) (0.025306) (0.4409) (0.3617) (0.02762)
100 1302 81.65 101.9 1142 199.1 1123 2418 388
5 (0.02907) (0.13279) (0.96875) (0.11831) (0.19452) (0.024908) (0.43624) (0.20975) (0.02832)
100 1223 91.65 238.2 1178 208.7 1412 294.4 363.3
10 001134) (0.09047) (0.7481) (0.12161) (0.192014) (0.02449) (0.41848) (0.29305) (0.00116)
100 122.9 75.61 1711 1505 305.1 1426 298.6 484.9
15 (0.010358) (0.08112) (0.62725) (0.09581) (0.16214) (0.02409) (0.4135) (0.3617) (0.007841)
100 1257 83.79 199 207.4 549.3 226 428 490.9
20 000134) (0.04962) (0.57629) (0.06212) (0.15124) (0.022424) (0.35382) (0.11005) (0.00036)
100 1591 1167 1031 1368 2246 1482 3223 3516
3 (0.01522) (0.16457) (0.48082) (0.08356) (0.047562) (0.027208) (0.24164) (0.00088542) (0.000349)
100 171.4 1162 105 1451 241.4 141.1 2787 306.7
4 (0.01282) (0.14894) (0.4365) (0.079712) (0.043962) (0.012853) (0.21845) (0.00064926)  (0.0003107)
100 128.4 82.38 101.8 1135 190.1 1116 226.4 459.7
5 (0.011908) (0.10879) (0.3875) (0.094648) (0.038904) (0.012654) (0.21612) (0.00037575) (0.000318)
100 1209 92.05 219.2 1167 197.6 138.2 2675 4858
10 (0.004316) (0.06647) (0.29924) (0.097288) (0.0384028) (0.012445) (0.20724) (0.00052569) (0.000013)
100 1212 76.78 162.4 1459 2705 138.9 513.3 516.1
15 (00044232) (0.05712) (0.2509) (0.076648) (0.032428) (0.012245) (0.20475) (0.00064926) (0.000088)
100 1733 848 1826 1922 427 506.8 5749 595.8
20 5000816) (0.02562) (0.230516) (0.049696) (0.030248) (0.011412) (0.17491) (0.00019629)  (0.0000041)
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