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H I G H L I G H T S   A B S T R A C T  
• The prosthetic finger is move by tendon 

instead of motor. 
•  The system is non-linear dynamic model. 
• Sliding mode control can drive the model to 

desired position. 
• Classical Sliding mode control suffers from 

chattering. 

 In this research paper, the modeling and control of a tendon driven, instead of 
joint motors, prosthetic finger that mimics the actual human index finger were 
deliberated. Firstly, the dynamic model of the prosthetic finger is developed 
based on a 3-degree of freedom (DOF) articulated robot structure and utilizing 
the Lagrange equation. Then, the classical sliding mode control (CSMC) strategy 
was implemented to control the finger motion. To overcome the cons of CSMC, 
such as the chattering problem, an adaptive sliding mode controller (ASMC) was 
developed.  MATLAB Simuphalange was used to perform the simulation after 
the necessary equations were derived. The obtained results showed that the 
ASMC superior to the CSMC in depressing the chattering and fast response. 

A R T I C L E  I N F O  

Handling editor: Muhsin J. Jweeg 
Keywords:  
Prosthetic finger;Tendon Driven; Modeling; 
Sliding mode control (SMC); Adaptive sliding 
mode control (ASMC)  

1. Introduction 
In our society, robots play an important role. They are currently commonly used for labor-intensive operations in various 

industrial applications that involve a high degree of precision and repetition. In the entertainment industry, robots can be used 
in the form of toys and animations. The role of robots in society is continually evolving. This research aims to bring them 
further into domestic aid, medicine, military, search, and rescue. The robot must perform only one particular task in many of 
these applications and be an engineered for a single operation. However, as robots' possible use increases, they will need to 
communicate with objects in their environments. The creation of end effectors that accumulate and use various objects as 
resources is an important challenge in robots' production. The human hand is considered to be the most dexterous end effector, 
with a total of 26 DOF [1].  The construction of a highly advanced prosthesis hand needs to deal with two significant problems: 
the development of a mechanical design that would permit enough movement freedom and how to build controllers be robust 
and capable of handling the associated mechanical design, which is commonly so complicated. The human body movement is 
based on the muscles that apply forces to the skeleton by the tendons. In the literature, with the robot and prosthetic hand, the 
human hand's motion system is commonly applied to imitate the natural movement [2]. 

The human hand tendon arrangements were tested to ensure that the robot's hands have the maximum total muscle strength 
requirements. From this analysis, it can be inferred that the robotic hand has force values highly related to that of the human 
hand. Weghe et al. [3] Created a human hand tested that was anatomically correct to determine its mechanism, function, and 
power. In recent years, many papers have investigated the serial robots assembled based on the tendon-driven mechanisms, 
which are composed of pulley-belt configurations. Kawanishi, et al. [4] have developed a system considering the fuzzy logic 
approach for fingertip position control of a 4 DOF  tendon-driven robotic finger. The tendon's elasticity was also taken into 
consideration. Hristu et al. [5] made a comparison between the efficiency of fuzzy logic and traditional PID controllers for a 
multi-finger robotic hand. The aim was to control both the fingertip's position and the forces exerted on the fingertip. It was 
established that the fuzzy logic control approach superior to the PID controller. Muscles will exercise pulling effort only, and 
muscle forces are sent through the tendons to the finger bones. The muscles of the forearm stretch to the hand more than fifteen 
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tendons. When the finger is extended, one set of muscles and tendons exercise the finger's expanding motion, and a separate set 
of muscles and tendons create the bending motion. Tendon structure in hands is problematic and, however, leads to the high 
functionality of human hand movements through this sophisticated tendon arrangement. Hand tendons that lie at the back of 
the human hand straighten the fingers and flexor tendons and turn the fingers on the palm side of the hand. In this research, a 
3-degree of freedom chain robot mechanism closely mimics the human index finger's size is modeled. On the palm and the 
back of the hand, the phalanges' tendon fixing points are reduced to three.  

However, the considered problem in this work is the control of an under actuated finger, which is a very challenging task 
than the fully actuated one, and how to guarantee the overall stability of such a system. The work suggests first designing a 
classical sliding mode controller (CSMC), which is theoretically is able to reject the bounded matched perturbation altogether. 
The following points summarize the main steps that are conducted in this research to obtain this work’s aim: 

 To analyze of dynamic model and state space representation of finger contact grasped object for the 
human prosthetic hand. 

 To the development of conventional sliding mode control (SMC) algorithm of the prosthetic finger. 
 To analyze the prosthetic finger's stability controlled by the conventional SMC scheme based on the 

sliding surface defined in the state space representation, the control action is responsible for maintaining 
and constructing the sliding motion. 

2. Model development 
Figure 1 represents the finger of a human prosthetic hand, on which the controller methods are applied. A prosthesis model 

of the two dimensions (2D) finger was considered a movie chain consisting of three cylindrical phalanges that mimic the 
inertial characteristics of the finger index's proximal, central and distal phalanges, as demonstrated in Figure 2. The 
articulations of the model to reflect the joint masses of the finger were supplemented with spherical components.  

Based on Figure 2, where X and Y represent the displacement of the prosthetic finger while θ refers to the angular 
displacement of the philandering finger, the displacement equations are: 

𝑥𝑥1 = 𝑙𝑙1 cos𝜃𝜃1   (1) 

𝑦𝑦1 = 𝑙𝑙1 sin𝜃𝜃1   (2) 

𝑥𝑥2 = 𝑙𝑙1 cos𝜃𝜃1 + 𝑙𝑙2 cos(𝜃𝜃1 + 𝜃𝜃2)   (3) 

𝑦𝑦2 = 𝑙𝑙1 sin𝜃𝜃1 + 𝑙𝑙2 sin(𝜃𝜃1 + 𝜃𝜃2)   (4) 

𝑥𝑥3 = 𝑙𝑙1 cos𝜃𝜃1 + 𝑙𝑙2 cos(𝜃𝜃1 + 𝜃𝜃2) + 𝑙𝑙3 cos(𝜃𝜃1 + 𝜃𝜃2 + 𝜃𝜃3)  (5) 

𝑦𝑦3 = 𝑙𝑙1 sin𝜃𝜃1 + 𝑙𝑙2 sin(𝜃𝜃1 + 𝜃𝜃2) + 𝑙𝑙3 sin(𝜃𝜃1 + 𝜃𝜃2 + 𝜃𝜃3)  (6) 

The linear velocity of the masses can be found as follows, where 𝜃̇𝜃 is the angular velocity: 

𝑥̇𝑥1 = −𝑙𝑙1𝜃̇𝜃1 sin𝜃𝜃1   (7) 

𝑦̇𝑦1 = 𝑙𝑙1𝜃̇𝜃1 cos 𝜃𝜃1   (8) 

𝑥̇𝑥2 = −𝑙𝑙1𝜃̇𝜃1 sin𝜃𝜃1 − 𝑙𝑙2(𝜃̇𝜃1 + 𝜃̇𝜃2) sin(𝜃𝜃1 + 𝜃𝜃2)   (9) 

𝑦̇𝑦2 = 𝑙𝑙1𝜃̇𝜃1 cos 𝜃𝜃1 +𝑙𝑙2�𝜃̇𝜃1 + 𝜃̇𝜃2� cos( 𝜃𝜃1 + 𝜃𝜃2)   (10) 

𝑥̇𝑥3 = −𝑙𝑙1𝜃̇𝜃1 sin𝜃𝜃1 − 𝑙𝑙2�𝜃̇𝜃1 + 𝜃̇𝜃2� sin(𝜃𝜃1 + 𝜃𝜃2) − 𝑙𝑙3�𝜃̇𝜃1 + 𝜃̇𝜃2 + 𝜃̇𝜃3� sin(𝜃𝜃1 + 𝜃𝜃2 + 𝜃𝜃3)  (11) 

𝑦̇𝑦3 = 𝑙𝑙1𝜃̇𝜃1 cos 𝜃𝜃1 +𝑙𝑙2�𝜃̇𝜃1 + 𝜃̇𝜃2� cos( 𝜃𝜃1 + 𝜃𝜃2) + 𝑙𝑙3�𝜃̇𝜃1 + 𝜃̇𝜃2 + 𝜃̇𝜃3� cos(𝜃𝜃1 + 𝜃𝜃2 + 𝜃𝜃3)  (12) 

𝑣𝑣12 = 𝑥𝑥12̇ + 𝑦𝑦12̇ = (−𝑙𝑙1𝜃̇𝜃1𝑠𝑠1)2 + (𝑙𝑙1𝜃̇𝜃1𝑐𝑐1)2 = 𝑙𝑙12𝜃̇𝜃12   (13) 

𝑣𝑣22 = 𝑥𝑥22̇ + 𝑦𝑦22  = �−𝑙𝑙1𝑠𝑠1𝜃𝜃1̇ − 𝑙𝑙2𝑠𝑠12(𝜃𝜃1̇ + 𝜃𝜃2̇)�2 + �𝑙𝑙1𝑐𝑐1𝜃𝜃1̇ + 𝑙𝑙2𝑐𝑐12(𝜃𝜃1̇ + 𝜃𝜃2̇)�2̇   (14) 

𝑣𝑣32 = 𝑥𝑥32̇ + 𝑦𝑦32̇   = �−𝑙𝑙1𝑠𝑠1𝜃𝜃1̇ − 𝑙𝑙2𝑠𝑠12�𝜃𝜃1̇ + 𝜃𝜃2̇� − 𝑙𝑙3𝑠𝑠123�𝜃𝜃1̇ + 𝜃𝜃2̇ + 𝜃𝜃3̇��
2

+ �𝑙𝑙1𝑐𝑐1𝜃𝜃1̇ +

𝑙𝑙2𝑐𝑐12�𝜃𝜃1̇ + 𝜃𝜃2̇� + 𝑙𝑙3𝑐𝑐123�𝜃𝜃1̇ + 𝜃𝜃2̇ + 𝜃𝜃3̇��
2

   (15) 
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Figure 1: Prosthetic finger type InMoov 
Finger Starter 

Figure 2: Schematic diagram of a three phalanges finger 

  
However, the following equation can be used to find the total finger kinetic energy: 

𝐾𝐾 = 1
2
𝑚𝑚1(𝑣𝑣1)2 + 1

2
𝑚𝑚2(𝑣𝑣2)2 + 1

2
𝑚𝑚3(𝑣𝑣3)2   (16) 

Where 𝑚𝑚1, 𝑚𝑚2 and 𝑚𝑚3 are the masses of the first, second, and third phalanges, respectively[6]. This gives the following 
equation: 

𝐾𝐾 = 1
2
𝑚𝑚1𝑙𝑙12𝜃̇𝜃12 + 1

2
𝑚𝑚2 ��−𝑙𝑙1𝑠𝑠1𝜃𝜃1̇ − 𝑙𝑙2𝑠𝑠12�𝜃𝜃1̇ + 𝜃𝜃2̇��

2
+ �𝑙𝑙1𝑐𝑐1𝜃𝜃1̇ + 𝑙𝑙2𝑐𝑐12�𝜃𝜃1̇ + 𝜃𝜃2̇��

2
� + 1

2
𝑚𝑚3 ��−𝑙𝑙1𝑠𝑠1𝜃𝜃1̇ − 𝑙𝑙2𝑠𝑠12�𝜃𝜃1̇ + 𝜃𝜃2̇� −

𝑙𝑙3𝑠𝑠123�𝜃𝜃1̇ + 𝜃𝜃2̇ + 𝜃𝜃3̇��
2

+ �𝑙𝑙1𝑐𝑐1𝜃𝜃1̇ + 𝑙𝑙2𝑐𝑐12�𝜃𝜃1̇ + 𝜃𝜃2̇� + 𝑙𝑙3𝑐𝑐123�𝜃𝜃1̇ + 𝜃𝜃2̇ + 𝜃𝜃3̇��
2
�  (17) 

Where 𝑠𝑠 and 𝑐𝑐 are the sine and cosine functions, respectively. However, the potential energy at each phalange can be 
obtained as follows: 

𝑃𝑃𝑖𝑖 = 1
2
� (𝑚𝑚𝑖𝑖𝑔𝑔𝑦𝑦𝑖𝑖)

3
1    (18) 

Where 𝑔𝑔 is the gravitational constant, and 𝑦𝑦 is the vertical height; thus: 

𝑃𝑃1 = 𝑚𝑚1𝑔𝑔𝑙𝑙1 sin𝜃𝜃1   (19) 

𝑃𝑃2 = 𝑚𝑚2𝑔𝑔(𝑙𝑙1 sin𝜃𝜃1 + 𝑙𝑙2 sin(𝜃𝜃1 + 𝜃𝜃2)   (20) 

𝑃𝑃3 = 𝑚𝑚3𝑔𝑔(𝑙𝑙1 sin𝜃𝜃1 + 𝑙𝑙2 sin(𝜃𝜃1 + 𝜃𝜃2) + 𝑙𝑙2 sin(𝜃𝜃1 + 𝜃𝜃2 + 𝜃𝜃3)  (21) 

So, the total potential energy of the finger is: 

𝑃𝑃 = 𝑚𝑚1𝑔𝑔𝑙𝑙1 sin𝜃𝜃1 + 𝑚𝑚2𝑔𝑔(𝑙𝑙1 sin𝜃𝜃1 + 𝑙𝑙2 sin(𝜃𝜃1 + 𝜃𝜃2) + 𝑚𝑚3𝑔𝑔(𝑙𝑙1 sin𝜃𝜃1 + 𝑙𝑙2 sin(𝜃𝜃1 + 𝜃𝜃2) +
𝑙𝑙2 sin(𝜃𝜃1 + 𝜃𝜃2 + 𝜃𝜃3)   (22) 

Nevertheless, the three phalanges prosthetic finger dynamic can be described by obtaining the Lagrangian using Lagrange 
Dynamics based on Equation 23, where 𝐿𝐿 is the Lagrangian, K and P are respectively the kinetic and potential finger energies. 

𝐿𝐿 = 𝐾𝐾 − 𝑃𝑃   (23) 

By substituting Equation 17 and 22 in Equation 23 and after simplification will get the Lagrangian as in the equation 
below: 

𝐿𝐿 = 0.5𝑚𝑚1�𝑙𝑙12𝜃̇𝜃12� + 0.5𝑚𝑚2�𝑙𝑙12𝜃̇𝜃12 + 𝑙𝑙22�𝜃̇𝜃12 + 𝜃̇𝜃22 + 2𝜃𝜃1̇𝜃𝜃2̇� + 2𝑙𝑙1𝑙𝑙2𝑐𝑐2�𝜃̇𝜃12 + 𝜃𝜃1̇𝜃𝜃2̇�� + 0.5𝑚𝑚3 �𝑙𝑙12𝜃̇𝜃12 +

𝑙𝑙22�𝜃𝜃1̇ + 𝜃𝜃2̇�
2 + 𝑙𝑙32�𝜃𝜃1̇ + 𝜃𝜃2̇ + 𝜃𝜃3̇�

2 + 2𝑙𝑙1𝑙𝑙2𝑐𝑐2�𝜃̇𝜃12 + 𝜃𝜃1̇𝜃𝜃2̇� + 𝑙𝑙1𝑙𝑙3𝑐𝑐23�𝜃𝜃1̇ + 𝜃𝜃2̇ + 𝜃𝜃3̇�
2 +

𝑙𝑙2𝑙𝑙3𝑐𝑐3�𝜃𝜃1̇ + 𝜃𝜃2̇��𝜃𝜃1̇ + 𝜃𝜃2̇ + 𝜃𝜃3̇� + 𝑙𝑙1𝜃̇𝜃12 + 𝑙𝑙2�𝜃𝜃1̇ + 𝜃𝜃2̇�
2 + 𝑙𝑙3�𝜃𝜃1̇ + 𝜃𝜃2 +̇ 𝜃𝜃3̇�

2� − [𝑚𝑚1𝑔𝑔𝑙𝑙1𝑠𝑠1 +
𝑚𝑚2𝑔𝑔(𝑙𝑙1𝑠𝑠1 + 𝑙𝑙2𝑠𝑠12) + 𝑚𝑚3𝑔𝑔(𝑙𝑙1𝑠𝑠1 + 𝑙𝑙2𝑠𝑠12 + 𝑙𝑙2𝑠𝑠123)]  (24) 



Hussein Sh. Majeed et al. Engineering and Technology Journal 40 (01) (2022) 257-266 
 

260 
 

 

Using the Lagrange-Euler formulation that is shown in Equation 25 below, the system equations of motion can be obtained 
for each system coordinate[𝜃𝜃1 𝜃𝜃2 𝜃𝜃2], which give the applied torque on each joint, as follows: 

𝑑𝑑
𝑑𝑑𝑑𝑑
� 𝑑𝑑𝑑𝑑
𝑑𝑑𝜃𝜃𝚤̇𝚤
� − 𝑑𝑑𝑑𝑑

𝑑𝑑𝜃𝜃𝑖𝑖
= 𝜏𝜏𝑖𝑖   (25) 

𝑚𝑚1𝑙𝑙12𝜃̈𝜃1 + 𝑚𝑚2�𝑙𝑙12𝜃̈𝜃1 + 𝑙𝑙22�𝜃̈𝜃1 + 𝜃̈𝜃2� + 𝑙𝑙1𝑙𝑙2𝑐𝑐2�2𝜃̈𝜃1 + 𝜃̈𝜃2� − 𝑙𝑙1𝑙𝑙2𝑠𝑠2�2𝜃𝜃1̇𝜃𝜃2̇ + 𝜃̇𝜃22�� + 0.5𝑚𝑚3�2𝑙𝑙12𝜃̈𝜃1 +
2𝑙𝑙22�𝜃̈𝜃1 + 𝜃̈𝜃2� + 2𝑙𝑙32�𝜃̈𝜃1 + 𝜃̈𝜃2 + 𝜃̈𝜃3� + 2𝑙𝑙1𝑙𝑙2𝑐𝑐2�2𝜃̈𝜃1 + 𝜃̈𝜃2� − 2𝑙𝑙1𝑙𝑙2𝑠𝑠2�2𝜃𝜃1̇𝜃𝜃2̇ + 𝜃̇𝜃22� + 2𝑙𝑙1𝑙𝑙3𝑐𝑐23�𝜃̈𝜃1 +
𝜃̈𝜃2 + 𝜃̈𝜃3� − 2𝑙𝑙1𝑙𝑙3𝑠𝑠23�2𝜃𝜃1̇ + 2𝜃𝜃2̇ + 𝜃𝜃3̇� + 𝑙𝑙2𝑙𝑙3𝑐𝑐3��𝜃̈𝜃1 + 𝜃̈𝜃2� + �𝜃̈𝜃1 + 𝜃̈𝜃2 + 𝜃̈𝜃3�� − 𝑙𝑙2𝑙𝑙3𝑠𝑠3𝜃𝜃3̇�2𝜃𝜃1̇ +
2𝜃𝜃2̇ + 𝜃𝜃3̇� + 2𝑙𝑙1𝜃̈𝜃1 + 2𝑙𝑙2�𝜃̈𝜃1 + 𝜃̈𝜃2� + 2𝑙𝑙3�𝜃̈𝜃1 + 𝜃̈𝜃2 + 𝜃̈𝜃3�� − [𝑚𝑚1𝑔𝑔𝑙𝑙1𝑐𝑐1 + 𝑚𝑚2𝑔𝑔(𝑙𝑙1𝑐𝑐1 + 𝑙𝑙2𝑐𝑐12) +

𝑚𝑚3𝑔𝑔(𝑙𝑙1𝑐𝑐1 + 𝑙𝑙2𝑐𝑐12 + 𝑙𝑙2𝑐𝑐123)] = 𝜏𝜏1  (26) 

 𝑚𝑚2�𝑙𝑙22�𝜃̈𝜃1 + 𝜃̈𝜃2� + 𝑙𝑙1𝑙𝑙2𝑐𝑐2𝜃̈𝜃1 − 𝑙𝑙1𝑙𝑙2𝑠𝑠2𝜃𝜃1̇𝜃𝜃2̇� + 0.5𝑚𝑚3�2𝑙𝑙22�𝜃̈𝜃1 + 𝜃̈𝜃2� + 2𝑙𝑙32�𝜃̈𝜃1 + 𝜃̈𝜃2 + 𝜃̈𝜃3� +
2�𝑙𝑙1𝑙𝑙2𝑐𝑐2𝜃̈𝜃1 − 𝑙𝑙1𝑙𝑙2𝑠𝑠2𝜃𝜃1̇𝜃𝜃2̇� + 2𝑙𝑙1𝑙𝑙3𝑐𝑐23�𝜃̈𝜃1 + 𝜃̈𝜃2 + 𝜃̈𝜃3� − 2𝑙𝑙1𝑙𝑙3𝑠𝑠23�𝜃𝜃1̇ + 2𝜃𝜃2̇ + 2𝜃𝜃3̇� + 𝑙𝑙2𝑙𝑙3𝑐𝑐3�2𝜃̈𝜃1 +
2𝜃̈𝜃2 + 𝜃̈𝜃3� − 𝑙𝑙2𝑙𝑙3𝑠𝑠3𝜃𝜃3̇�2𝜃𝜃1̇ + 2𝜃𝜃2̇ + 𝜃𝜃3̇� + 2𝑙𝑙2�𝜃̈𝜃1 + 𝜃̈𝜃2� + 2𝑙𝑙3�𝜃̈𝜃1 + 𝜃̈𝜃2 + 𝜃̈𝜃3�� − 2𝑙𝑙1𝑙𝑙2𝑠𝑠2�𝜃̇𝜃12 +
𝜃𝜃1̇𝜃𝜃2̇� − 0.5𝑚𝑚3 �2𝑙𝑙1𝑙𝑙2𝑠𝑠2𝜃𝜃1̇�𝜃𝜃1̇ + 𝜃𝜃2̇� + 𝑙𝑙1𝑙𝑙3𝑠𝑠23�𝜃𝜃1̇ + 𝜃𝜃2 +̇ 𝜃𝜃3̇�

2� − [𝑚𝑚2𝑔𝑔(𝑙𝑙2𝑐𝑐12) + 𝑚𝑚3𝑔𝑔(𝑙𝑙2𝑐𝑐12 +
𝑙𝑙2𝑐𝑐123)] = 𝜏𝜏2   (27) 

0.5𝑚𝑚3�2𝑙𝑙32�𝜃̈𝜃1 + 𝜃̈𝜃2 + 𝜃̈𝜃3� + 2𝑙𝑙1𝑙𝑙3𝑐𝑐23�𝜃̈𝜃1 + 𝜃̈𝜃2 + 𝜃̈𝜃3� − 2𝑙𝑙1𝑙𝑙3𝑠𝑠23�𝜃𝜃1̇ + 2𝜃𝜃2̇ + 2𝜃𝜃3̇� + 𝑙𝑙2𝑙𝑙3𝑐𝑐3�𝜃̈𝜃1 +
𝜃̈𝜃2� − 𝑙𝑙2𝑙𝑙3𝑠𝑠3𝜃𝜃3̇�𝜃𝜃2̇ + 𝜃𝜃3̇� + 2𝑙𝑙3�𝜃̈𝜃1 + 𝜃̈𝜃2 + 𝜃̈𝜃3�� − 0.5𝑚𝑚3 �𝑙𝑙1𝑙𝑙3𝑠𝑠23�𝜃𝜃1̇ + 𝜃𝜃2̇ + 𝜃𝜃3̇�

2 − 𝑙𝑙2𝑙𝑙3𝑠𝑠3�2𝜃𝜃1̇ +

2𝜃𝜃2̇ + 𝜃𝜃3̇�� − [𝑚𝑚3𝑔𝑔(𝑙𝑙3𝑐𝑐123)] = 𝜏𝜏3   (28) 

Where 𝜏𝜏𝑖𝑖 is the torque that each phalange experiences, and 𝜃̈𝜃 is the angular acceleration? However, the system generalized 
equations of motion in the matrix form is given by the following nonlinear form: 

𝑀𝑀(𝜃𝜃) 𝜃̈𝜃 + 𝑉𝑉(𝜃𝜃, 𝜃̇𝜃 ) + 𝐺𝐺(𝜃𝜃) = 𝜏𝜏   (29) 

Where 𝑀𝑀(𝜃𝜃) is an 3 × 3 mass matrix, 𝑉𝑉(𝜃𝜃, 𝜃̇𝜃 ) is an 3 × 1 vector contains the Coriolis and centrifugal terms, 𝐺𝐺(𝜃𝜃) is an 
3 × 1 gravity vector, and 𝜏𝜏 is an 3 × 1 generalized input torque vector;  

�
𝑀𝑀11 𝑀𝑀12 𝑀𝑀13
𝑀𝑀21 𝑀𝑀22 𝑀𝑀23
𝑀𝑀31 𝑀𝑀32 𝑀𝑀33

� �
𝜃̈𝜃1
𝜃̈𝜃2
𝜃̈𝜃3

� + �
𝑉𝑉𝑉𝑉1
𝑉𝑉𝑉𝑉2
𝑉𝑉𝑉𝑉3

� = �
τ1
τ2
τ3
�   (30) 

The terms VG1, VG2 and VG3 constitute the lumped expressions of Carioles/centrifugal forces and gravity consequences. 
We assume that phalange 1 is attached to phalanges 2 and 3 through the pulley-belt machine approach. 

3. Classical sliding mode controller (SMC) 
One of the successful methods to monitor nonlinear systems involving matched disturbances is sliding mode control 

(SMC), which has provided efficiency in design has been widely used in industrial[7]. In this control scheme, states of the 
system are handled toward a sliding surface and forced to stay on (or near) it. However, two parts are there within the layout of 
this class of controllers. Firstly, within the system's state space model, a sliding surface is introduced; secondly, to construct 
and maintain the sliding motion, the control law, which is responsible for that, is found [8]. Thus, the sliding surface (𝑠𝑠) can be 
presented as: 

𝑠𝑠 = 𝜆𝜆𝜆𝜆 + 𝑒̇𝑒 = 0   (31) 
Where λ is a constant and it is > 0. However, let assume that 𝑥𝑥1 = 𝑒𝑒, 𝑥𝑥2 = 𝑒̇𝑒  where 𝑒𝑒 is the error and   𝑒̇𝑒 is the dervitive of 

the error and𝜆𝜆 = 1, hence the sliding surface can be rewritten as: 

𝑠𝑠 = 𝑥𝑥1 + 𝑥𝑥2    (32) 
The complete control law can be defined as follows: 

𝑢𝑢 = 𝑢𝑢𝑛𝑛 + 𝑢𝑢𝑑𝑑𝑑𝑑𝑑𝑑   (33) 
Where, 𝑢𝑢𝑛𝑛 represent the nominal control part, and 𝑢𝑢𝑑𝑑𝑑𝑑𝑑𝑑 the discontinuous control part [9], which is defined as: 

𝑢𝑢𝑑𝑑𝑑𝑑𝑑𝑑 = −𝑘𝑘(𝑥𝑥)𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑠𝑠)   (34) 
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K (𝑥𝑥) is a discontinuous gain, and 𝑠𝑠𝑖𝑖𝑔𝑔n (𝑠𝑠) is known as a signup function, which can mathematically be expressed as in 
Equation 35 below. 

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑠𝑠) = �
1                𝑖𝑖𝑖𝑖 𝑠𝑠 > 0
−1             𝑖𝑖𝑖𝑖 𝑠𝑠 < 0
0               𝑖𝑖𝑖𝑖 𝑠𝑠 = 0

   (35) 

Therefore, the control action equation can be written as [10]: 

𝑢𝑢 = 𝑢𝑢𝑛𝑛 − 𝑘𝑘(𝑥𝑥)𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑠𝑠)   (36)               

The structure of the SMC is shown in Figure 4. This structure has one input: the motor’s torque and the output is the 
finger's desired position. To reduce the chattering problem, the saturation function is used instead of 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 (𝑠𝑠) function in 
Equation 36; thus, it can be rewritten as: 

𝑢𝑢 = 𝑢𝑢𝑛𝑛 − 𝑘𝑘(𝑥𝑥)𝑠𝑠𝑠𝑠𝑠𝑠(𝑠𝑠)  (37) 

Where the saturation function is: 

𝑠𝑠𝑠𝑠𝑠𝑠(𝑠𝑠.𝜑𝜑) = �
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑠𝑠)       𝑖𝑖𝑖𝑖 |𝑠𝑠|  >  𝜑𝜑
𝑠𝑠
𝜑𝜑

                 𝑖𝑖𝑖𝑖 |𝑠𝑠|  ≤  𝜑𝜑   (38) 

Where φ expresses the boundary layer's width, as shown in Figure 5 (saturation function). 

4. Adaptive Sliding Mode Control (ASMC) Design 
The biggest challenges to applying SMC scheme are two interrelated phenomena: chattering and high control action activity. 
The amplitude of the chattering is proportional to the magnitude of the discontinuous total control. These two issues can be 
solved at the same time if the magnitude is decreased to a minimum permissible level represented by the conditions for the 
existing sliding mode [9]. In this study, ASMC is proposed to deal with the two issues mentioned above. ASMC has repressed 
the switching gain to a low level. When the gains are decreased, the effects of control actions are minimized, which causes 
attenuating the chattering. Reduce the chattering leads to good tracking performance, which is decreasing the thermal and 
mechanical losses in the systems [11].The ASMC is more compact and relaxed in the architecture than the classical SMC. As 
well as, the system reliability is achieving with a limited control effort while using the ASMC[12]. 

𝑢𝑢 = −𝑘𝑘(𝑡𝑡)sign (𝑠𝑠)  (39) 

Where, 𝑢𝑢  is the control action to be configured, and k (t) is the adaptive controller gain that is described as in the following: 

𝑘𝑘(𝑡𝑡) = �
𝑘𝑘1(𝑡𝑡)
𝑘𝑘2(𝑡𝑡)
𝑘𝑘3(𝑡𝑡)

�  (40) 

  
Figure 1: Block diagram of the prosthetic finger with 

control 
Figure 2: Saturation function 
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Table 1: The Symbol definition 

Symbol Definition Unit 
τ Torque N.m 
s Sliding surface --- 
𝜆𝜆 Sliding manifold slope --- 
𝑒𝑒, 𝑒̇𝑒 the error and is the derivative of the error respectively --- 
φ The width of the boundary layer --- 

𝜌𝜌 Modification gain --- 

And  s = �
s1
s2
s3
� is the sliding variable, and sign (𝑠𝑠) is the signup function previously described in Equation 35. The 

quantification of the adaptive controller gain is as below [13] : 

𝜇𝜇
˙

= {𝜌𝜌|𝑠𝑠(𝑥𝑥, 𝑡𝑡)|sign (|𝑠𝑠(𝑥𝑥, 𝑡𝑡)| − 𝜖𝜖)  (41) 

Where µ = �
µ1
µ2
µ3
�, 𝜌𝜌 > 0 and 𝜖𝜖 > 0, and k(t) is chosen depending on the following rules [11]. 

𝑘𝑘 = �
𝜇𝜇     if Kmin < 𝜇𝜇 < Kmax
 Kmin      if 𝜇𝜇 ≤ Kmin
 Kmax      if 𝜇𝜇 ≥ Kmax

  (42) 

Where Kmin < �𝜇𝜇(0) = 𝑘𝑘(0)� < Kmax.   
𝐾𝐾𝑚𝑚𝑖𝑖𝑛𝑛 is the lowest acceptable value of k(t), 𝐾𝐾𝑚𝑚𝑎𝑎𝑥𝑥 the highest acceptable value of k(t) can the system handle it, and μ (0) 

is the initial start point of the gain 𝑘𝑘(t). To provide more information and illustrations on the rule of the adaptive control and 
how to apply the conditions of Equation 42, the following flowchart is presented. 

 
Figure 3: Flow chart algorithm of ASMC 

Finally, the controller law will be updated with a saturation function as opposed to the signup function, as described: 

𝑢𝑢 = −𝑘𝑘(𝑡𝑡)sat (𝑠𝑠,𝜑𝜑)  (43) 
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The main purpose of the ASMC technique is to design a robust controller that can be able to Orient the sliding variable 
toward the manifold surface and keep the system trajectory in this required sliding surface[14]. 

5. Simulation Results 
In this work, two techniques were used to control a prosthetic finger. In the current simulation results, the adaptive sliding 

mode control shows more effectiveness than the classical sliding mode control by solving the chattering problem concerned 
with high control effort and high control gain. The system has been simplified into six states, which have the initial states as 
follow: 

 𝑥𝑥1(0) = 𝜋𝜋
4

(rad), 𝑥𝑥2(0) = 𝜋𝜋
4

(rad), 𝑥𝑥3(0) = 𝜋𝜋
4

(rad), 𝑥𝑥4(0) = 0 �rad
sec
� , 𝑥𝑥5(0) = 0 �rad

sec
� , 𝑥𝑥6(0) =

0 �rad
sec
�  (44) 

Where𝑥𝑥1, 𝑥𝑥2 and 𝑥𝑥3 are the postion of the three phalanges and 𝑥𝑥4, 𝑥𝑥5 and 𝑥𝑥6 are the velocity. The parameter values are 
presented in Table 2. Figures 6 and 7 illustrate the state of trajectory from the initial to the end point for the three phalanges. 
Using the reaching condition of SMC. These trajectories reach approximately zero, and it will make the system asymptotic 
stable. Figures 8 and 9 show the tracking performance between the actual and desired position, which does not exceed 2.5 sec 
for both CSMC and ASMC. Figures 10 - 11 show the sliding variables for the three-phalange; it is clear that the CSMC suffers 
from some chattering issue, while the ASMC has a smooth sliding surface. Figure 12 illustrates the control gain for both 
CSMC and ASMC; the ASMC can reduce the gain to an acceptable value compared with CSMC, where the high gain value is 
the reason for high charting in the torque action. Figure 13 shows the torque action for the CSMC and ASMC; however, it is 
evident that utilizing the CSMC on the system, the model will suffer from chattering while applying the ASMC minimizes the 
chattering phenomenon. 

Table 2: The model parameters 

Parameter Definition Units 

L1 Length of phalange 1  m 
L2 Length of phalange 2  m 
L3 Length of phalange 3  m 
m1 Mass of phalange 1  Kg 
m2 Mass of phalange 2   Kg 
m3 Mass of phalange 3   Kg 
𝜃𝜃1 desired The desired angle for phalange 1 rad 
𝜃𝜃2 desired The desired angle for phalange 2 rad 
𝜃𝜃3 desired The desired angle for phalange 3 rad 
G Gravitational constant 𝑚𝑚/𝑠𝑠2 
d Disturbance N.m 
Φ Boundary layer width -- 

 
Figure 4: The phase plane trajectory of CSMC 
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Figure 5: The phase plane trajectory of ASMC 

 
Figure 6: The performance of tracking between the desired and existing position of CSMC 

 
Figure 7: The performance of tracking between the desired and existing position of 

ASMC 

 
Figure 8: Sliding variable of CSMC 
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Figure 9: Sliding variable of ASMC 

 
Figure 10: Control gain for both CSMC and ASMC 

 
Figure 11: Control action for both CSMC and ASMC 

 
Figure 12: Error between desired and real for both CSMC and ASMC 

6. Conclusions 
The modeling and control of a tendon controlled 3-degree of freedom prosthetic finger was presented in this research. 

After obtaining the dynamic modeling, the classic (CSMC) and adaptive (ASMC) sliding mode control techniques were then 
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applied to control the finger's motion. It was noticed that the chattering phenomenon is a severe problem of CSMC. However, 
the comparison between the CSMC and ASMC which is clarified in Table 3, demonstrated that the ASMC could reduce the 
controllers' gain value to be reasonable and minimal, thus reducing the control and chattering magnitude. It was also concluded 
that the ASMC reduces the gain to an acceptable value compared with CSMC, which produces high gain leading to high 
chattering in the torque action. This was evident from the obtained results where the model system suffered from chattering 
while applying the ASMC minimizes the chattering phenomenon. 

Table 3: The performance and the characteristics of the CSMC and ASMC 

Control Maximum Control gain 
k(t) 

maximum chattering magnitude 
(N.m) 

The steady-state 
error 

CSMC 0.0013 8.9 1775.1 
ASMC 0.0005 2.2 628.25 
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