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H I G H L I G H T S  
 

A B S T R A C T  

• Position Measurement is a key process in 
the navigation system of a mobile robot. In 
this research paper, wheel encoders and 
accelerometer sensors were used with a 
Kalman filter to estimate the mobile robot 
position. 

• This research uses a modified Kalman filter 
to find the mobile robot position depending 
on the error between the predicted position 
produced by sensors measurement and the 
position produced by a reference path.  

• The modification of the Kalman filter 
consists of choosing a variable process 
covariance matrix to produce a better 
Kalman gain value that will reduce the 
estimation error.     

 position measurement is an essential process of mobile robot navigation. In this 
research, a Kalman Filter is applied to locating a mobile robot furnisher with an 
encoder and accelerometer. The accelerometer updates its position off-hand. It 
has an acceptable short period of stability. However, this stability will be 
decreased over time. The odometry model is utilized to measure the mobile 
robot's position and heading angle using encoders equipped with the wheels of 
the mobile robot. Moreover, the odometry model's errors exist because of the 
wheel rotating speed's integrative nature and non-systematic errors. In this work, 
the mobile robot position estimation in closed environments was studied. In 
order to obtain the optimal estimation, a Kalman filter was used to estimate 
mobile robots' position and velocity, where the Kalman filter has been designed 
for better assessment of the mobile robot position. The suggested configuration 
collects accelerometer and odometry reading to assure more delicate position 
knowledge than stand-alone odometry or accelerometer. The proposed method's 
position error has an acceptable level that is less than (0.2 m) for both easy and 
difficult paths. 
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1. Introduction 
Recently, artificial intelligence has had a wide range of applications particularly in the functionality of robotic machines. A 

mobile robot is an automated machine that crosses in a specific medium and identifies its perimeter with the help of multiple 
sensors. The researches that investigate mobile robots has progressed quickly in a variety of domains, including smart-home 
assistance, senior care, teaching, medical attendance, military domains, and so on [1]. The position measurement system of an 
ambulant robot is one of the mobile robot navigation system processes. It is used to find the accurate position of the mobile 
robot to control its movement in the work environment. The positioning system provides the mobile robot the ability to know 
its position by using specific types of sensors. The positioning system plays a huge role in achieving autonomous movement, 
so it is currently an important research field. The position measurement systems are possible to split into two categories. 
Absolute positioning and Relative positioning. Relative positioning evaluates the mobile robot's position by using its wheels' 
angular position weighted by encoders connected to the robot's wheels or by using inertial measurement sensors such as 
acceleration and gyroscope. Absolute positioning evaluates the mobile robot's position by using an exterior distance measuring 
system such as GPS and compass [2]. From the starting point acquaintance, the relative positioning system calculates the 
position. It does not rely on external signals and instead uses an inertial measurement unit (IMU) or an encoder. Therefore, the 
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Relative positioning systems have the advantages of being fast, low-cost, and easier to evaluate real-time position than absolute 
positioning systems. The absolute positioning method employs ultrasonic local positioning systems, an infrared network 
system, a global positioning system (GPS), as well as other technologies to determine position. In the Indoors area, GPS is 
ineffective and has a delayed time rate. Ultrasonic local positioning systems and IR (infrared) network systems are both 
inexpensive, small in size, and simple to use. These techniques, on the other hand, are unable to measure long distances, 
necessitate extra assembly, and have trouble measuring accuracy because of signal intervention. RFID necessitates the 
purchase of additional equipment and comes at a high price. [9]. this paper discusses mobile robots' position estimation in an 
indoor environment, such as closed premises or factories. Wheel encoders installed on the mobile robot's wheels can evaluate 
the mobile robot's position and heading angle while it is traveling. The terminology for this technique is odometry [2-4]. The 
angle change is measured by the wheel encoders. The rotary angle, the wheel diameter, and the mobile robot's body width are 
used in the odometry model to find the mobile robot's position and heading angle [5]. Volplane, a misfit in the system data, 
measurement inexactness, and disturbance in the encoder readings all-cause unbounded errors when using odometry [6-8]. The 
mobile robot's position can be calculated using an accelerometer sensor. If the initial information about the position of the 
mobile robot is available, then the mobile robot's position can be calculated. The accelerometer is used for position estimation 
by double integrating its measurements. Depressed-frequency noise and sensor offset, on the other hand, are amplified by the 
system's integrative nature [10-13]. That is, the Short-term stability is excellent with the accelerometer position measurement 
system, but long-term stability is very inferior. Standalone odometry and accelerometer are not suitable for the Relative 
positioning system because of the accumulation of errors over extended time intervals.  In this paper, the odometry and the 
accelerometer are combined to reduce the dead reckoning accumulation errors. Although accumulation errors exist in both the 
accelerometer and the odometry, by combining the two systems, these errors can be reduced to a manageable level. A Kalman 
filter will be implemented and utilized to achieve the best-integrated system possible [22]. This paper's general structure will 
be as follows: Section 2 will explain related work, while Section 3 will clarify the proposed method. Section 4 will contain the 
mathematical modeling of the accelerometer sensor and the odometry. Section 5 will explain the implementation of the 
Kalman filter-based positioning system. Section 7 will contain results, and finally, the conclusion of the presented work will be 
written in Section 8. 

2. Related Work 
Many techniques were introduced in this field; one of these techniques is relative positioning (dead reckoning). In [15], An 

indoor mobile robot navigation technique using odometry and an electronic compass was presented. The system combines the 
measurement of the odometry and the compass to estimate the mobile robot position and heading angle by using an extended 
Kalman filter, two calibration methods were used for the wheel encoder sensor and the compass. A fuzzy system was used to 
adapt the extended Kalman filter, the presented system provides a good measurement for the robot motion but the drawback of 
the presented system is the compass sensor is only valid for heading angle estimation and position estimation was dependent 
on the odometry model and that is not suitable for long-distance measurements even if the wheel encoders was calibrated 
correctly. An indoor position system using an anemometer ultrasonic sensor and inertial measurement unit (IMU) has been 
introduced [16]. the IMU provides position and heading angle measurement for the mobile robot for a short distance and the 
ultrasonic sensor provides the distance measurement between the mobile robot and an object by calculating the flight time for 
the transmitter and the receiver. A Kalman filter was utilized to fuse the measurement of both sensors to provide a position 
estimation for the mobile robot. The system proposed to provide a good measurement but the problem with this type of work is 
the ultrasonic need an object to detect to measure the distance so if the robot was moving in an open area and there is no object 
in the ultrasonic range so the mobile robot will depend on the IMU measurements for the position estimation and the rages of 
ultrasonic are consider to be small (4-6) meters. Another way of enhancing relative position errors in navigation uses the 
Kinect sensor. In [17], the Kinect sensor was used with an encoder to aid in the position estimation, an extended Kalman filter 
was used to combine the sensor reading. As a landmark is detected the system provides a good position estimation, but this 
type of system may fail in position estimation when there is no landmark to detect by the Kinect sensor, so it needs more 
sensors to provide the alternative measurement to update the estimation. GPS has been used to emend position valuation. In 
[18], the GPS measurements were fused with inertial navigation system (INS) and odometer using Kalman filter and assigning 
weights filter, the Kalman filter combines the measurement of the INS and the odometer, the assigning weights combine the 
Kalman filter output with the GPS output. The problem with this work is the assigning weights filter is not suitable because the 
weight factor is constant and the position estimation needs a variable weight factor. In [12], Inertial navigation techniques for 
mobile robots were developed. An extended Kalman filter was appointed to assess position and orientation using a series of 
solid-state gyros, accelerometers, and tilt sensors. However, using accelerometers to calculate position and orientation has 
many disadvantages, including a 1-8 cm/s rate of drift. Furthermore, the minimum discoverable acceleration may be too large 
to discover small motion in some cases. Inertial methods can be time-consuming, costly, and difficult to implement.[9] 
developed a combination of the inertial measurement system and encoder fused the reading using Kalman filter to estimate the 
position. This method improved the position determination and reduced the error in system measurement.  In [19], The mobile 
robot's position was determined using an RFID network and Particle Swarm Optimization Artificial Neural Network, the 
estimated position result was acceptable, but the deficiency of this approach is that the Particle Swarm Optimization Artificial 
Neural Network requires a lot of computing power and the RFID network require complex implementation. In [20], an 
Extended Kalman Filter (EKF) is utilized to locate the mobile robot prepared with an IMU, GPS, wheel encoder, and 
electronic compass. Approach 1 used an encoder, compass, and GPS combination. Approach 2 used GPS and IMU. Approach 
three used the two approaches combined. Although many sensors were used, the result was minor to the system that only uses 
IMU and GPS. 
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3. Proposed Method 
This paper proposes a position measurement method using the accelerometer sensor and wheel encoder combined to 

measure the robot position. Using the odometry model to estimate the mobile robot's location in X-axis and Y-axis, and 
heading angle from the wheel encoders measurement, and the position estimated from accelerometer measurement [9]. The 
proposed method uses the Kalman filter to fuse both systems' measurements to find the final estimated position and heading 
angle of the mobile robot. Using the Kalman filter reduces the error of both systems since the odometry and the accelerometer 
are not suitable for the Relative positioning system over long periods independently because of the accumulation errors. The 
Kalman provides minimization of the accumulation errors for each system. The Kalman filter uses the prediction update 
algorithm when the accelerometer model will be used to predict the system position and velocity. The odometry model will be 
used to correct the measurement of the prediction model. This work proposes using a varying value for the measurement 
covariance matrix (R) instead of using a constant value in order enhance the performance of the Kalman filter. The Kalman 
filter will provide the optimal estimation for the position from both systems measurements and estimate the system's error. The 
block diagram in Figure 1 depicts the work of the proposed system. 

 
 Proposed method block diagram 

4.  Theory of mobile robot positioning system 
In this section, the detailed measurement model of the accelerometer sensor for the positioning system. The model of the 

accelerometer sensor will be described. The wheel encoder modeling will be presented for the odometry model.  

4.1 Accelerometer Measurement Model 
The accelerometer will be utilized to estimate the mobile position in the X-axis and Y-axis. The accelerometer provides 

acceleration measurement. The mobile robot's motion is presumed to be on a horizontal surface, the mobile robot does not face 
any slipping, and the wheels are tied to the surface. For the mobile robot's position estimation, the mobile robot's acceleration 
will be calculated using equation (1).  

�
𝑎𝑎𝑘𝑘,𝑥𝑥
𝑎𝑎𝑘𝑘,𝑦𝑦

� = ��
𝑎𝑎𝑘𝑘,𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥
𝑎𝑎𝑘𝑘,𝑦𝑦𝑥𝑥𝑥𝑥𝑥𝑥

� − �
𝐵𝐵𝑥𝑥𝑥𝑥
𝐵𝐵𝑥𝑥𝑦𝑦

�� ∗ �
𝑆𝑆𝑥𝑥𝑥𝑥 0
0 𝑆𝑆𝑥𝑥𝑦𝑦

�   (1) 

Where 𝑎𝑎𝑘𝑘,𝑥𝑥 and 𝑎𝑎𝑘𝑘,𝑦𝑦 are the mobile robot acceleration in X and Y axis respectively, 𝑎𝑎𝑘𝑘,𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 and 𝑎𝑎𝑘𝑘,𝑦𝑦𝑥𝑥𝑥𝑥𝑥𝑥 are the 
acceleration obtained from sensors in X and Y axis respectively, 𝐵𝐵𝑥𝑥𝑥𝑥 and 𝐵𝐵𝑥𝑥𝑦𝑦 Are the bias of accelerometer for X and Y axis 
respectively, 𝑆𝑆𝑥𝑥𝑥𝑥 and 𝑆𝑆𝑥𝑥𝑦𝑦 are the scale factor of the accelerometer for the X and Y axis respectively, and k is the system sample 
time. The mobile robot's velocity in the X and Y axes is computed using Newton's law of motion and a single integration of the 

acceleration. The velocity at sample time k  �
𝑣𝑣𝑘𝑘,𝑥𝑥
𝑣𝑣𝑘𝑘,𝑦𝑦

� will be equal to the velocity a sample time k-1 �
𝑣𝑣𝑘𝑘−1,𝑥𝑥
𝑣𝑣𝑘𝑘−1,𝑦𝑦

� add to acceleration 
reading multiplied by the measurement period (Ts). 

�
𝑣𝑣𝑘𝑘,𝑥𝑥
𝑣𝑣𝑘𝑘,𝑦𝑦

� = �
𝑣𝑣𝑘𝑘−1,𝑥𝑥
𝑣𝑣𝑘𝑘−1,𝑦𝑦

� + 𝑇𝑇𝑇𝑇 ∗ �
𝑎𝑎𝑘𝑘,𝑥𝑥
𝑎𝑎𝑘𝑘,𝑦𝑦

�   (2) 
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the position of the mobile robot is at sample time k �
𝑝𝑝𝑘𝑘,𝑥𝑥
𝑝𝑝𝑘𝑘,𝑦𝑦

� is calculated by integrating the acceleration twice [9].     
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2

∗ 𝑇𝑇𝑇𝑇2 ∗ �
𝑎𝑎𝑘𝑘,𝑥𝑥
𝑎𝑎𝑘𝑘,𝑦𝑦
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Where �
𝑝𝑝𝑘𝑘−1,𝑥𝑥
𝑝𝑝𝑘𝑘−1,𝑦𝑦

�  is the position of the mobile robot at sample time k-1. 

4.2 Odometry Measurement Model 
The odometry state vector is 𝑋𝑋𝑘𝑘 = [𝑃𝑃𝑃𝑃𝑘𝑘 𝑃𝑃𝑦𝑦𝑘𝑘 𝜑𝜑𝑘𝑘] describe the position of the mobile robot at the kth time step where 

𝑃𝑃𝑃𝑃𝑘𝑘 and 𝑃𝑃𝑦𝑦𝑘𝑘 represent the position in x and y Axis and 𝜑𝜑𝑘𝑘 Represent the heading angle. The counts N are generated by the 
wheel encoder while the wheel rotates 360 degrees. If the measured pulses are M counts, each wheel's rotary angle becomes: 

𝜂𝜂𝑘𝑘,𝑙𝑙 = 𝑀𝑀𝑙𝑙
𝑁𝑁

∗ 2𝜋𝜋 , 𝜂𝜂𝑘𝑘,𝑥𝑥 = 𝑀𝑀𝑟𝑟
𝑁𝑁

∗ 2𝜋𝜋   (4) 
Where 𝜂𝜂𝑘𝑘,𝑥𝑥 , and 𝜂𝜂𝑘𝑘,𝑙𝑙, are the right and left wheel's angles in radians, respectively. Ml and Mr are the measured counts on 

the left and right encoders. N is the counts per revolution for the wheel encoder. Figure 2 shows the mobile robot's motion 
based on the rotary angles of its wheels. The mobile robot's travel distance 𝑎𝑎𝑘𝑘 can be calculated using the radius of its wheels 
(R wheel) and the rotary angle of each wheel, as shown in the equation below. 

𝑎𝑎𝑘𝑘,𝑙𝑙 = 𝑅𝑅𝑥𝑥ℎ𝑒𝑒𝑒𝑒𝑙𝑙 ∗ 𝜂𝜂𝑘𝑘,𝑙𝑙   (5) 
𝑎𝑎𝑘𝑘,𝑥𝑥 = 𝑅𝑅𝑥𝑥ℎ𝑒𝑒𝑒𝑒𝑙𝑙 ∗ 𝜂𝜂𝑘𝑘,𝑥𝑥   (6) 
𝑎𝑎𝑘𝑘 = 𝑥𝑥𝑘𝑘𝑙𝑙+𝑥𝑥𝑘𝑘𝑟𝑟

2
   (7) 

The heading angle rate of the mobile robot (〖"∆φ" 〗_k) is determined by the robot's base width (d) and the distance 
traveled by each wheel [9]. 

〖"∆φ" 〗_k=("a" _kl-"a" _kr)/d   (8) 

The radius of rotation for the mobile robot can be calculated according to follows: 

r_k=a_k/∆φ   (9) 
As shown in Figure 2, we can calculate the position rate by using cosine low.  

〖∆λ〗_k=r_k √(2(1-cos⁡∆φ))   (10) 
The position and the heading angle mobile robot at the kth time step can be determined by 

〖Px〗_k=x_(k-1) +〖"∆λ" 〗_k   cos⁡(φ_(k-1)+〖"∆φ" 〗_k/2)  (11) 

Py_k=y_(k-1) +〖"∆λ" 〗_k  sin⁡(φ_(k-1)+〖"∆φ" 〗_k/2)  (12) 

φ_k=φ_(k-1) +〖"∆" φ〗_k                           (13) 

The mobile robot's velocity can be calculated using the tonometry model using the following equation [9]. 
 

 
 

 mobile robot motion [9] 
  proposed method position   

        measurements 
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Table 1: Parameters 

Parameter Value Unit 

𝑩𝑩𝒂𝒂𝒂𝒂 0.1 m/s2 
Bay 0.15 m/s2 

Sax 0.598*10-3 (m/s2)/LSB 
Say 0.598*10-3 (m/s2)/LSB 

       Ts 0.01 s 
     Rwheel 0.06 m 

      d 0.32 m 
      N 4200 Pulse per revlution 

σa 4*10-4 m/s2 
 

𝑃𝑃𝑣𝑣𝑘𝑘 = 𝑥𝑥𝑘𝑘−𝑥𝑥𝑘𝑘−1
𝑇𝑇𝑇𝑇

  (14) 

𝑦𝑦𝑣𝑣𝑘𝑘 = 𝑦𝑦𝑘𝑘−𝑦𝑦𝑘𝑘−1
𝑇𝑇𝑇𝑇

   (15) 

Where xvk and yvk are the velocity of the mobile robot on the X and Y-axis, respectively.  

5. Implementation of proposed Kalman filter-based positioning system 
[14] Kalman filter is a technique for estimating unknown variables based on measurements collected over time. The 

Kalman filter has proven to be useful in a variety of applications. Kalman filters are simple in design and require little 
computational power. The Kalman filter is used to estimate states in a state-space format based on linear dynamical systems. 
The progress of the state from time k-1 to time k is defined by the process model as follows: 

𝑃𝑃𝑘𝑘 = 𝐹𝐹𝑃𝑃𝑘𝑘−1 + 𝐵𝐵𝑢𝑢𝑘𝑘 + 𝑤𝑤𝑘𝑘−1   (16) 

Were 𝑃𝑃𝑘𝑘 = �𝑝𝑝𝑥𝑥,𝑘𝑘  𝑝𝑝𝑦𝑦,𝑘𝑘    𝑣𝑣𝑥𝑥,𝑘𝑘   𝑣𝑣𝑦𝑦,𝑘𝑘�𝑇𝑇
 Which presents the positioning system state. 𝑢𝑢𝑘𝑘 = �𝑎𝑎𝑥𝑥,𝑘𝑘   𝑎𝑎𝑦𝑦,𝑘𝑘   �𝑇𝑇

 is the input control 
vector where 𝑎𝑎𝑥𝑥,𝑘𝑘 , 𝑎𝑎𝑦𝑦,𝑘𝑘  are the output of the accelerometer sensor in the X-axis and Y-axis obtained from equation(1). F is the 
state transition matrix that can be found from the accelerometer measurement model. 

𝐹𝐹 = �

1 0 𝑇𝑇𝑇𝑇 0
0 1 0 𝑇𝑇𝑇𝑇
0 0 1 0
0 0 0 1

�   (17) 

Were 𝑇𝑇𝑇𝑇 is the sampling time of the system. B is the control-input vector 𝒖𝒖𝒌𝒌 Moreover, B can be calculated as: 

𝐵𝐵 = �
0.5 ∗ 𝑇𝑇𝑇𝑇2 0

0 0.5 ∗ 𝑇𝑇𝑇𝑇2

𝑇𝑇𝑇𝑇 0
0 𝑇𝑇𝑇𝑇

�   (18) 

The process model is fused with the measurement model 𝒛𝒛𝒌𝒌, which defines the relationship between the system state and 
the measurement at the kth as follows:  

𝑧𝑧𝑘𝑘 = 𝐻𝐻𝑃𝑃𝑘𝑘 + 𝑣𝑣𝑘𝑘   (19) 
For this system 𝒛𝒛𝒌𝒌 the output of odometry measurement that will be used to correct the prediction of the Kalman filter so  

𝑧𝑧𝑘𝑘 = [𝑃𝑃𝑃𝑃𝑘𝑘   𝑃𝑃𝑦𝑦𝑘𝑘   𝑃𝑃𝑣𝑣𝑘𝑘    𝑦𝑦𝑣𝑣𝑘𝑘  ]𝑇𝑇   (20) 
and the measurement matrix H, in that case, will equal to:  

𝐻𝐻 = �

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

�   (21) 

The random variables wk and k vk represent the process and measurement noise, respectively. 
Kalman filter algorithm is divided into two stages prediction and update. The equations of the prediction stage are 

illustrated in the following equations [14]. 
𝑃𝑃�𝑘𝑘

− = 𝐹𝐹𝑃𝑃𝑘𝑘−1
+ + 𝐵𝐵𝑢𝑢𝑘𝑘−1   (22) 

𝐺𝐺�𝑘𝑘
− = 𝐹𝐹𝐺𝐺𝑘𝑘−1

+ 𝐹𝐹𝑇𝑇 + 𝑄𝑄   (23) 
Were 𝑃𝑃�𝑘𝑘

− is the predicted state of the system and 𝐺𝐺�𝑘𝑘
− is the predicted error covariance matrix. in the update stage, the 

Kalman gain 𝐾𝐾𝑘𝑘 is calculated. 
𝐾𝐾𝑘𝑘 = 𝑃𝑃�𝑘𝑘

−𝐻𝐻𝑇𝑇(𝐻𝐻𝑃𝑃�𝑘𝑘
−𝐻𝐻𝑇𝑇 + 𝑅𝑅)−1   (24) 

Furthermore, the updated state of the system and the update error covariance matrix is calculated using the following 
equations: 

𝑃𝑃𝑘𝑘
+ = 𝑃𝑃�𝑘𝑘

− + 𝐾𝐾𝑘𝑘𝑦𝑦𝑘𝑘  (25) 
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𝐺𝐺𝑘𝑘
+ = (𝐼𝐼 − 𝐾𝐾𝑘𝑘)𝑃𝑃�𝑘𝑘

−           (26) 
𝑃𝑃𝑘𝑘

+ represent the final estimated position and velocity of the mobile robot in the kth sample time. 𝐺𝐺𝑘𝑘
+ is the estimated error 

covariance matrix. 
The Q and R represent the process model covariance matrix and measurement covariance matrix; these matrices represent 

the Noise in sensors measurement.  
The process noise covariance is the error covariance that is measured from the accelerometer sensor. The position Noise is 

calculated from the acceleration Noise by double integration. The acceleration Noise assumed to be gaussian disturbed with a 
mean of zero and standard deviation of (𝜎𝜎𝑥𝑥 ) so 𝑄𝑄𝑝𝑝 will be equal to: 

𝑄𝑄𝑝𝑝 = (𝜎𝜎𝑥𝑥 ∗ 𝑇𝑇𝑇𝑇2)2   (27) 
For the velocity, the Noise will be integrated and 𝑄𝑄𝑣𝑣 will be 

𝑄𝑄𝑣𝑣 = (𝜎𝜎𝑥𝑥 ∗ 𝑇𝑇𝑇𝑇)2   (28) 
So, the Q matrix will be equal to 

𝑄𝑄𝑘𝑘 =

⎣
⎢
⎢
⎡
𝑄𝑄𝑝𝑝 0 0 0
0 𝑄𝑄𝑝𝑝 0 0
0 0 𝑄𝑄𝑣𝑣 0
0 0 0 𝑄𝑄𝑣𝑣⎦

⎥
⎥
⎤
   (29) 

         For the measurement covariance matrix R, its value can be determined from the odometry measurement by taking the 
average of the error between the reference path and the measurement of the odometry and calculating the mean value, then 
calculate the variance as follows [22]: 

𝑅𝑅𝑘𝑘 = 𝑉𝑉𝑎𝑎𝑉𝑉 ��𝑃𝑃𝑘𝑘,𝑥𝑥𝑒𝑒𝑟𝑟. − 𝑧𝑧𝑘𝑘� ∗ �𝑃𝑃𝑘𝑘,𝑥𝑥𝑒𝑒𝑟𝑟. − 𝑧𝑧𝑘𝑘�𝑇𝑇�   (30) 

𝑅𝑅𝑘𝑘 =

⎣
⎢
⎢
⎡
𝑅𝑅𝑘𝑘,𝑥𝑥 0 0 0

0 𝑅𝑅𝑘𝑘,𝑦𝑦 0 0
0 0 𝑅𝑅𝑘𝑘,𝑣𝑣𝑥𝑥 0
0 0 0 𝑅𝑅𝑘𝑘,𝑣𝑣𝑦𝑦⎦

⎥
⎥
⎤
   (31) 

Were  𝑅𝑅𝑥𝑥, 𝑅𝑅𝑦𝑦 are the variance of the encoder position respectively and 𝑅𝑅𝑣𝑣𝑥𝑥, 𝑅𝑅𝑣𝑣𝑦𝑦 are the variance of the encoder velocity, 
respectively. The Kalman filter needs to be initialized. The following are the parameters that must be set up the error 
covariance matrix(G) and system state vector (x). 

6. Results 
To verify the performance of the proposed work, a MATLAB© implementation of the method was executed offline. The 

test was done using the circular path with a diameter of (5 meters) as reference paths. The accelerometer measurements and 
encoder measurements were collected using the navigation toolbox in MATLAB© with a 100 Hz sampling frequency. Several 
assumptions are made since the Kalman filter is used in this simulation. 
• All noises (process and measurement noise) are assumed to be Gaussian, and the positioning system is assumed to be a 

linear system. 
• The encoder is assumed that no slipping situations or uneven roads occurred.  
Table 1 shows information about the parameter used in the test. As mentioned Kalman filter needs to be initialized, so the 

system states vector initial value.  

𝑃𝑃0
+ = [0   0   0  0  ]𝑇𝑇   (31) 

Because the reference path was initialized from zero position and zero velocity. the error covariance matrix was initialized 
as: 

𝐺𝐺0
+ = �

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

�   (32) 

Figure 3 show the result of the proposed method for the circular reference path. From the figure, we see that the odometry 
path fails in estimating the reference path value. On the other hand, the Kalman filter's estimated path was very close to the 
reference path. The reason behind that is the odometry suffers from accumulated errors. Errors can be minimized with the 
accelerometer sensor's help which is good for short period measurements. The use of the Kalman filter is to perform an optimal 
estimation for the mobile robot positioning system. The positioning system using only an accelerometer sensor had an 
unbounded position error because of double integration, even though the result was not included in this paper. In Figure 4, the 
error of estimated position in the X-axis and Y-axis. Whereas the error of the estimated X-axis position was Ranges from 
(0.0573) to (- 0.1629) and the error of the estimated Y-axis position was Ranges from (0.1826) to (- 4*10-4). the proposed 
method error is considered acceptable for indoor paths. Table 2 shows the error in each waypoint of the reference path of the 
mobile robot. The error of odometry was compared to the error of the Kalman filter at each reference path waypoint. We notice 
that the Kalman filter enhanced the error at each waypoint to an acceptable value. The result of the proposed method was 
compared to the work of approach 1 in[20]. The mean error value was used as a comparison. The proposed method mean error 
was (0.1207)  compared with (0.27739) for [20].althought a Kalman filter with only an encoder and accelerometer was used its 



Ali A. Madhloom et al. Engineering and Technology Journal 40 (01) (2022) 267-274 
 

273 

error against an extended Kalman filter with encoder, compass, and GPS  the result was was better and error is smaller than the 
error in [20] work.  

 
 Proposed method errors 

Table 2: Waypoint error 

Waypoint 
  

method Error (X, Y) 

(5,2.5) Odo. (0, -0.0015) 
Kal. (0,0) 

(2.5,5) Odo. (-0.6247, -0.0261) 
Kal. (-0.054,0.0649) 

(0,2.5) Odo. (-0.7466,0.19) 
Kal. (0.0513,0.1796) 

(2.5,0) Odo. (-0.6266,0.4042) 
Kal. (-0.1637,0.0682) 

(5,2.5) Odo. (-0.008,0.3780) 
Kal. (-0.1326,0.0125) 

7. Conclusion 
This paper proposed a position measurement system of the mobile robot using an encoder sensor and accelerometer 

sensors. a Kalman filter combines the sensor's measurement to estimate position and velocity for the mobile robot. The 
accelerometer was utilized to estimate the mobile robot's position, but its accuracy was very low because of the accumulated 
errors due to the double integration of the acceleration readings. The encoder was utilized to estimate the mobile robot's 
position and heading angle using the odometry model. The position estimation using encoders suffers from negative bias and 
unbounded position errors. Negative bias error caused by the systematic and non-systematic errors and the unbounded position 
errors is a result of the rotating speed's integrative nature. In an attempt to correct the flaws discovered in each system, a 
Kalman filter was implemented. The Kalman filter predicts the mobile robot's position using the accelerometer reading, then 
compares it to the measurement provided by the odometry and assigns a gain value to the predicting measurements to update 
the estimation. The presented method shows a reliable level of position estimation and a remarkable reduction in the error of 
mobile robot position error. The proposed method in this paper was provided only for mobile robot navigation in general and 
especially for the indoor environment, and without any outward position data from an absolute position measuring system, the 
position estimation was done. For both simple and difficult paths, the suggested method's position error is less than (0.2 m), 
which is an appropriate level. For future improvement to the proposed method, a gyroscope sensor will be used to improve the 
heading angle estimation, and the position error will be decreased. 
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