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Abstract— A recently-derived alternative method for computing the relative 

gain array (RGA) for singular and/or non-square systems has been proposed, 

which provably guarantees unit invariance. This property is not offered by the 

conventional method that uses the Moore-Penrose (MP) pseudoinverse. In this 

paper, we note that the absence of the scale-invariance property by the 

conventional MP-RGA does not *necessarily* imply a practical disadvantage in 

real-world applications. In other words, while it is true that performance of a 

controller should not depend on the choice of units via its input and output 

variables, this does not necessarily imply that the resulting MP-RGA measures 

of component interaction lead to different controller-design input-output 

pairings. In this paper we consider the application of the MP-RGA to a realistic 

transfer function relating to a Sakai fractional distillation system. Specifically, 

for this transfer function we assess whether or not the choice of unit, which in 

this case relates to temperature, affects the choice of loop pairings implied by 

the resulting RGA matrix. Our results show that it does, thus confirming that 

unit-sensitivity of the MP-RGA undermines its rigorous use for MIMO 

controller design. 

Index Terms— Control systems, Moore-Penrose pseudoinverse, Process control, Relative Gain 

Array (RGA), UC inverse, Unit consistency. 

I. INTRODUCTION 

The relative gain array (RGA) has been an important tool for MIMO controller design 

for over 60 years. Its principal use is to identify strongly-interacting pairs of input and 

output variables in order to logically decompose that system for the efficient design of an 

effective controller. The RGA offers a variety of remarkable properties, one of which is 

invariance with respect to the choice of units on input and output variables [1]. This unit-

invariance property is critical in that it guarantees that the design process is not affected by 

an arbitrary choice of units. Said another way, if the quality of the resulting controller 

depends on the choice of units, then the only way to have confidence in a given controller 

design would be to replicate the design process across the entire range of possible units and 

then assess the relative performance of the resulting designs. If that were necessary then the 

RGA’s role in the process would be entirely superfluous. 

As will be discussed, the definition of the RGA involves computation of the inverse of 

the system plant/gain matrix. This is rarely an issue for systems with matching numbers of 

input and output variables, i.e., when the gain matrix is square and nonsingular, but in the 

case of a rectangular gain matrix – which is necessarily singular – the inverse does not exist 

and therefore the RGA cannot be evaluated. A common remedy proposed in the literature is 

to replace the matrix inverse with the Moore-Penrose (MP) pseudoinverse under an implicit 

assumption that it represents the best-possible approximation to the conventional RGA 
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when the gain matrix is singular. We refer to this as the MP-RGA because its properties are 

distinct from those guaranteed by the RGA when it is applicable. 

Although some concerns have been expressed in the literature about the theoretical 

rigor of the MP-RGA (e.g., in [2]), its continued use was most likely due to the lack of a 

provably more rigorous alternative. Recently, however, it was formally proven that the MP-

RGA does not inherit the unit-invariance property of the RGA, and it was further shown 

that in order to preserve this property it is necessary to use a different generalized matrix 

inverse that preserves consistency with respect to diagonal scaling [3]. This generalized 

inverse is referred to as the UC-inverse [4], which has been successfully applied in a variety 

of robotic control applications [5, 6]. We refer to its use in computing the RGA as the UC-

RGA. The proven unit-invariance property of the UC-RGA, combined with MP-RGA’s 

provable lack of this property, would seem to resolve all questions about how the RGA 

should be evaluated in the case of a singular gain matrix, but technically it has not been 

demonstrated that the unit-sensitivity of the MP-RGA actually results in suboptimal 

pairings when used for controller design. In this paper we formally address this question. 

In the next section we discuss the properties of the RGA and demonstrate that the MP-

RGA is not scale invariant while the UC-RGA is. We then proceed to our main focus, 

which is to assess whether or not the choice of units actually affects the input-output 

pairings implied by the resulting MP-RGA matrix in a practical context. This assessment is 

performed using a chemical distillation system from the literature that involves differing 

numbers of inputs and outputs, i.e., has a non-square gain matrix. 

II. THE RGA AND ITS GENERALIZATIONS 

The RGA is a tool that has been used since the late 1960s both for control 

configuration selection in the design of multivariable control systems, and as an interaction 

measure for analysis of multivariable control systems [7, 1]. More specifically, it provides a 

relative measure of input-output interactions in a multi-input multi-output (MIMO) system. 

For a plant matrix G defining the linear transfer function from a set of inputs to a set of 

outputs, the relative gain λij of the pairing of jth input 𝑢𝑗 and ith output 𝑦𝑖 is defined as the 

ratio between the loop with all other loops open (Open-Loop) and the same loop with all 

other loops closed (Closed-Loop) with perfect control [7, 8]: 

𝜆𝑖𝑗 = 

[
𝜕𝑦𝑖
𝜕𝑢𝑗

]
 𝑂𝑝𝑒𝑛−𝐿𝑜𝑜𝑝  

[
𝜕𝑦𝑖
𝜕𝑢𝑗

]
𝐶𝑙𝑜𝑠𝑒𝑑−𝐿𝑜𝑜𝑝

= 
𝑜𝑝𝑒𝑛−𝑙𝑜𝑜𝑝 𝑔𝑎𝑖𝑛

𝑐𝑙𝑜𝑠𝑒𝑑−𝑙𝑜𝑜𝑝 𝑔𝑎𝑖𝑛
                                                        (1) 

The matrix λij is referred to as the relative gain array, and it can be defined and evaluated as: 

𝑅𝐺𝐴(𝐺) ≐ 𝐺 ∘  (𝐺−1)𝑇                                                               (2)   

Where operator ◦ is the elementwise (Hadamard) matrix product. Some of the 

properties of the RGA are [3]: 

1. RGA(G) = RGA(DGE) for diagonal matrices D and E. (This diagonal-scale invariance 

is what guarantees unit invariance, i.e., the interaction measures are dimensionless 

[9].) 

2. The sum of elements of any row or column is less than or equal to 1. 

3. The sum of all the elements is equal to the rank of G. 
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4. A corollary implied by the above two properties is that the RGA of a full-rank n × n 

matrix has unit row and column sums. (Proof: If the sum of elements is n, and no row 

or column can have sum greater than 1, then each row and column sum must be 

identically 1 in order for the sum of all elements to be n.) 

One use of RGA measures of interaction is to reduce controller-design complexity by 

identifying input-output pairs with minimal interaction, i.e., have similar open-loop and 

closed-loop gains [10, 11, 12, 13]. The ideal case for pairing is λi, j = 1. Cases to be avoided 

are λi, j < 0 or λi, j  much greater than 1, though the tolerable amount greater than 1 depends 

on the dimensionality n (or rank) of the system. In practice it can be challenging to balance 

these rules to produce 1-to-1 mapping of pairs1. This will be seen in the distillation example 

of the next section. 

In the case of singular G, the inverse G−1  must be replaced by a generalized matrix 

inverse. In the literature, this historically has been taken as the Moore-Penrose generalized 

inverse, sometimes referred to as the pseudoinverse [14]. However, there exist infinite 

families of generalized matrix inverses, each of sacrifices certain properties of a true matrix 

inverse [15, 16]. It is likely that the choice to use the MP pseudoinverse of G, which we 

denote with superscript -P as G-P, in the computation of the RGA was due to its widespread 

familiarity in applications involving squared-error minimization (MMSE). Unfortunately, 

the MP inverse does not provide consistency with respect to scaling by nonsingular 

diagonal matrices D and E: 

(𝐷𝐺𝐸)−𝑃  ≠  𝐸−1  ⋅  (𝐺)−𝑃  ⋅  𝐷−1                                    (3) 

       Which is why the MP-RGA is not unit invariant. The derivation of a diagonal-

consistent generalized matrix inverse is relatively recent [4], and exploits the use of 

canonical scaling (which has also found applications in image processing [19]). This unit-

consistent (UC) generalized inverse of G, which we denote with superscript -U as G-U, 

satisfies: 

(𝐷𝐺𝐸)−𝑈 = 𝐸−1  ⋅  (𝐺)−𝑈  ⋅  𝐷−1                                     (4) 

       And consequently, preserves unit-invariance when used in the RGA computation [3]. 

In other words, the UC-RGA preserves all of the previously enumerated properties of the 

RGA whereas the MP-RGA fails to satisfy the unit-invariance property. 

The MP-RGA, UC-RGA, and RGA are equivalent when G is nonsingular because G-P 

= G-U = G-1. In the 2×2 case, singular G is either the zero matrix or has rank 1, thus 

constraining the pair interactions to be equivalent up to a scalar factor. Because of this 

degeneracy, application of the UC-RGA to a 2 × 2 rank-1 G gives: 

𝑈𝐶­𝑅𝐺𝐴(𝑮) =  [
0.25 0.25
0.25 0.25

]                                                (5) 

A more revealing example2 of the difference between the UC-RGA and the MP-RGA 

is the case of: 

                                                 
1 Satisfying this 1-to-1 mapping constraint is referred to as an assignment problem or bipartite matching problem, 

which can be efficiently solved if the assignment matrix is appropriately transformed [17, 18]. The challenge for use 
with the RGA (or its generalizations) is transforming the matrix to reflect the priorities of the pairing-selection rules. 

2 This and the following examples in this section are based on examples from [3]. 
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𝐺 =  [
1 1 1
1 1 1
1 1 1

]                                                             (6) 

For which all of the interactions among inputs and outputs are equivalent, and the MP-

RGA and UC-RGA solutions are identical and reflect this: 

 

𝑀𝑃­𝑅𝐺𝐴(𝐺) =  𝑈𝐶­𝑅𝐺𝐴 =  
1

9
 ⋅  [

1 1 1
1 1 1
1 1 1

]                                     (7) 

Where, as expected, all of the interaction values are the same (and sum to 1, the rank of 

G). However, if the first row and column are scaled by 2: 

𝐺 = [
4 2 2
2 1 1
2 1 1

]                                                          (8) 

The UC-RGA result is unaffected, as should be expected, whereas the MP-RGA gives: 

𝑀𝑃­𝑅𝐺𝐴(𝐺) =  
1

9
 ⋅  [

4 1 1
1 1 4⁄ 1 4⁄

1 1 4⁄ 1 4⁄
]                                                  (9) 

Which clearly violates unit-scale invariance. The more general case of rectangular G 

can be sanity-checked using an arbitrary nonsingular 3 × 3 matrix: 

𝐴 = [
7 4 8
7 2 5
3 8 8

]                                                             (10) 

And the same matrix after diagonal scaling: 

 𝐵 = [
21 16 16
21 8 10
9 32 16

]                                                (11) 

In other words, B = DAE, so their RGAs are the same: 

𝑅𝐺𝐴(𝐴) =  𝑅𝐺𝐴(𝐵) = [
−2.47 −2.41 5.88
3.29 0.94 −3.24
0.18 2.47 −1.65

]                                       (12) 

As shown in [3], application of the UC-RGA to the block-rectangular matrix [A B] 

produces: 

𝑈𝐶­𝑅𝐺𝐴([𝐴 𝐵]) =  [𝑅𝐺𝐴(𝐴)  𝑅𝐺𝐴(𝐵)]                                                 (13)  

=  [𝑅𝐺𝐴(𝐴)  𝑅𝐺𝐴(𝐴)]                                            (14) 

 =  [𝑅𝐺𝐴(𝐵)  𝑅𝐺𝐴(𝐵)]                                           (15) 

 =  
1

2
 ⋅  [

−2.47 −2.41    5.88 −2.47 −2.41    5.88
   3.29    0.94 −3.24    3.29    0.94 −3.24
   0.18    2.47 −1.65    0.18    2.47 −1.65

]     (16) 

The corresponding blocks are not the same for the MP-RGA: 
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𝑀𝑃­𝑅𝐺𝐴([𝐴 𝐵]) =
1

2
 ⋅  [

−4.47 −4.54     9.41 −0.49 −0.28    2.35
   5.93     1.77 −5.18    0.66     0.11 −1.29
   0.32     4.65 −2.64    0.04     0.29 −0.66

]    (17) 

Where the two 3 × 3 blocks are clearly different despite the fact that the matrix 

argument has the form [A DAE]. This clearly shows MP-RGA’s failure to provide scale 

invariance. 

We now consider an example involving a process transfer function with time values 

measured in seconds: 

                            𝐺 (𝑠𝑒𝑐𝑜𝑛𝑑𝑠) = [
16.8      3.2 10.5 0.6
   7.1      4.2    1.9 6.3
   2.5 20.0     9.4 3.4

]                                                  (18) 

The loop pairings (highlighted in boldface) determined from the MP-RGA and UC-

RGA for this system are shown in Eqs. (19) and (20), respectively: 

        MP­RGA (𝑠𝑒𝑐𝑜𝑛𝑑𝑠) = [
   𝟎. 𝟔𝟒𝟐𝟎 −0.0539    0.4387 −0.0267
   0.2588    0.0171 −0.1278    𝟎. 𝟖𝟓𝟏𝟗
−0.0521    𝟎. 𝟗𝟎𝟓𝟐    0.1904 −0.0436

]                                 (19) 

         UC­RGA (𝑠𝑒𝑐𝑜𝑛𝑑𝑠) = [
   𝟎. 𝟕𝟑𝟗𝟒 −0.0366    0.3281 −0.0308
   0.0821 −0.0803 −0.0420    𝟏. 𝟎𝟒𝟎𝟐
−0.0483    𝟎. 𝟗𝟑𝟐𝟗    0.1651 −0.0496

]                                (20) 

It happens in this case that the two methods agree on the best pairings. However, if the 

time unit is changed from seconds to minutes, i.e., the first column of G in Eq. (18) is 

scaled by 1/60, then the new form of G is:  

                    𝐺 (𝑚𝑖𝑛𝑢𝑡𝑒𝑠)  = [
0.2800   3.2000 10.5000 0.6000
0.1183   4.2000    1.9000 6.3000
0.0417 20.0000    9.4000 3.4000

]                                         (21) 

The dimensionless measures of interaction should not be affected by this change in unit of time, 

but Eq. (22) shows that the MP-RGA ‒ and its implied pairings ‒ are in fact changed. By contrast, 

Eq. (23) shows that the UC-RGA is completely unaffected. 

       MP­RGA (𝑚𝑖𝑛𝑢𝑡𝑒𝑠) = [
   0.0012 −0.1678    𝟏. 𝟏𝟔𝟓𝟖    0.0008
   0.0005 −0.1253 −0.0023    𝟏. 𝟏𝟐𝟕𝟐
−0.0001     𝟏. 𝟐𝟗𝟐𝟗 −0.1643 −0.1285

]                                 (22) 

       UC­RGA (𝑚𝑖𝑛𝑢𝑡𝑒𝑠)  = [
   𝟎. 𝟕𝟑𝟗𝟒 −0.0366    0.3281 −0.0308
   0.0821 −0.0803 −0.0420    𝟏. 𝟎𝟒𝟎𝟐
−0.0483    𝟎. 𝟗𝟑𝟐𝟗    0.1651 −0.0496

]                                 (23) 

This example demonstrates that the MP-RGA may not provide reliable information for 

analysis and design of MIMO controllers when G is rectangular. In the next section we 

consider a more compelling example.  

III. MP-RGA APPLICATION TO A CRUDE- OIL DISTILLATION SYSTEM 

It is straightforward to show mathematically that the MP-RGA is not unit invariant, 

and in the previous section we provided a simple example showing that its implied pairings 

can be sensitive to the choice of units. However, it might be speculated that the MP-RGA 

may tend to exhibit less fragility when applied in the context of complex real-world 
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systems, which typically have structure imposed by physical constraints of the application. 

This motivates our consideration in this section of a nontrivial control application from the 

literature. 

Our application of interest involves a Sakai crude-oil distillation system involving a 

non-square plant [20, 21], and our goal is to determine whether a change of unit, in this 

case, the temperature affects the input-output pairings implied by the resulting MP-RGA 

matrix. Based on results from the previous section, we should expect this change of unit to 

result in changes to the resulting MP-RGA matrix. The critical question, though, is whether 

the current system will exhibit robustness in the form of loop pairings that are invariant 

with respect to those changes. 

Fig. 1 is a flow diagram of a Sakai crude distillation unit, which performs preliminary 

fractional distillation of crude oil prior to the full refining process [20, 21]. 

Manipulated variables are top temperature (u1), kerosene yield (u2), LGO yield (u3), 

HGO yield (u4) and heater outlet temperature (u5) [20]. Controlled variables are 

naphtha/kerosene cutpoint (y1), kerosene/LGO cutpoint (y2), LGO/HGO cutpoint (y3) and 

measured over flash (y4) [20].  

 

 

FIG. 1.  FLOW DIAGRAM OF SAKAI’S CRUDE DISTILLATION UNIT [21]. 
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TABLE 1. CONTROL VARIABLES AND CONTROL OBJECTIVES FOR CRUDE UNIT WITH NOMINAL VARIABLE RANGES [21]. 

Description of Variables Label 

 

Nominal 

Operating 

Range 

Control 

Objective 

 

 

Top temperature u1 85 − 95◦C — 

Kerosene (Kero) yield u2 5 − 20% — 

Light gas oil (LGO) yield u3 15 − 25% — 

Heavy gas oil (HGO) yield u4 0 − 15% IRV 

Heater outlet temperature u5 340 − 360◦C IRV 

Naptha/kero cutpoint y1 155 − 185◦C Setpoint 

Kero/LGO cutpoint y2 230 − 260◦C Setpoint 

LGO/HGO cutpoint y3 300 − 330◦C Setpoint 

Measured overflash y4 1 − 6%C Zone limits 

Kero 5% point r1 140 − 170◦C Setpoint 

Kero 95% r2 220 − 250◦C Setpoint 

LGO cloud point r3 −5 − 10◦C Setpoint 

 

The summary of the manipulated variables and multivariable controllers are given in 

Table 1 with their nominal operating ranges and control objectives [21]. The process 

transfer matrix G(s) of the Crude distillation is given in Eq. (24). It is a non-square 4 × 5 

system with 5 inputs and 4 outputs [20, 21]. 

𝐺(𝑠) =

[
 
 
 
 
 
 
 
 

3.8(16𝑠+1)

140𝑠2+14𝑠+1

2.9ℯ−6𝑠

10𝑠+1
0 0

−0.73(−16𝑠+1)ℯ−4𝑠

150𝑠2+20𝑠+1

3.9(4.5𝑠+1)

96𝑠2+17𝑠+1

6.3

20𝑠+1
0 0

16𝑠ℯ−2𝑠

(5𝑠+1)(14𝑠+1)

3.8(0.8𝑠+1)

23𝑠2+13𝑠+1

6.1(12𝑠+1)ℯ−𝑠

337𝑠2+34𝑠+1

3.4ℯ−2𝑠

6.9𝑠+1
0

22𝑠ℯ−2𝑠

(5𝑠+1)(10𝑠+1)

−1.62(5.3𝑠+1)ℯ−𝑠

13𝑠2+13𝑠+1

−1.53(3.1𝑠+1)

5.1𝑠2+7.1𝑠+1

−1.3(7.6𝑠+1)

4.7𝑠2+7.1𝑠+1

−0.6ℯ−𝑠

2𝑠+1

0.32(−9.1𝑠+1)ℯ−𝑠

12𝑠2+15𝑠+1 ]
 
 
 
 
 
 
 
 

     (24) 

Applying the UC-RGA to G (0) with the temperature variable in Celsius gives: 

UC­RGA (Celsius) = [

    𝟏. 𝟐𝟓𝟖𝟔 −0.2889 0 0 0.0303
−0.5381     𝟏. 𝟏𝟕𝟒𝟗 0 0 0.3631
   0.4014 −0.8042 𝟎. 𝟖𝟐𝟕𝟐 0 0.5755
−0.3561    0.4197 0.1374 𝟎. 𝟕𝟖𝟏𝟓 0.0174

]           (25) 

 

where the selected pairings (highlighted in bold) with nonnegative values nearest to 1 align 

with the first four diagonal elements. It must be emphasized that because of its scale-

invariance, the UC-RGA result is the same regardless of the unit of temperature. Applying 

the MP-RGA to G (0) gives two plausible pairing options: 
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MP­RGA (Celsius)Plausible 
pairing 1

= [

    𝟏. 𝟗𝟏𝟒𝟕 −0.9138 0 0 −0.0009
−1.1071   𝟐. 𝟑𝟐𝟐𝟏 0 0 −0.2150
   0.8131 −1.6290 0.6500 0     𝟏. 𝟏𝟔𝟓𝟗
−0.7995  0.9423   𝟎. 𝟑𝟎𝟖𝟔 0.5094    0.0391

]         (26) 

and 

MP­RGA (Celsius)Plausible 
pairing 2

= [

    𝟏. 𝟗𝟏𝟒𝟕 −0.9138 0 0 −0.0009
−1.1071   𝟐. 𝟑𝟐𝟐𝟏 0 0 −0.2150
   0.8131 −1.6290 𝟎. 𝟔𝟓𝟎𝟎 0     1.1659
−0.7995  0.9423   0.3086 𝟎. 𝟓𝟎𝟗𝟒    0.0391

]          (27) 

Where the first two diagonal pairings must be selected to avoid being forced by the 1-

to-1 matching constraint to select negative values (or zeros). Numerical confidence in the 

selections is certainly low because the most confident individual pairing (corresponding to 

the value 0.9423) is not chosen in either case. We now consider what happens if the unit of 

temperature is reduced by a factor of 10, which increases the magnitude of temperature 

values by a factor of 10: 

MP­RGA(Celsius unit 10⁄ ) =  [

   0.2008     𝟎. 𝟕𝟏𝟖𝟔 0 0 0.0806
−0.1051    0.3021 0 0 𝟎. 𝟖𝟎𝟑𝟎
   0.0411 −0.0824 𝟎. 𝟗𝟖𝟐𝟑 0 0.0589
−0.0404    0.0476 0.0156 𝟎. 𝟗𝟕𝟓𝟐 0.0020

]                (28) 

This change of unit now results in a numerically-confident set of pairings from the MP-

RGA, but it is not consistent with either of the two previous pairings. In summary, the issue 

here is not which pairing is best, by whatever measure. What is important is that this 

example demonstrates unambiguously in a practical application that pairings suggested by 

the MP-RGA are in fact sensitive to the choice of units. 

IV. CONCLUSIONS  

In this paper we have resolved an open question in the literature regarding the practical 

implications of the lack of scale invariance provided by the MP-RGA when applied to non-

square (or otherwise singular) plant matrix. Specifically, we have shown in a practical 

example that a simple decimation of the unit of temperature is sufficient to change the set 

of pairings indicated by the MP-RGA. This tends to strongly undermine confidence in the 

MP-RGA as a controller design tool when applied with non-square systems. It must be 

emphasized, however, that our results should not be interpreted as providing general 

evidence of the practical efficacy of the UC-RGA. Satisfying required mathematical 

conditions is necessary, but the extent to which that translates into practical relevance is 

purely speculative [22]. Therefore, future work is needed to empirically assess the quality 

of UC-RGA loop pairings across a broader range of control applications. 

V. FUTURE WORK 

      The RGA has proven to be a useful tool for analysis, structure selection (loop pairings), and 

controller design for MIMO systems. Most of that utility is due to its various mathematical properties, 

but there are also interpretational aspects that derive primarily from experience based on its long history 

of use. For example, the rules for pair selection are far from precise prescriptions, and it has been 

empirically established that for a given RGA matrix there may be reasons to choose a λij =5 pair over a 
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λik =1 pair because of what selection options would be forced by the latter choice [23]. People who have 

vast experience with the RGA have a strong intuitive feel for this, but the extent to which this intuition 

holds for applications of the UC-RGA to singular systems is unclear and must be examined.   
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